2016年秋季学期新版湘教版八年级数学上册第一章《分式》测试卷含答案
- 格式:doc
- 大小:171.50 KB
- 文档页数:4
八年级数学上册《第一章 分式》练习题-附答案(湘教版)一、选择题1. 分式x1−x 可变形为 A. xx−1B. −xx−1C. xx+1D. −xx+12. 下列各式中,不能约分的分式是( ) A. 2a4a 2bB. aa 2−3aC.a+ba 2+b2D.a 2−ab a 2−b23. 如果把分式xx−y 中的x ,y 都扩大5倍,那么分式的值( ) A. 扩大5倍B. 不变C. 缩小15D. 扩大25倍4. 如果把分式xyx+y 中的x 和y 都变为原来的5倍,那么分式的值( ) A. 变为原来的5倍 B. 变为原来的25倍C. 变为原来的15D. 不变5. 若分式x 2−1x+1的值等于0,则x 的值为( )A. ±1B. 0C. −1D. 16. 下列运算中,错误的是( ) A. x−yx+y =y−xy+x B.−a−b a+b =−1C. 0.5a+b0.2a−0.3b =5a+10b2a−3bD. ab =acbc (c ≠0)7. 若分式x2−y 2△是最简分式,则△表示的是( )A. 2x +2yB. (x −y)2C. x 2+2xy +y 2D. x 2+y 28. 把−13a+6、2a 2+2a+1、aa 2+3a+2通分后,各分式的分子之和为 ( ) A. 2a 2+7a +11B. a 2+8a +10C. 2a 2+4a +4D. 4a 2+11a +139. 若将分式3x 2x 2−y 与分式x 2(x−y)通分后,分式x 2(x−y)的分母变为2(x −y)(x +y),则分式3x 2x 2−y 2的分子应变为( )A. 6x 2(x −y)2B. 2(x −y)C. 6x 2D. 6x 2(x +y)10. a 是不为1的有理数,我们把11−a 称为a 的差倒数,如2的差倒数为11−2=−1,−1的差倒数为11−(−1)=12已知a 1=5,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数⋯以此类推,a 2021的值是( )A. 5B. −14C. 43D. 45二、填空题11. 式子−23a ,a a+b ,xy 2,a+1π,x−1x中,分式有 个. 12. 若分式x+2x 2−1有意义,则x 应满足的条件是 . 13. 分式1ab 、a3b 2与59a 2b 的最简公分母是 . 14. 将6x2−12x+64x−4约分的结果是 .(填“整式”或“分式”)15. 有分别写有x ,x +1,x −1的三张卡片,若从中任选一个作为分式( )x 2−1的分子,使得分式为最简分式,则应选择写有____的卡片.16. 若将分式3x 2x 2−y 2与分式x 2(x−y)通分后,分式x 2(x−y)的分母变为2(x +y)(x −y),则分式3x 2x 2−y 2的分子应变为 .17. 将分式16xyz ,18x 2y 2通分时,需要将分式16xyz 的分子与分母同时乘 ,将分式18x 2y 2的分子与分母同时乘 .18. 若(2a−3)x (3−2a)(3−x)=xx−3成立,则a 的取值范围是 .19. 一组按规律排列的式子:2a ,−5a 2。
章节测试题1.【答题】如果,,,那么、、的大小关系为()A.B.C.D.【答案】D【分析】根据负整数指数幂的运算法则进行运算即可.【解答】解:那么、、的大小关系为选D.2.【答题】若,则()A.B.C.D.【答案】B【分析】根据零指数幂和绝对值进行运算即可.【解答】解:当x≠1时,,∴且x≠1,解得:x=-1 选B.3.【答题】下列运算正确的是()A. 2a-3=B. =x2-1C. (3x-y)(-3x+y)=9x2-y2D. (-2x-y)(-2x+y)=4x2-y2【答案】D【分析】根据负整数指数幂的运算法则和乘法公式进行运算即可. 【解答】A. 2a-3=,故A选项错误;B. =x2-1,故B选项错误;C. (3x-y)(-3x+y)=-9x2+6xy-y2,故C选项错误;D. (-2x-y)(-2x+y)=4x2-y2,正确,选D.4.【答题】人体血液中每个成熟红细胞的平均直径为0.0000077米,则数字0.0000077用科学记数法表示为()A. 7.7×10-5B. 0.77×10-4C. 77×10-7D. 7.7×10-6【答案】D【分析】根据负整数指数幂的运算法则进行运算即可.【解答】0.0000077=7.7×10-6.选D.5.【答题】1纳米=0.000 000 001米,则2.5纳米应表示为()A. 2.5×10-8米B. 2.5×10-9米C. 2.5×10-10米D. 2.5×109米【答案】B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】2.5纳米=2.5×0.000000001米=2.5×10−9米.选B.6.【答题】计算的结果是().A.B.C.D.【答案】B【分析】根据负整数指数幂的运算法则进行运算即可.【解答】3-2==.选B.方法总结:a-b=,a≠0.7.【答题】某种球形病毒的直径大约为0.000000102m,这个数用科学记数法表示为()A. 1.02×mB. 1.02×mC. 1.02×mD. 1.02×m【答案】C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000102=1.02×10﹣7,选C.8.【答题】(2016·内蒙古东河区一模)一种细菌的半径是0.000 045米,该数字用科学记数法表示正确的是()A. 4.5×105B. 45×106C. 4.5×10-5D. 4.5×10-4【答案】C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000045米米.选C.9.【答题】某种秋冬流感病毒的直径约为0.000000308米,该直径用科学记数法表示为()A. 0.308米B. 3.08米C. 3.08米D. 3.1米【答案】C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】0.0000003083.08米.选C.10.【答题】将0.00000305用科学记数法表示为()A.B.C.D.【答案】D【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】0.00000305=30.5×10-6.方法总结:对于一个绝对值小于1的非0小数,用科学记数法写成的形式,其中,n是正整数,n等于原数中第一个非0数字前面所有0的个数(包括小数点前面的0).11.【答题】下列计算正确的是()A.B.C.D.【答案】B【分析】根据负整数指数幂的运算法则和整式的运算进行运算即可. 【解答】A. ∵与不是同类项,∴不能合并,故错误;B. ∵,故正确;C. ∵,故错误;D. ∵,故错误;选B.12.【答题】下列计算正确的是()A.B.C.D.【答案】A【分析】根据负整数指数幂的运算法则进行运算即可.【解答】解:A、,故A正确;B、,故B错误;C、不能化简,故C错误;D、没有意义.故D错误.选A.13.【答题】世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司。
新湘教版八年级数学上册第一章测试试卷(附答案)第一章测试试卷时间:90分钟分值:120分一、选择题(每小题3分,共30分)1.若分式 $\dfrac{2x}{x-3}$ 有意义,则 $x$ 满足的条件是()。
A。
$x\neq 3$ B。
$x\geq 3$ C。
$x\leq 3$ D。
$x\neq 2$2.化简 $\dfrac{2x+1}{x^2-9}-\dfrac{3-x}{x+3}$ 的结果是()。
A。
$\dfrac{x-3}{x-1}$ B。
$\dfrac{2x-9}{3-x}$ C。
$\dfrac{1}{3-x}$ D。
$\dfrac{2x-9}{x^2-9}$3.化简 $\dfrac{1-\frac{1}{x+1}}{2}$ 的结果是()。
A。
$\dfrac{2}{x+1}$ B。
