平面解析几何三角形与圆相关考前冲刺专题练习(五)附答案人教版高中数学
- 格式:doc
- 大小:183.00 KB
- 文档页数:4
高中数学专题复习
《平面解析几何三角形、圆相关》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上 评卷人
得分 一、填空题
1.如图,AB 是圆O 的直径,点C 在圆O 上,延长BC 到D 使BC CD =,过C 作圆O 的切线交AD 于E .若6AB =,2ED =,则BC =_________.(汇编年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))(几何证明选讲选做题)
2.如图,AB 为圆O 的直径,PA 为圆O 的切线
,PB 与圆O 相交于 D.若PA=3,916PD DB =::,则PD=_________;AB=___________.(汇编年高考北京卷(理))
评卷人
得分 二、解答题 .
A
E D
C
B
O 第15题。
高中数学专题复习
《平面解析几何三角形、圆相关》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上 评卷人
得分 一、填空题
1.如图2,在半径为
7的O 中,弦,AB CD 相交于点,2P PA PB ==,1PD =,则圆心O 到弦CD 的距离为____________.(汇编年高考湖南卷(理))
2.如图,AB 是圆O 的直径,点C 在圆O 上,延长BC 到D 使BC CD =,过C 作圆O 的切线交AD 于E .若6AB =,2ED =,则BC =_________.(汇编年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))(几何证明选讲选做题)
3.选修4—1:几何证明选讲 如图,等腰梯形ABCD 内接于⊙O ,AB ∥CD .过点A 作⊙O 的切线交CD 的延长线于点E .
求证:∠DAE =∠BAC . .
A
E D
C
B
O 第15题。
高中数学专题复习
《平面解析几何三角形、圆相关》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上 评卷人
得分 一、填空题
1.如图,O 的半径OB 垂直于直径AC ,D 为AO 上一点,BD 的延长线交O 于点E ,过E 点的圆的切线交CA 的延长线于P .
求证:2
PD PA PC =⋅.
2.设12,,,n P P P 为平面α内的n 个点,在平面α内的所有点中,若点P 到12,,,n P P P 点的距离之和最小,则称点P 为12,,,n P P P 点的一个“中位点”.例如,线段AB 上的任意点都是端点,A B 的中位点.则有下列命题:
①若,,A B C 三个点共线,C 在线AB 上,则C 是,,A B C 的中位点;
②直角三角形斜边的点是该直角三角形三个顶点的中位点;
③若四个点,,,A B C D 共线,则它们的中位点存在且唯一;
④梯形对角线的交点是该梯形四个顶点的唯一中位点. A B C P O · E D。
高中数学专题复习《平面解析几何三角形、圆相关》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 评卷人得分一、填空题1.如图, AB 与CD 相交于点E , 过E 作BC 的平行线与AD 的延长线相交于点P . 已知A C ∠=∠, PD = 2DA = 2, 则PE = ______. (汇编年高考陕西卷(文))(几何证明选做题)DBCEPA2.如图,在ABC 中,090C ∠=, 060,20A AB ∠==,过C 作ABC 的外接圆的切线CD ,BD CD ⊥,BD 与外接圆交于点E ,则DE 的长为__________(汇编年普通高等学校招生统一考试重庆数学(理)试题(含答案))评卷人得分二、解答题3.(选修4—1:几何证明选讲)(第21—A 题)A BCDPOEF 如图,AB 是圆O 的直径,点C 在圆O 上,延长BC 到D 使BC CD =,过C 作圆O 的切线交AD 于E . 若10AB =,3ED =,求BC 的长.4.(选修4—1:几何证明选讲)(本小题满分10分)如图,锐角ABC ∆的内心为D ,过点A 作直线BD 的垂线,垂足为F ,点E 为内切圆D 与边AC 的切点.若50C ∠=,求DEF ∠的度数.5.如图,⊙O 的半径为3,两条弦AB ,CD 交于点P ,且1AP =, 3CP =,6OP =.求证:△APC ≌△DPB . 证明:延长OP交⊙O 与点E ,F , ………2分由相交弦定理得()()36363CP DP AP BP FP EP ⋅=⋅=⋅=-⨯+=, BACDEOFE D CBA(第21(A)图)EODC B AGFEDCBA O………6分又1AP=,3CP=,故1DP=,3BP=, (8)分所以AP DP=,BP CP=,而APC DPB∠=∠,所以△APC≌△DPB.………10分6.如图,直线AB经过圆O上的点C,并且OA=OB,CA=CB,圆O交于直线OB于E,D,连接EC,CD,若1tan,2CED O∠=的半径为3,求OA的长.7.