$\dfrac{2}{x+1}-1$ C。
$\dfrac{x+1}{2}$ D。
$\dfrac{1}{2}-\dfrac{1}{x+1}$4.下列运算正确的是()。
A。
$a\cdot a=a$ B。
$(\pi-3.14)=1$ C。
$\dfrac{1}{2}-1=-\dfrac{1}{2}$ D。
$x^8\div x^4=x^2$5.某种生物细胞的直径约为0.000 56 m,将0.000 56用科学记数法表示为()。
A。
$0.56\times 10^{-3}$ B。
$5.6\times 10^{-4}$ C。
$5.6\times 10^{-5}$ D。
$56\times 10^{-5}$6.分式方程 $\dfrac{x+1}{x}-\dfrac{1}{x-1}=2$ 的解为()。
A。
$x=1$ B。
$x=-1$ C。
$x=3$ D。
$x=-3$7.若关于 $x$ 的方程 $\dfrac{2ax+3}{4}=x$ 的解为 $x=1$,则 $a$ 的值为()。
A。
$1$ B。
$3$ C。
$-3$ D。
$-1$8.某中学“XXX”的全体同学租一辆面包车去某景点游览,面包车的租价为180元,出发时又增加了两名其他社团的同学,结果每个同学比原来少摊了3元车费。
湘教新版八年级数学上册《第1章 分式》2016年单元测试卷(2)一、选择题1.在函数中,自变量x 的取值范围是( )A .x <B .x ≠﹣C .x ≠D .x > 2.0的相反数是( )A .3.14﹣πB .0C .1D .﹣1 3.下列分式中,最简分式有( )A .2个B .3个C .4个D .5个4.化简的结果是( )A .x +1B .C .x ﹣1D .5.已知,则的值是( )A .B .﹣C .2D .﹣26.用换元法解分式方程﹣+1=0时,如果设=y ,将原方程化为关于y 的整式方程,那么这个整式方程是( )A .y 2+y ﹣3=0B .y 2﹣3y +1=0C .3y 2﹣y +1=0D .3y 2﹣y ﹣1=07.分式方程=1的解为( )A .1B .2C .D .08.关于x 的方程=2+无解,则k 的值为( )A .±3B .3C .﹣3D .无法确定9.若的值为,则的值为( )A.1 B.﹣1 C.﹣D.10.为迎接“六一”儿童节,某儿童品牌玩具专卖店购进了A、B两类玩具,其中A类玩具的进价比B类玩具的进价每个多3元,经调查:用900元购进A类玩具的数量与用750元购进B类玩具的数量相同.设A类玩具的进价为m元/个,根据题意可列分式方程为()A.B.C.D.二、填空题:11.代数式在实数范围内有意义,则x的取值范围是.12.已知分式,当x=2时,分式无意义,则a=.13.当x=2时,分式的值是.14.化简的结果是.15.计算:=.16.若分式方程=a无解,则a的值为.17.解分式方程,其根为.18.计算:﹣=.三、解答题19.化简:.20.先化简,再求值:,其中x=﹣2.21.解分式方程:(1)=(2)+1=.22.已知abc≠0,且a+b+c=0,求a(+)+b(+)+c(+)的值.23.小明解方程﹣=1的过程如图.请指出他解答过程中的错误,并写出正确的解答过程.四、应用题24.跃壮五金商店准备从宁云机械厂购进甲、乙两种零件进行销售.若每个甲种零件的进价比每个乙种零件的进价少2元,且用80元购进甲种零件的数量与用100元购进乙种零件的数量相同.(1)求每个甲种零件、每个乙种零件的进价分别为多少元?(2)若该五金商店本次购进甲种零件的数量比购进乙种零件的数量的3倍还少5个,购进两种零件的总数量不超过95个,该五金商店每个甲种零件的销售价格为12元,每个乙种零件的销售价格为15元,则将本次购进的甲、乙两种零件全部售出后,可使销售两种零件的总利润(利润=售价﹣进价)超过371元,通过计算求出跃壮五金商店本次从宁云机械厂购进甲、乙两种零件有几种方案?请你设计出来.湘教新版八年级数学上册《第1章分式》2016年单元测试卷(2)参考答案与试题解析一、选择题1.在函数中,自变量x的取值范围是()A.x<B.x≠﹣C.x≠D.x>【考点】函数自变量的取值范围;分式有意义的条件.【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,分式有意义的条件是:分母不等于0.【解答】解:根据题意得:3x﹣1≠0,解得:x≠.故选C.【点评】当函数表达式是分式时,要注意考虑分式的分母不能为0.2.(π﹣3.14)0的相反数是()A.3.14﹣πB.0 C.1 D.﹣1【考点】零指数幂;相反数.【分析】首先利用零指数幂的性质得出(π﹣3.14)0的值,再利用相反数的定义进行解答,即只有符号不同的两个数交互为相反数.【解答】解:(π﹣3.14)0的相反数是:﹣1.故选:D.【点评】本题考查的是相反数的定义以及零指数幂的定义,正确把握相关定义是解题关键.3.下列分式中,最简分式有()A.2个B.3个C.4个D.5个【考点】最简分式.【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.【解答】解:,,,这四个是最简分式.而==.最简分式有4个,故选C.【点评】判断一个分式是最简分式,主要看分式的分子和分母是不是有公因式.4.化简的结果是()A.x+1 B.C.x﹣1 D.【考点】分式的加减法.【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【解答】解:原式=﹣===x+1.故选A【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.5.已知,则的值是()A.B.﹣C.2 D.﹣2 【考点】分式的化简求值.【分析】观察已知和所求的关系,容易发现把已知通分后,再求倒数即可.【解答】解:∵,∴﹣=,∴,∴=﹣2.故选D.【点评】解答此题的关键是通分,认真观察式子的特点尤为重要.6.用换元法解分式方程﹣+1=0时,如果设=y,将原方程化为关于y的整式方程,那么这个整式方程是()A.y2+y﹣3=0 B.y2﹣3y+1=0 C.3y2﹣y+1=0 D.3y2﹣y﹣1=0【考点】换元法解分式方程.【分析】换元法即是整体思想的考查,解题的关键是找到这个整体,此题的整体是,设=y,换元后整理即可求得.【解答】解:把=y代入方程+1=0,得:y﹣+1=0.方程两边同乘以y得:y2+y﹣3=0.故选:A.【点评】用换元法解分式方程时常用方法之一,它能够把一些分式方程化繁为简,化难为易,对此应注意总结能用换元法解的分式方程的特点,寻找解题技巧.7.分式方程=1的解为()A.1 B.2 C.D.0【考点】解分式方程.【分析】分式方程变形后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2﹣3x=x﹣2,解得:x=1,经检验x=1是分式方程的解.故选A.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.8.关于x的方程=2+无解,则k的值为()A.±3 B.3 C.﹣3 D.无法确定【考点】分式方程的解.【分析】先将分式方程去分母转化为整式方程,由分式方程无解,得到x﹣3=0,即x=3,代入整式方程计算即可求出k的值.【解答】解:去分母得:x=2x﹣6+k,由分式方程无解,得到x﹣3=0,即x=3,把x=3代入整式方程得:3=2×3﹣6+k,k=3,故选B.【点评】本题考查了分式方程的解,注意:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,利用这一结论可知:分式方程无解,则有增根,求出增根,增根就是使分式方程分母为0的值.9.若的值为,则的值为()A.1 B.﹣1 C.﹣D.【考点】分式的值.【分析】可设3x2+4x=y,根据的值为,可求y的值,再整体代入可求的值.【解答】解:设3x2+4x=y,∵的值为,∴=,解得y=1,∴==1.故选:A.【点评】考查了分式的值,关键是整体思想的运用.10.为迎接“六一”儿童节,某儿童品牌玩具专卖店购进了A、B两类玩具,其中A类玩具的进价比B类玩具的进价每个多3元,经调查:用900元购进A类玩具的数量与用750元购进B类玩具的数量相同.设A类玩具的进价为m元/个,根据题意可列分式方程为()A.B.C.D.【考点】由实际问题抽象出分式方程.【分析】根据题意B类玩具的进价为(m﹣3)元/个,根据用900元购进A类玩具的数量与用750元购进B类玩具的数量相同这个等量关系列出方程即可.【解答】解:设A类玩具的进价为m元/个,则B类玩具的进价为(m﹣3)元/个,由题意得,=,故选:C.【点评】本题考查的是列分式方程解应用题,找到等量关系是解决问题的关键.二、填空题:11.代数式在实数范围内有意义,则x的取值范围是x≠3.【考点】分式有意义的条件.【分析】根据分母不等于0进行解答即可.【解答】解:要使代数式在实数范围内有意义,可得:x﹣3≠0,解得:x≠3,故答案为:x≠3【点评】此题考查分式有意义,关键是分母不等于0.12.已知分式,当x=2时,分式无意义,则a=6.【考点】分式有意义的条件.【分析】根据分式无意义,分母等于0,把x=2代入分母,解关于a的方程即可.【解答】解:∵当x=2时,分式无意义,∴x2﹣5x+a=22﹣5×2+a=0,解得a=6.故答案为:6.【点评】本题考查的知识点为:分式无意义,分母为0.13.当x=2时,分式的值是1.【考点】分式的值.【分析】将x=2代入分式,即可求得分式的值.【解答】解:当x=2时,原式==1.故答案为:1.【点评】本题是一个基础题,考查了分式的值,要熟练掌握.14.化简的结果是.【考点】分式的加减法.【分析】根据同分母分式相加减,分母不变,只把分子相加减计算,然后约分即可得解.【解答】解:﹣,=,=.故答案为:.【点评】本题主要考查了同分母分式的加减运算,是基础题,比较简单,注意要约分.15.计算:=1.【考点】分式的加减法.【分析】直接根据同分母的分数相加减进行计算即可.【解答】解:原式==1.故答案为:1.【点评】本题考查的是分式的加减法,同分母的分式相加减,分母不变,把分子相加减.16.若分式方程=a无解,则a的值为1或﹣1.【考点】分式方程的解.【分析】由分式方程无解,得到最简公分母为0求出x的值,分式方程去分母转化为整式方程,把x的值代入计算即可求出a的值.【解答】解:去分母得:x﹣a=ax+a,即(a﹣1)x=﹣2a,显然a=1时,方程无解;由分式方程无解,得到x+1=0,即x=﹣1,把x=﹣1代入整式方程得:﹣a+1=﹣2a,解得:a=﹣1,综上,a的值为1或﹣1,故答案为:1或﹣1【点评】此题考查了分式方程的解,需注意在任何时候都要考虑分母不为0.17.解分式方程,其根为x=﹣5.【考点】解分式方程.【分析】本题考查解分式方程能力,观察可得方程最简公分母为x(x﹣2),所以方程两边同乘以x(x﹣2)化为整式方程求解.【解答】解:方程两边去分母得:5(x﹣2)=7x,整理解得x=﹣5.检验得x=﹣5是原方程的解.故本题答案为:x=﹣5.【点评】(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.18.计算:﹣=.【考点】分式的加减法.【分析】根据同分母分式加减法法则:同分母的分式相加减,分母不变,把分子相加减,求解即可.【解答】解:原式===.故答案为:.【点评】本题考查了分式的加减法,解答本题的关键是掌握同分母分式加减法法则:同分母的分式相加减,分母不变,把分子相加减.三、解答题19.化简:.【考点】分式的混合运算.【分析】根据分式混合运算的法则先计算括号里面的,再把除法变为乘法进行计算即可.【解答】解:原式=====.【点评】本题考查的是分式的混合运算,即分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.20.先化简,再求值:,其中x=﹣2.【考点】分式的化简求值.【分析】先通分,然后进行四则运算,最后将x=﹣2代入计算即可.【解答】解:原式=,当x=﹣2时,原式==﹣1.【点评】解答此题的关键是把分式化到最简,然后代值计算.21.解分式方程:(1)=(2)+1=.【考点】解分式方程.【分析】解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.【解答】解:(1)=去分母,得3(x+1)=2×2x即3x+3=4x解得x=3检验:当x=3时,2x(x+1)=24≠0,∴x=3是原分式方程的解;(2)+1=去分母,得2y2+y(y﹣1)=(3y﹣1)(y﹣1)即2y2+y2﹣y=3y2﹣4y+1解得y=检验:当y=时,y(y﹣1)=﹣≠0∴y=是原分式方程的解.【点评】本题主要考查了解分式方程,解分式方程时,去分母后所得整式方程的解有可能使原方程中的分母为0,所以应检验.22.已知abc≠0,且a+b+c=0,求a(+)+b(+)+c(+)的值.【考点】分式的化简求值.【分析】由题意可知:a+b=﹣c,b+c=﹣a,a+c=﹣b,将原式的括号去掉,然后将同分母的相加,再利用条件式即可得出答案.【解答】解:由a+b+c=0得:a+b=﹣c,b+c=﹣a,a+c=﹣b,∴===﹣3;【点评】本题考查分式的化简求值问题,需要将所求的式子进行拆分重组,需要较高的观察能力.23.小明解方程﹣=1的过程如图.请指出他解答过程中的错误,并写出正确的解答过程.【考点】解分式方程.【分析】小明的解法有三处错误,步骤①去分母有误;步骤②去括号有误;步骤⑥少检验,写出正确的解题过程即可.【解答】解:小明的解法有三处错误,步骤①去分母有误;步骤②去括号有误;步骤⑥少检验;正确解法为:方程两边乘以x,得:1﹣(x﹣2)=x,去括号得:1﹣x+2=x,移项得:﹣x﹣x=﹣1﹣2,合并同类项得:﹣2x=﹣3,解得:x=,经检验x=是分式方程的解,则方程的解为x=.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.四、应用题24.跃壮五金商店准备从宁云机械厂购进甲、乙两种零件进行销售.若每个甲种零件的进价比每个乙种零件的进价少2元,且用80元购进甲种零件的数量与用100元购进乙种零件的数量相同.(1)求每个甲种零件、每个乙种零件的进价分别为多少元?(2)若该五金商店本次购进甲种零件的数量比购进乙种零件的数量的3倍还少5个,购进两种零件的总数量不超过95个,该五金商店每个甲种零件的销售价格为12元,每个乙种零件的销售价格为15元,则将本次购进的甲、乙两种零件全部售出后,可使销售两种零件的总利润(利润=售价﹣进价)超过371元,通过计算求出跃壮五金商店本次从宁云机械厂购进甲、乙两种零件有几种方案?请你设计出来.【考点】分式方程的应用;一元一次不等式组的应用.【分析】(1)关键语是“用80元购进甲种零件的数量与用100元购进乙种零件的数量相同”可根据此列出方程.(2)本题中“根据进两种零件的总数量不超过95个”可得出关于数量的不等式方程,根据“使销售两种零件的总利润(利润=售价﹣进价)超过371元”看俄得出关于利润的不等式方程,组成方程组后得出未知数的取值范围,然后根据取值的不同情况,列出不同的方案.【解答】解:(1)设每个乙种零件进价为x元,则每个甲种零件进价为(x﹣2)元.由题意得:.解得:x=10.检验:当x=10时,x(x﹣2)≠0∴x=10是原分式方程的解.每个甲种零件进价为:x﹣2=10﹣2=8答:每个甲种零件的进价为8元,每个乙种零件的进价为10元.(2)设购进乙种零件y个,则购进甲种零件(3y﹣5)个.由题意得:解得:23<y≤25∵y为整数∴y=24或25.∴共有2种方案.方案一:购进甲种零件67个,乙种零件24个;方案二:购进甲种零件70个,乙种零件25个.【点评】本题考查了分式方程的应用、一元一次不等式组的应用,列分式方程解应用题与所有列方程解应用题一样,重点在于准确地找出相等关系,这是列方程的依据.本题要注意(2)中未知数的不同取值可视为不同的方案.。