如图,AB是⊙O的一条切线,切点为B,CGECFDADE,,都是⊙O的割线,已知ABAC=.(1)证明:2ACAEAD=⋅;(2)证明:ACFG//.8.如图,ABCD 是边长为a 的正方形,以D 为圆心,DA 为半径的圆弧与以BC 为直径的O 交于点F ,延长CF 交AB 于E .(1)求证:E 是AB 的中点;(2)求线段BF 的长.(1)证明:利用CDO BCE ≅△△,可证:12E B O CA B== (2)由△FEB ∽△BEC ,得BF CBBE CE=,∴55BF a =.【参考答案】***试卷处理标记,请不要删除评卷人得分一、填空题1. .62.5 评卷人得分二、解答题EFOAB CD3. 解:AB 是圆O 的直径且BC CD =,∴ 10AB AD ==, 连CO ,EC 为圆O 的切线,∴EC CO ⊥,记H 是AD 圆O 的交点,连BH ,∴ //EC BH ,∴3HE ED ==,∴4AH =,222264BD AB ∴-=-,30BC ∴=.……………………………………………………………… 10分4. 5.6.如图,连接OC ,因为,OA OB CA CB ==,所以OC AB ⊥. 因为OC 是圆的半径, 所以AB 是圆的切线.……………3分 因为ED 是直径,所以90ECD ︒∠=,所以90E EDC ︒∠+∠=, 又90,BCD OCD OCD ODC ︒∠+∠=∠=∠, 所以BCD E ∠=∠,又因为CBD EBC ∠=∠, 所以BCD ∆∽BEC ∆,所以2BC BDBC BD BEBE BC=⇒=⋅, …………………5分 21tan ==∠EC CD CED ,BCD ∆∽BEC ∆,21==EC CD BC BD . …………………7分 设BD x =,则2BC x =,因为2BC BD BE=⋅,所以2(2)(6)x x x =+,所以2BD =.9分所以235OA OB BD OD ==+=+=. ………………………………10分 7. 8.ABCDE O第21—A 题图。
高中数学专题复习
《平面解析几何三角形、圆相关》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上 评卷人
得分 一、填空题
1.如图,已知PE 是圆O 的切线,直线PB 交圆O 于A 、B 两点,PA=4,AB=12,43AE =,则PE 的长为 ,ABE ∠的大小为 。
2.设12,,,n P P P 为平面α内的n 个点,在平面α内的所有点中,若点P 到12,,,n P P P 点的距离之和最小,则称点P 为12,,,n P P P 点的一个“中位点”.例如,线段AB 上的任意点都是端点,A B 的中位点.则有下列命题:
①若,,A B C 三个点共线,C 在线AB 上,则C 是,,A B C 的中位点;
②直角三角形斜边的点是该直角三角形三个顶点的中位点;
③若四个点,,,A B C D 共线,则它们的中位点存在且唯一;
④梯形对角线的交点是该梯形四个顶点的唯一中位点.
其中的真命题是____________.(写出所有真命题的序号数学社区) (汇编年高考四川卷(理))。
高中数学专题复习
《平面解析几何三角形、圆相关》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上 评卷人
得分 一、填空题
1.如图, △ABC 为圆的内接三角形, BD 为圆的弦, 且BD //AC . 过点A 做圆的切线与DB 的延长线交于点E , AD 与BC 交于点F . 若AB = AC , AE = 6, BD = 5, 则线段CF 的长为______.(汇编年普通高等学校招生统一考试天津数学(理)试题(含答案))
2.如图,AB 为圆O 的直径,PA 为圆O 的切线,PB 与圆O 相交于 D.若PA=3,916PD DB ::,则PD=_________;AB=___________.(汇编年高考北京卷(理))
评卷人
得分 二、解答题
3.选修4—1:几何证明选讲。
高中数学专题复习
《平面解析几何三角形、圆相关》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上 评卷人
得分 一、填空题
1.如图, 弦AB 与CD 相交于
O 内一点E , 过E 作BC 的平行线与AD 的延长线相交于点P . 已知PD =2DA =2, 则PE =_____. (汇编年高考陕西卷(理))B. (几
何证明选做题) E
D O
P A B C
2.如图,AB 是圆O 的直径,点C 在圆O 上,延长BC 到D 使BC CD =,过C 作圆O 的切线交AD 于E .若6AB =,2ED =,则BC =_________.(汇编年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))(几何证明选讲选做题)
3.选修4 - 1:几何证明选讲(本小题满分10分)
如图,MN 为两圆的公共弦,一条直线与两圆及公共弦依次交于A ,B ,C ,D ,E , .