湘教版八年级数学上册《第一章分式》单元测试卷及答案学校:___________班级:___________姓名:___________考号:___________【基础达标】 1计算1−a a ÷1-1a 的正确结果是 () A.a+1 B.1C.a -1D.-12若分式2−xx+5有意义,则x 的取值范围是() A .x ≠-5 B .x=5C .x ≠2D .x=23若a -3b=0,则a a -b -a+ba -b 的值为() A .32 B .-32C .12D .-124分式方程4x -1=2的解为() A .x=7 B .x=8 C .x=3 D .x=95计算:aa -b +bb -a ·(a+b )= .6计算:|-2|+(π-3)0+12-1= .7计算:(1)x 2+xy xy -x -yy ·x 2;(2)a+2-42−a ÷aa -2.【能力巩固】 8已知a+b=2,ab=-5,则a b +ba 的值等于()A.-25 B.-145C.-195D.-2459已知a=3,则a -a a+1÷a 2-2a a 2-4的值是 . 10已知分式方程2x -1+x 1−x=■有解,其中“■”表示一个数. (1)若“■”表示的数为4,求分式方程的解.(2)小林回忆说:由于抄题时等号右边的数值抄错,导致找不到原题目,但可以肯定的是“■”是-1或0,试确定“■”表示的数.11为了响应国家提出的绿色环保的倡议,某校文印室提出了“双面打印,节约用纸” 的口号.已知打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸量将减少一半;如果用A4薄型纸双面打印,这份资料的总质量为160克,已知每页薄型纸比厚型纸轻0.8克,求A4薄型纸每页的质量.(墨的质量忽略不计)【素养拓展】12定义:若两个分式的和为n (n 为正整数),则称这两个分式互为“n 阶分式”.例如,分式3x+1与3x1+x 互为“3阶分式”.(1)分式12x 3+2x 与 互为“6阶分式”.(2)若正数x ,y 互为倒数,请通过计算说明:分式5x x+y 2与5y x 2+y互为“5阶分式”. (3)若正数a ,b 满足ab=2-1,请通过计算说明:分式aa+4b 2与2b a 2+2b 互为“1阶分式”.参考答案基础达标作业1.D2.A3.D4.C5.a+b6.57.解:(1)原式=2x 2.(2)原式=(a -2)(a+2)a -2+4a -2·a -2a =a 2a -2·a -2a =a.能力巩固作业8.B9.15410.解:(1)由题意,得2x -1+x 1−x =4去分母,得2-x=4x -4解得x=65经检验,把x=65代入,得x -1≠0,∴分式方程的解为x=65.(2)当“■”是-1时,2x -1+x 1−x =-1,此时方程无解;当“■”是0时,2x -1+x 1−x =0,解得x=2,经检验x=2是分式方程的解,符合题意 所以“■”表示的数是0.11.解:设A4薄型纸每页的质量为x 克,则A4厚型纸每页的质量为(x+0.8)克. 根据题意,得400x+0.8=2×160x解得x=3.2经检验:x=3.2是原分式方程的解,且符合题意.答:A4薄型纸每页的质量为3.2克.素养拓展作业12.解:(1)183+2x.提示:根据题意得6-12x3+2x =18+12x-12x3+2x=183+2x则分式12x3+2x 与183+2x互为“6阶分式”.故答案为183+2x.(2)因为正数x,y互为倒数所以xy=1,即y=1x所以5xx+y2+5yx2+y=5xx+1x2+5xx2+1x=5x3x3+1+5x3+1=5(x3+1)x3+1=5则分式5xx+y2与5yx2+y互为“5阶分式”.(3)因为正数a,b满足ab=2-1,b=12a所以aa+4b2+2ba2+2b=aa+4×14a2+1aa2+1a=a3a3+1+1a3+1=a3+1a3+1=1则分式aa+4b2与2ba2+2b互为“1阶分式”.。
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx 题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:使分式有意义的x的取值范围是()A. ;B. ;C. ;D. ;试题2:的相反数是()A. ;B. 0;C. 1;D. -1;试题3:下列分式:,,,,中,最简分式有:A.2个;B. 3个;C. 4个;D. 5个;试题4:化简的结果是()A.x+1;B. ;C. x-1;D. ;试题5:已知,则的值是()A. ;B. ;C. 2;D. -2;试题6:用换元法解分式方程时,设,将原方程化成关于y的整式方程,那么这个整式方程是()A. ; B.; C.; D.;试题7:分式方程的解为()A. x=1;B. x=2;C. x=;D. x=0;试题8:关于x的方程无解,则k的值为()A. 3;B. 0;C. ±3;D. 无法确定;试题9:若的值为,则的值是()A. 1;B. -1;C. ;D. ;试题10:为迎接“六一”儿童节,某儿童品牌玩具专卖店购进A、B两类玩具,其中A类玩具的进价比B类玩具的进价每个多3元,经调查:用900元购进A类玩具与用750购进B类玩具的数量相同,设A类玩具的进价为m元/个,根据题意可列出方程是()A. ;B. ;C. ;D. ;试题11:代数式在实数范围内有意义,则x的取值范围是。
试题12:已知分式,当x=2时,分式无意义,则a= 。
试题13:当x=2时,分式的值是。
试题14:化简的结果是。
试题15:计算:= 。
试题16:若分式方程无解,则a的值为。
试题17:分式方程的解为。
试题18:计算= 。
试题19:化简:;试题20:先化简,再求值:,其中x=-2;试题21:解分式方程:试题22:解分式方程:试题23:已知,且,求的值。
试题24:小明解方程的过程如图,请指出他解答过程的错误,并写出正确的解答过程。
湘教版八年级数学(上)第一章《分式》复习卷知识点1、分式1、在1x,25ab ,30.7xyy ,m n m,5b c a,23x中,分式有()A. 2个;B. 3个;C. 4个;D. 5个;2、要使分式32x有意义,则x 的取值范围是()A. x>2; B. x<2; C. 2x ;D. 2x;3、若分式的值为零,则x 的值为()A. 0;B. 1;C. -1;D.±1;4、当x时,分式23122xx无意义。
知识点2、分式的基本性质5、若把分式2xy xy中的x 和y 都扩大到原来的3倍,那么分式的值()A. 扩大为原来的3倍;B. 缩小为原来的13;C. 缩小为原来的16; D. 不变;6、下列各式中与分式a a b的值相等的是()A.a ab ;B.aa b;C. a ba;D.a ba;7、化简3aa,正确的结果是()A. a ;B. a 2; C. 1a ; D.2a ;8、约分:2246x y xy=。
242xx y y=。
知识点3、分式的乘除与乘方9、计算22238()4xy zz y 等于()A. 6xyz ;B. 6xyz ;C. 22384xyzyz; D. 26x yz ;10、计算2111xx x 的结果是()A. 1;B. x+1;C.1x x; D.11x ;11、计算1()a a a的结果是()A. a ;B. 1;C. 1a; D. a 2;12、23()x xy的结果是()A.2226x xy; B.2229x xy; C.22262x xxy y; D.22292x xxy y;13、计算113322a b z bb a a b =。
14、计算:(1)234()()()a b ab b a(2)32()()a b aaba.知识点4、分式的加减法和混合运算15、计算111x x x 的结果是()A. x-1; B. 1-x ;C. 1;D. -1;16、化简111aa a的结果是()A. -1;B. 1;C.11a a ; D.11a a17、计算22(1)b a aba b的结果是。