A
E D
C
B
O 第15题。
高中数学专题复习《平面解析几何三角形、圆相关》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 评卷人得分一、填空题1.如图, △ABC 为圆的内接三角形, BD 为圆的弦, 且BD //AC . 过点A 做圆的切线与DB 的延长线交于点E , AD 与BC 交于点F . 若AB = AC , AE = 6, BD =5, 则线段CF 的长为______.(汇编年普通高等学校招生统一考试天津数学(理)试题(含答案))2.如图3,圆O 的半径为5cm ,点P 是弦AB 的中点,3OP =cm ,弦CD 过点P ,且13CP CD =,则CD 的长为 cm .(几何证明选讲选做题)评卷人得分二、解答题P OAB C D图3(第21—A 题)A BCDPOEF 3.(本小题满分10分,几何证明选讲) 如图,AB 是O 的一条直径,,C D 是O 上不同于,A B 的两点,过B 作O 的切线与AD 的延长线相交于点M ,AD 与BC 相交于N 点,BN BM =. (1)求证:NBD DBM ∠=∠;(2)求证:AM 是BAC ∠的角平分线.CNMBOAD4.如图,⊙O 的半径为3,两条弦AB ,CD 交于点P ,且1AP =, 3CP =,6OP =.求证:△APC ≌△DPB . 证明:延长OP交⊙O 与点E ,F , ………2分由相交弦定理得()()36363CP DP AP BP FP EP ⋅=⋅=⋅=-⨯+=, ………6分 又1AP =,3CP =, 故1DP =,3BP =, (8)分所以AP DP =,BP CP =, 而APC DPB ∠=∠,所以△APC ≌△DPB . ………10分5.如图,已知圆A ,圆B 都经过点C ,BC 是圆A 的切线,圆B 交AB 于点D ,连结CD 并延长交圆A 于点E ,连结AE .求证2DE DC AD DB ⋅=⋅.6.如图,O 为ABC 的外心,,AD BE 分别为边,BC CA 上的高,求证:OC DE ⊥7.如图,在梯形ABCD 中,AD ∥BC ,点E ,F 分别在边AB ,CD 上,设ED 与AF 相交于点G ,若B ,C ,F ,E 四点共圆,求证:AG GF DG GE ⋅=⋅.EA BC D(第21—A 题图)8.如图,设△ABC 的外接圆的切线AE 与BC 的延长线交于点E ,∠BAC 的平分线与BC 交于点D .求证:2ED EB EC .【参考答案】***试卷处理标记,请不要删除评卷人得分一、填空题1.832.62 评卷人得分二、解答题GFEDCBA (第21—A 题BCEDA3. 证明:(1)∵AB 是⊙O 的直径,∴∠ADB =90°而BN =BM ⇒△BNM 为等腰三角形⇒BD 为∠NBM 的角平分线⇒∠DBC =∠DBM. ………………5分(2)BM 是⊙O 的切线,DBM DAB CBD CAD DAB DAC DBC DBM ∠=∠⎫⎪∠=∠⇒∠=∠⎬⎪∠=∠⎭⇒AM 是∠CAB 的角平分线. ………………10分4.5. 由已知,AC BC ⊥,因为90ACD BCD ∠∠=︒+,AC AE =,BC BD =,所以ACD E ∠=∠,BCD BDC ∠=∠,因为ADE BDC ∠=∠,所以90E ADE ∠∠=︒+,所以AE AB ⊥.……………………………………………5分 延长DB 交B 于点F ,连结FC ,则2DF DB =,90DCF ∠=︒,所以ACD F ∠=∠,所以E F ∠=∠,所以Rt ADE △∽Rt CDF △, 所以AD DECD DF=,所以DE DC AD DF⋅=⋅,因为2DF DB =, 所以2D E ⋅=.…………………………………………………………………10分 6.7.证明:连结EF . ∵B C F E ,,,四点共圆,∴ABC EFD ∠=∠. ………………………………2分 ∵AD ∥BC ,∴BAD ABC ∠+∠=180°.∴BAD EFD ∠+∠=180°. ………………………………6分 ∴A D F E ,,,四点共圆. ………………………………8分 ∵ED 交AF 于点G ,FEA BC D (第21—A 题图)∴AG GF DG GE⋅=⋅.………………………………10分8.。
高中数学专题复习
《平面解析几何三角形、圆相关》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上 评卷人
得分 一、填空题
1.如图3,在矩形ABCD 中,3,AB =3BC =,BE AC ⊥,垂足为E ,则ED =_______.(汇编年高考广东卷(文))(几何证明选讲选做题)
图 3E
C
B D A
2.如图, AB 与CD 相交于点E , 过E 作BC 的平行线与AD 的延长线相交于点P . 已知A C ∠=∠, PD = 2DA = 2, 则PE = ______. (汇编年高考陕西卷(文))(几何证明选做题)
D
B
C
E P A 评卷人 得分
二、解答题
3.选修4—1:几何证明选讲
如图,△ABC 中,∠ACB = 90°,以边AC 上的点O 为圆心,OA 为半径作圆,与边AB ,AC。