湘教新版八年级数学上册《第1章分式》单元测试卷一、选择题1.下面各式中,x+y,,,﹣4xy,,分式的个数有()A.1个B.2个C.3个D.4个2.已知x≠y,下列各式与相等的是()A.B.C.D.3.要使分式有意义,则x的取值范围是()A.x=B.x>C.x<D.x≠4.下列说法:①若a≠0,m,n是任意整数,则a m.a n=a m+n;②若a是有理数,m,n是整数,且mn>0,则(a m)n=a mn;③若a≠b且ab≠0,则(a+b)0=1;④若a是自然数,则a﹣3.a2=a﹣1.其中,正确的是()A.①B.①②C.②③④D.①②③④5.若分式的值为零,则x等于()A.2 B.﹣2 C.±2 D.06.若把分式中的x和y都扩大3倍,且x+y≠0,那么分式的值()A.扩大3倍B.不变C.缩小3倍D.缩小6倍7.如果分式的值为正整数,则整数x的值的个数是()A.2个B.3个C.4个D.5个8.有游客m人,如果每n个人住一个房间,结果还有一个人无房住,这客房的间数为()A.B.C.D.9.若x满足=1,则x应为()A.正数B.非正数C.负数D.非负数10.已知=3,则的值为()A.B.C.D.﹣11.工地调来72人参加挖土和运土,已知3人挖出的土1人恰好能全部运走,怎样调动劳动力才能使挖出的土能及时运走,解决此问题,可设派x人挖土,其它的人运土,列方程:①②72﹣x=③x+3x=72 ④上述所列方程,正确的有()个.A.1 B.2 C.3 D.412.如果()2÷()2=3,那么a8b4等于()A.6 B.9 C.12 D.8113.x克盐溶解在a克水中,取这种盐水m克,其中含盐()克.A.B.C.D.二、填空题:14.分式、、的最简公分母是.15.已知,用x的代数式表示y=.16.若5x﹣3y﹣2=0,则105x÷103y=.17.若ab=2,a+b=﹣1,则的值为.18.计算6x﹣2(2x﹣2y﹣1)﹣3=.19.瑞士中学教师巴尔末成功地从光谱数据,,,中得到巴尔末公式,从而打开了光谱奥妙的大门.请你按这种规律写出第七个数据是.20.使分式方程产生增根,m的值为.21.已知:=+,则A=,B=.22.当x=时,代数式和的值相等.23.用科学记数法表示:0.000000052=.24.计算=.三、解答题25.计算题(1)+(2)﹣(3)(﹣1)2+()﹣4﹣5÷(2005﹣π)0(4)1﹣÷(5)﹣a﹣b.26.解分式方程:(1)(2).27.有一道题:“先化简,再求值:()÷其中,x=﹣3”.小玲做题时把“x=﹣3”错抄成了“x=3”,但她的计算结果也是正确的,请你解释这是怎么回事?28.点A、B在数轴上,它们所对应数分别是,且点A、B关于原点对称,求x 的值.29.某文化用品商店用2000元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元.(1)求第一批购进书包的单价是多少元?(2)若商店销售这两批书包时,每个售价都是120元,全部售出后,商店共盈利多少元?30.若,,求的值.湘教新版八年级数学上册《第1章分式》2016年单元测试卷(1)参考答案与试题解析一、选择题1.下面各式中,x+y,,,﹣4xy,,分式的个数有()A.1个B.2个C.3个D.4个【考点】分式的定义.【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:在,的分母中含有字母,属于分式.在x+y,﹣4xy,的分母中不含有字母,属于整式.故选:B.【点评】此题主要考查了分式定义,关键是掌握分式的分母必须含有字母,而分子可以含字母,也可以不含字母.2.已知x≠y,下列各式与相等的是()A.B.C.D.【考点】分式的基本性质.【分析】根据分式的基本性质可以得到答案.【解答】解:∵x≠y,∴x﹣y≠0,∴在分式中,分子和分母同时乘以x﹣y得到:,∴分式和分式是相等的,∴C选项是正确的,故选:C.【点评】本题主要考查了分式的基本性质,解题的关键是熟练掌握分式的基本性质,此题基础题,比较简单.3.要使分式有意义,则x的取值范围是()A.x=B.x>C.x<D.x≠【考点】分式有意义的条件.【分析】本题主要考查分式有意义的条件:分母不能为0,即3x﹣7≠0,解得x.【解答】解:∵3x﹣7≠0,∴x≠.故选D.【点评】本题考查的是分式有意义的条件:当分母不为0时,分式有意义.4.下列说法:①若a≠0,m,n是任意整数,则a m.a n=a m+n;②若a是有理数,m,n是整数,且mn>0,则(a m)n=a mn;③若a≠b且ab≠0,则(a+b)0=1;④若a是自然数,则a﹣3.a2=a﹣1.其中,正确的是()A.①B.①②C.②③④D.①②③④【考点】负整数指数幂;零指数幂.【分析】①、④根据同底数幂作答;②由幂的乘方计算法则解答;③由零指数幂的定义作答.【解答】解:①a m.a n=a m+n,同底数幂的乘法:底数不变,指数相加;正确;②若a是有理数,m,n是整数,且mn>0,则(a m)n=a mn,根据幂的乘方计算法则,正确;③若a≠b且ab≠0,当a=﹣b即a+b=0时,(a+b)0=1不成立,任何非零有理数的零次幂都等于1,错误;④∵a是自然数,∴当a=0时,a﹣3.a2=a﹣1不成立,错误.故选B.【点评】本题主要考查的是同底数幂的乘法、幂的乘方、零指数幂等知识.5.若分式的值为零,则x等于()A.2 B.﹣2 C.±2 D.0【考点】分式的值为零的条件.【分析】分式的值是0的条件是:分子为0,分母不为0.【解答】解:∵x2﹣4=0,∴x=±2,当x=2时,2x﹣4=0,∴x=2不满足条件.当x=﹣2时,2x﹣4≠0,∴当x=﹣2时分式的值是0.故选:B.【点评】分式是0的条件中特别需要注意的是分母不能是0,这是经常考查的知识点.6.若把分式中的x和y都扩大3倍,且x+y≠0,那么分式的值()A.扩大3倍B.不变C.缩小3倍D.缩小6倍【考点】分式的基本性质.【分析】把原式中的x、y分别换成3x、3y进行计算,再与原分式比较即可.【解答】解:把原式中的x、y分别换成3x、3y,那么=×,故选C.【点评】本题考查了分式的基本性质,解题关键是用到了整体代入的思想.7.如果分式的值为正整数,则整数x的值的个数是()A.2个B.3个C.4个D.5个【考点】分式的值.【分析】由于x是整数,所以1+x也是整数,要使为正整数,那么1+x只能取6的正整数约数1,2,3,6,这样就可以求得相应x的值.【解答】解:由题意可知1+x为6的正整数约数,故1+x=1,2,3,6由1+x=1,得x=0;由1+x=2,得x=1;由1+x=3,得x=2;由1+x=6,得x=5.∴x为0,1,2,5,共4个,故选C.【点评】认真审题,抓住关键的字眼,是正确解题的出路.如本题“整数x”中的“整数”,“的值为正整数”中的“正整数”.8.有游客m人,如果每n个人住一个房间,结果还有一个人无房住,这客房的间数为()A.B.C.D.【考点】列代数式(分式).【分析】房间数=住进房间人数÷每个房间能住的人数;一人无房住,那么住进房间的人数为:m﹣1.【解答】解:住进房间的人数为:m﹣1,依题意得,客房的间数为,故选A.【点评】解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.9.若x满足=1,则x应为()A.正数B.非正数C.负数D.非负数【考点】分式的值;绝对值.【分析】根据=1可以得到x=|x|,根据绝对值的定义就可以求解.【解答】解:若x满足=1,则x=|x|,x>0,故选A.【点评】此题是分式方程,在解答时要注意分母不为0.10.已知=3,则的值为()A.B.C.D.﹣【考点】分式的基本性质.【分析】先把分式的分子、分母都除以xy,就可以得到已知条件的形式,再把=3,代入就可以进行计算.【解答】解:根据分式的基本性质,分子分母都除以xy得,==.故选B.【点评】解答本题关键在于利用分式基本性质从所求算式中整理出已知条件的形式,再进行代入计算,此方法中考题中常用,是热点.11.工地调来72人参加挖土和运土,已知3人挖出的土1人恰好能全部运走,怎样调动劳动力才能使挖出的土能及时运走,解决此问题,可设派x人挖土,其它的人运土,列方程:①②72﹣x=③x+3x=72 ④上述所列方程,正确的有()个.A.1 B.2 C.3 D.4【考点】由实际问题抽象出分式方程.【分析】关键描述语是:“3人挖出的土1人恰好能全部运走”.等量关系为:挖土的工作量=运土的工作量,找到一个关系式,看变形有几个即可.【解答】解:设挖土的人的工作量为1.∵3人挖出的土1人恰好能全部运走,∴运土的人工作量为3,∴可列方程为:,即,72﹣x=,故①②④正确,故正确的有3个,故选C.【点评】解决本题的关键是根据工作量得到相应的等量关系,难点是得到挖土的人的工作量和运土的人的工作量之间的关系.12.如果()2÷()2=3,那么a8b4等于()A.6 B.9 C.12 D.81【考点】分式的混合运算.【分析】由于()2÷()2=3,首先利用积的乘方运算法则化简,然后结合所求代数式即可求解.【解答】解:∵()2÷()2=3,∴×=3,∴a4b2=3,∴a8b4=(a4b2)2=9.故选B.【点评】此题主要考查了分式的混合运算,解题时首先把等式利用积的乘方法则化简,然后结合所求代数式的形式即可求解.13.x克盐溶解在a克水中,取这种盐水m克,其中含盐()克.A.B.C.D.【考点】列代数式(分式).【分析】盐=盐水×浓度,而浓度=盐÷(盐+水),根据式子列代数式即可.【解答】解:该盐水的浓度为,故这种盐水m千克,则其中含盐为m×=千克.故选:D.【点评】本题考查了列代数式,解决问题的关键是找到所求的量的等量关系.本题需注意浓度=溶质÷溶液.二、填空题:14.分式、、的最简公分母是6abc.【考点】最简公分母.【分析】根据确定最简公分母的方法:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式确定;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:因为三分式中的常数项系数的最小公倍数是6,a的最高次幂是1,b的最高次幂是1,c的最高次幂是1,所以三分式的最简公分母是6abc.故答案为:6abc.【点评】本题主要考查了最简公分母的定义:取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.15.已知,用x的代数式表示y=.【考点】等式的性质.【分析】根据等式的基本性质可知:先在等式两边同乘(y﹣1),整理后再把x的系数化为1,即可得答案.【解答】解:根据等式性质2,等式两边同乘(y﹣1),得y+1=x(y﹣1)∴y+1=xy﹣x,∴y(x﹣1)=1+x∴y=.【点评】本题主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.16.若5x﹣3y﹣2=0,则105x÷103y=100.【考点】同底数幂的除法.【分析】根据同底数幂的除法法则,可将所求代数式化为:105x﹣3y,而5x﹣3y的值可由已知的方程求出,然后代数求值即可.【解答】解:∵5x﹣3y﹣2=0,∴5x﹣3y=2,∴105x÷103y=105x﹣3y=102=100.【点评】本题主要考查同底数幂的除法运算,整体代入求解是运算更加简便.17.若ab=2,a+b=﹣1,则的值为.【考点】分式的加减法.【分析】先将分式通分,再将ab=2,a+b=﹣1代入其中即可得出结论.【解答】解:原式===﹣.故答案为﹣.【点评】本题考查了分式的加减运算.解决本题首先应通分,然后整体代值.18.计算6x ﹣2(2x ﹣2y ﹣1)﹣3=x 4y 3 .【考点】单项式乘单项式;幂的乘方与积的乘方;负整数指数幂.【分析】结合单项式乘单项式的运算性质:单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.进行求解即可.【解答】解:原式=6x ﹣2x 6y 3=x 4y 3.故答案为: x 4y 3.【点评】本题考查了单项式乘单项式的知识,解答本题的关键在于熟练掌握该知识点的概念和运算性质.19.瑞士中学教师巴尔末成功地从光谱数据,,,中得到巴尔末公式,从而打开了光谱奥妙的大门.请你按这种规律写出第七个数据是 .【考点】规律型:数字的变化类.【分析】分子的规律依次是,32,42,52,62,72,82,92…,分母的规律是:1×5,2×6,3×7,4×8,5×9,6×10,7×11…,所以第七个数据是.【解答】解:由数据,,,可得规律:分子是,32,42,52,62,72,82,92分母是:1×5,2×6,3×7,4×8,5×9,6×10,7×11…,∴第七个数据是.故答案为:.【点评】主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.20.使分式方程产生增根,m的值为±.【考点】分式方程的增根.【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母x﹣3=0,所以增根是x=3,把增根代入化为整式方程的方程即可求出m的值.【解答】解:方程两边都乘(x﹣3),得x﹣2(x﹣3)=m2∵原方程有增根,∴最简公分母x﹣3=0,即增根是x=3,把x=3代入整式方程,得m=±.故答案为:±.【点评】增根问题可按如下步骤进行:①根据最简公分母确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.21.已知:=+,则A=1,B=2.【考点】分式的加减法.【分析】已知等式右边两项通分并利用同分母分式的加法法则计算,利用多项式相等的条件即可求出A与B的值.【解答】解:∵==,∴A+B=3,﹣2A﹣B=﹣4,解得:A=1,B=2,故答案为:1;2【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.22.当x=9时,代数式和的值相等.【考点】解分式方程.【分析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:=,去分母得:2x+3=3x﹣6,解得:x=9,经检验x=9是分式方程的解,故答案为:9【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.23.用科学记数法表示:0.000000052= 5.2×10﹣8.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000052=5.2×10﹣8,故答案为:5.2×10﹣8.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.24.计算=﹣.【考点】分式的乘除法.【分析】根据分式的乘法法则计算即可.【解答】解:原式=﹣,故答案为:﹣.【点评】本题考查的是分式的乘法,分式的乘法法则:分式乘分式,用分子的积作积的分子,分母的积作积的分母.三、解答题25.计算题(1)+(2)﹣(3)(﹣1)2+()﹣4﹣5÷(2005﹣π)0(4)1﹣÷(5)﹣a﹣b.【考点】分式的混合运算;实数的运算;零指数幂;负整数指数幂.【分析】(1)原式变形后,利用同分母分式的减法法则计算即可得到结果;(2)原式通分并利用同分母分式的减法法则计算即可得到结果;(3)原式利用零指数幂、负整数指数幂法则,以及乘方的意义计算即可得到结果;(4)原式第二项利用除法法则变形,约分后通分并利用同分母分式的减法法则计算即可得到结果;(5)原式通分并利用同分母分式的减法法则计算即可得到结果.【解答】解:(1)原式===2x+3;(2)原式===﹣;(3)原式=1+16﹣5=12;(4)原式=1﹣=1﹣==﹣;(5)原式==.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.26.解分式方程:(1)(2).【考点】解分式方程.【分析】(1)方程两边同乘以x(x+1)得到方程2(x+1)=3x,解得x=2,然后把x=2代入x(x=1)进行检验即可确定原方程的解;(2)先去分母,方程两边同乘以(x﹣2)得到方程1﹣2x=2(x﹣2)﹣3,解得x=2,检验,把x=2代入x﹣2得x﹣2=0,则x=2是原方程的增解,于是原方程的无解.【解答】解:(1)方程两边同乘以x(x+1)得,2(x+1)=3x,解得x=2,经检验x=2是原方程的解,所以原方程的解为x=2;(2)方程两边同乘以(x﹣2)得,1﹣2x=2(x﹣2)﹣3解得x=2,经检验x=2是原方程的增解,所以原方程无解.【点评】本题考查了解分式方程:解分式方程的基本步骤为①找出最简公分母,去分母,把分式方程转化为一元一次方程;②解一元一次方程;③检验;④确定分式方程的解.27.有一道题:“先化简,再求值:()÷其中,x=﹣3”.小玲做题时把“x=﹣3”错抄成了“x=3”,但她的计算结果也是正确的,请你解释这是怎么回事?【考点】分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,即可做出判断.【解答】解:原式=(x+2)(x﹣2)=x2+4,若小玲做题时把“x=﹣3”错抄成了“x=3”,得到x2=9不变,故计算结果正确.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.28.点A、B在数轴上,它们所对应数分别是,且点A、B关于原点对称,求x 的值.【考点】解分式方程;数轴.【分析】根据题意列出分式方程,求出分式方程的解即可得到x的值.【解答】解:根据题意得:=,去分母得:2x﹣2=x﹣3,解得:x=﹣1,经检验x=﹣1是分式方程的解.【点评】此题考查了解分式方程,以及数轴,熟练掌握运算法则是解本题的关键.29.某文化用品商店用2000元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元.(1)求第一批购进书包的单价是多少元?(2)若商店销售这两批书包时,每个售价都是120元,全部售出后,商店共盈利多少元?【考点】分式方程的应用.【分析】(1)求的是单价,总价明显,一定是根据数量来列等量关系.本题的关键描述语是:“数量是第一批购进数量的3倍”;等量关系为:6300元购买的数量=2000元购买的数量×3.(2)盈利=总售价﹣总进价.【解答】解:(1)设第一批购进书包的单价是x元.则:×3=.解得:x=80.经检验:x=80是原方程的根.答:第一批购进书包的单价是80元.(2)×(120﹣80)+×(120﹣84)=3700(元).答:商店共盈利3700元.【点评】应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.30.(2011春苏州校级期末)若,,求的值.【考点】分式的化简求值.【分析】此题可通过,得到a、b与c的关系,然后再代入进行求值.【解答】解:∵,∴=;∵,∴;∴=a+=+=1.【点评】本题考查了分式的化简求值,重点是通过等式找出a、b之间的关系再代入分式求值.参与本试卷答题和审题的老师有:dbz1018;733599;HJJ;zhjh;王岑;Linaliu;117173。
八年级数学上册《第一章 分式》练习题-含答案(湘教版)一、选择题1.下列式子是分式的是( ) A.a -b 2 B.5+y π C.x +3xD.1+x 2.下列各式:其中分式共有( )A.2个B.3个C.4个D.5个3.如果分式11 x 在实数范围内有意义,则x 的取值范围是( ) A.x ≠﹣1 B.x >﹣1 C.全体实数 D.x=﹣14.若分式x -2x +1无意义,则( ) A.x =2 B.x =-1 C.x =1 D.x ≠-1 5.若分式2x +63x -9 的值为零,则x 等于( ) A.2 B.3 C.-3 D.3或-36.已知5a=2b ,则值为( )A.25B.35C.23 D.1.47.已知a ﹣b ≠0,且2a ﹣3b =0,则代数式2a -b a -b的值是( ) A.﹣12 B.0 C.4 D.4或﹣128.已知1x -1y =3,则代数式2x +3xy -2y x -xy -y的值是( ) A.-72 B.-112 C.92 D.34二、填空题9.某工厂计划a 天生产60件产品,则平均每天生产该产品 件.10.有游客m 人,若每n 个人住一个房间,结果还有一个人无房住,则客房的间数为.11.若分式2x+1的值不存在,则x的值为 .12.把分式a+13b34a-b的分子、分母中各项系数化为整数的结果为________.13.如果x=-1,那么分式x-2x2-4的值为________.14.若4x+1表示一个整数,则所有满足条件的整数x的值为___________.三、解答题15.下列各分式中,当x取何值时有意义?(1)1x-8;(2)3+x22x-3;(3)xx-3.16.当m为何值时,分式的值为0?(1)mm-1; (2)|m|-2m+2; (3)m2-1m+1.17.求下列各分式的值.(1)5x3x2-2,其中x=12;(2)x-12x2+1,其中x=-1;(3)x-yx+y2,其中x=2,y=-1.18.某公司有一种产品共300箱,将其分配给批发部和零售部销售,批发部经理对零售部经理说:“如果把你们分到的产品让我们卖,可卖得3 500元.”零售部经理对批发部经理说:“如果把你们分到的产品让我们卖,可卖得7 500元.”若假设零售部分到的产品是a箱,则:(1)该产品的零售价和批发价分别是每箱多少元?(2)若a=100,则这批产品一共能卖多少元?19.已知x,y满足xy=5,求分式x2-2xy+3y24x2+5xy-6y2的值.20.对于任意非零实数a,b,定义新运算“*”如下:a*b=a-bab,求2*1+3*2+…+10*9的值.参考答案1.C2.A3.A4.B5.C6.D7.C8.D.9.答案为:60a. 10.答案为:m -1n. 11.答案为:-1.12.答案为:12a +4b 9a -12b13.答案为:114.答案为:-2,-3,-5,0,1,3.15.解:(1)x ≠8 (2)x ≠32(3)x ≠3. 16.解:(1)∵⎩⎨⎧m =0,m -1≠0,∴m =0. (2)∵⎩⎨⎧|m|-2=0,m +2≠0,∴m =2. (3)∵⎩⎨⎧m 2-1=0,m +1≠0,∴m =1. 17.解:(1)把x =12 代入5x 3x 2-2,得原式=-2. (2)当x =-1时,x -12x 2+1 =-1-12×(-1)2+1 =-23. (3)当x =2,y =-1时,x -y x +y 2 =2-(-1)2+(-1)2 =33=1.18.解:(1)该产品的零售价是每箱7 500300-a 元,批发价是每箱3 500a元. (2)这批产品一共能卖10 750元.19.解:∵x y =5,∴x =5y ∴x 2-2xy +3y 24x 2+5xy -6y 2=(5y )2-2×5y ·y +3y 24×(5y )2+5×5y ·y -6y 2=18y 2119y 2=18119. 20.解:2*1+3*2+…+10*9=2-12×1+3-23×2+…+10-910×9=1﹣110=910.。
初中数学湘教版八年级上册:第1章分式一、选择题(共10小题;共50分)1. 中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500t ,这个数据用科学记数法表示为 ( ) A. 67.5×103t B. 6.75×104tC. 0.675×105tD. 6.75×10−4t2. 下列代数式 ① 1x ,② a+b 2,③ aπ,④ 1m−n 中,分式有 ( )A. 1个B. 2个C. 3个D. 4个3. 在方程x+53=7,−2x =2,x−12−x−13=4,3x−9x=1中,分式方程有( )A. 1个B. 2个C. 3个D. 4个4. 岳阳市某校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品.若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数量相同.设每个笔记本的价格为x 元,则下列所列方程正确的是 ( ) A.200x=350x−3B.200x=350x+3C.200x+3=350xD.200x−3=350x5. 下列运算正确的是 ( ) A. 5ab −ab =4 B. 1a +1b =2a+bC. a 6÷a 2=a 4D. (a 2b )3=a 5b 36. 下列计算正确的是 ( ) A. 2a +3b =5ab B. (x +2)2=x 2+4 C. (ab 3)2=ab 6D. (−1)0=17. 根据分式的基本性质填空:5x x 3−3x=5( ),括号内应填 ( )A. x 2−3xB. x 3−3C. x 2−3D. x 4−3x8. 方程1x−2=4x 2−4的解是x 等于 ( )A. 2B. −2C. ±2D. 无解9. 下列运算结果正确的是 ( ) A. x 2+x 3=x 5 B. x 3⋅x 2=x 6 C. x 5÷x =x 5D. x 3⋅(3x )2=9x 510. 分式方程xx−1−1=m(x−1)(x+2)有增根,则m的值为 ( )A. 0和3B. 1C. 1和−2D. 3二、填空题(共10小题;共50分)11. 计算:2xx+1+2x+1=.12. 若关于x的方程2x−2+x+m2−x=2有增根,则m的值是.13. 科学实验发现有一种新型可入肺颗粒物的直径约为2.5 μm(1 μm=0.000001 m),用科学计数法表示这种颗粒物的直径约为 m.14. 如果方程2k(x−1)=3的解是x=5,则k=.15. A、B两地相距60 km,甲骑自行车从A地到B地,出发1 h后,乙骑摩托车从A地到B地,且乙比甲早到3 h,已知甲、乙的速度之比为1:3,则甲的速度是.16. 分式方程3x+2=−1x−2的解为.17. 化简(x+2)2−(x−2)2x=.18. 已知(2+x)x=1,则x=.19. 已知a m=6,a n=12,则a m−n=.20. (1)若32x−1=1,则x=;(2)若3x=181,则x=.三、解答题(共5小题;共65分)21. 请你用科学记数法把0.0000025表示出来.22. 已知2x−y=10,求代数式[(x2+y2)−(x−y)2+2y(x−y)]÷4y的值.23. 列分式方程解应用题:常德市的“三改四化”极大地提升了城市品味.国庆期间,工程部对朗州路大润发天桥至市政府段进行封闭施工摊铺沥青.整个路段长约1200米,实际施工时工作人员加班加点,每天实际完成任务是每天计划任务的1.5倍,结果工程比计划提前两天完成,问每天实际施工多少米?24. 解方程:xx2−x +2=2xx+1.25. 若分式方程1x−2+3=x−1x−2有增根,求它的增根.答案第一部分1. B2. B3. B4. B5. C6. D7. C8. D9. D 10. D第二部分11. 212. 013. 2.5×10−614. 1615. 10 km/h16. x=117. 818. 0或−119. 1220. (1)12;(2)−4第三部分21. 2.5×10−6.22.[(x2+y2)−(x−y)2+2y(x−y)]÷4y=(x2+y2−x2+2xy−y2+2xy−2y2)÷4y =x−12y=12(2x−y).因为2x−y=10,所以原式=5.23. 解:设每天实际施工x米,则计划每天施工23x米.列方程为1200x =120023x−2解得x=300检验x=300时,23x≠0,∴x=300是原方程的解,且符合题意.答:每天实际施工300米.24. 方程两边同乘以(x +1)(x −1),得:x +1+2(x +1)(x −1)=2x (x −1).解之,得x =13.检验:把x =13代入(x +1)(x −1)得:(13+1)(13−1)≠0 ∴x =13是原方程的根. 25. 移项,得1x−2−x−1x−2=−3, 即1−x +1x −2=−3x −2x −2=3∴原方程的增根是x =2.。
湘教版八年级数学(上)第一章《分式》测试卷
一、选择题(30分)
1、使分式131
x -有意义的x 的取值范围是( ) A. 13x <; B. 13x ≠-; C. 13x ≠; D. 13
x >; 2、0( 3.14)π-的相反数是( )
A. 3.14π-;
B. 0;
C. 1;
D. -1;
3、下列分式:323a x ,22x y x y -+,2222m n m n +-,211m m +-,222222a ab b a ab b
-+--中,最简分式有: A.2个; B. 3个; C. 4个; D. 5个;
4、化简2111x x x
+--的结果是( ) A.x +1; B.
11x +; C. x -1; D. 1
x x -; 5、已知1112a b -=,则ab a b
-的值是( ) A. 12; B. 12
-; C. 2; D. -2; 6、用换元法解分式方程13101x x x x --+=-时,设1x y x
-=,将原方程化成关于y 的整式方程,那么这个整式方程是( ) A. 230y y +-=; B.2310y y -+=; C.2310y y -+=; D.2310y y --=;
7、分式方程
23122x x x
+=--的解为( ) A. x =1; B. x =2; C. x =13
; D. x =0; 8、关于x 的方程233
x k x x =+--无解,则k 的值为( ) A. 3; B. 0; C. ±3; D. 无法确定;
9、若22347x x ++的值为14,则21681
x x +-的值是( ) A. 1; B. -1; C. 17- ; D. 15
; 10、为迎接“六一”儿童节,某儿童品牌玩具专卖店购进A 、B 两类玩具,其中A 类玩具的进价比B 类玩具的进价每个多3元,经调查:用900元购进A 类玩具与用750购进B 类玩具的数量相同,设A 类玩具的进价为m 元/个,根据题意可列出方程是( )
A.
9007503m m =+;B. 9007503m m =+; C. 9007503m m =-; D. 9007503m m
=-; 二、填空题:(24分)
11、代数式13
x -在实数范围内有意义,则x 的取值范围是 。
12、已知分式235x x x a
--+,当x =2时,分式无意义,则a = 。
13、当x =2时,分式11x -的值是 。
14、化简22
1(1)(1)x x x ---的结果是 。
15、计算:
11x x x
-+= 。
16、若分式方程1
x a a x -=+无解,则a 的值为 。
17、分式方程572
x x =-的解为 。
18、计算222232a b a a b a b
+---= 。
三、解答题(36分)
19、(6分)化简:22()a b b a b a b a b a b
---÷+-+; 20、(6分)先化简,再求值:21211x x ---,其中x =-2; 21、(6分)解分式方程:(1)3221x x =+ (2)23111y y y y
-+=- 22、(8分)已知0abc ≠,且0a b c ++=, 求111111()()()a b c b c c a a b
+++++的值。
23、(10分)小明解方程121x x x
--=的过程如图,请指出他解答过程的错误,并写出正确的解答过程。
解:方程两边同乘以x ,得: 1-(x -2)=1 ① 去括号,得:1-x -2=1 ② 合并同类项,得:-x -1=1 ③ 移项,得:-x =2 ④ 解得:x =-2 ⑤ ∴原方程的解为 x =-2 ⑥
四、应用题(10分)
24、跃壮五金商店准备从宁云机械厂购进甲、乙两种零件进行销售,若每个甲种零件的进价比每个乙种零件的进价少2元,且用80元购进甲种零件的数量与用100购进乙种零件的数量相同。
(1)求每个甲种零件、每个乙种零件的进价分别为多少?
(2)若该五金商店购进甲种零件的数量比购进乙种零件的数量的3倍还少5个,购进两种零件的总数量不超过95个,该五金商店每个甲种零件的售价为12元,每个乙种零件的售价为15元,则将本次购进的甲、乙两种零件全部售出后,可使销售两种零件的总利润(利润=售价-进价)超过371元,通过计算求出跃壮五金商店本次从宁云机械厂购进甲、乙两种零件有几种方案,请设计出来。
参考答案:
一、1、C ;2、D ;3、C ;4、A ;5、D ;6、A ;7、A ;8、A ;9、A ;10、C ;
二、11、3x ≠;12、6;13、1;14、11
x -;15、1; 16、1或-1;17、x =-5;18、2a b
-; 三、19、原式=2a a b
-;20、原式=11x +,当x =-2时,原式=-1; 21、(1)x =3;(2)y =13
;22、由0a b c ++=得:a+b=-c ,b+c=-a ,a+c=-b ;111111()()()a b c b c c a a b +++++=a a b b c c b c c a a b +++++=b c a c a b a b c
+++++=-3; 23、小明的解法有3处错误:第①去分母有误,第②去括号有误,第⑥少检验; 正确解法:(略)
四、24、(1)设每个乙种零件的进价为x 元,则每个甲种零件的进价为(x -2)元, 依题意得:801002x x
=- 解得:x =10,经检验,x =10是原方程的解。
答:(略)
(2)设购进乙种零件y 个,则购进甲种零件(3y -5)个,由题意得:
3595(128)(35)(1510)371
y y y y -+≤⎧⎨--+->⎩解得:2325y <≤ y 为正数,所以y=24或y=25,共有2种购买方案:
(1)乙种零件24个,购进甲种零件67个,
(2)乙种零件25个,购进甲种零件70个,。