7.4 数学归纳法
- 格式:doc
- 大小:83.00 KB
- 文档页数:9
数学归纳法经典解析详解
数学归纳法是解决数学问题时常用的方法之一。
它基于一个基本的思想:如果我们可以证明某个命题在第一个数成立,并且可以证明如果命题在第n个数成立,那么它在第n+1个数也成立,那么我们就可以说这个命题对于所有正整数都成立。
数学归纳法分为三个步骤:基础步骤、归纳假设和归纳步骤。
基础步骤是证明命题在第一个数值上成立。
通常,我们需要计算命题在第一个数值上的值,然后验证它是否成立。
如果成立,我们就完成了基础步骤。
归纳假设是假设命题在第n个数值上成立。
这是一个假设,我们假设命题在某个特定的数值上成立,而不是需要一个个去验证每个数值。
归纳步骤是证明命题在第n+1个数值上也成立。
我们使用归纳假设,即假设命题在第n个数值上成立,然后通过一系列的推理步骤来证明命题在第n+1个数值上也成立。
数学归纳法的关键在于建立起递推关系,即通过归纳假设和归纳步骤来证明命题在每个数值上成立。
总结来说,数学归纳法是一种通过建立递推关系来证明命题成立的方法。
它包括基础步骤、归纳假设和归纳步骤三个步骤,其中归纳假设是假设命题在某个特定的数值上成立,而归纳步骤是通过归纳假设来证明命题在下一个数值上也成立。
数学中的数学归纳法数学归纳法是数学中一种常用的证明方法,它通过已知某个命题成立和成立条件,则可以推导出该命题对所有符合条件的情况都成立。
数学归纳法在数学领域中发挥着重要的作用,本文将介绍数学归纳法的基本原理和应用。
一、数学归纳法的基本原理数学归纳法的基本原理可以归纳为三个步骤:基础步骤、归纳步骤和归纳假设。
1. 基础步骤:首先要证明当n取某个特定值时,命题成立。
这是数学归纳法的起点,称为基础步骤。
通常情况下,我们会取n=1或n=0作为基础步骤。
2. 归纳步骤:接下来,假设当n=k时,命题成立,即我们假设命题对于某个值k成立。
然后,使用这个假设来证明当n=k+1时,命题也成立。
这一步骤称为归纳步骤。
3. 归纳假设:在归纳步骤中,我们假设命题对于n=k成立,这被称为归纳假设。
通过归纳假设,我们可以推导出命题对于n=k+1的情况也成立。
归纳法的基本原理就是通过基础步骤、归纳步骤和归纳假设,逐步推导出命题的成立。
二、数学归纳法的应用数学归纳法不仅仅是一种证明方法,它也被广泛应用于其他数学问题的解决中。
以下是数学归纳法的一些典型应用。
1. 证明整数性质:数学归纳法常被用来证明某个整数性质对于所有正整数成立。
例如,我们可以利用数学归纳法证明所有正整数的和公式:1 + 2 + 3 + ... + n = n(n + 1) / 2。
2. 证明不等式:数学归纳法还可以应用于证明不等式的成立。
例如,我们可以利用数学归纳法证明对于所有正整数n,2^n > n^2。
3. 证明命题等式:除了整数性质和不等式,数学归纳法也可以应用于证明命题等式的成立。
例如,我们可以利用数学归纳法证明斐波那契数列的通项公式:F(n) = (φ^n - (1-φ)^n) / √5,其中φ为黄金分割率。
数学归纳法作为一种重要的证明方法,广泛应用于数学的各个领域。
它能够简化证明过程,使得证明更加直观和清晰。
总结:数学归纳法是一种重要的证明方法,它通过基础步骤、归纳步骤和归纳假设,逐步推导出命题的成立。
数学归纳法知识点数学归纳法是数学证明的一种强有力的方法,广泛应用于数论、组合数学、算法分析等多个领域。
它的基本思想是通过验证某个性质在初始情况下成立,以及证明当该性质对某个自然数n成立时,它对n+1也成立,从而可以推导出该性质对于所有自然数均成立。
数学归纳法不仅增强了数学论证的严谨性,还能帮助发现数学中的规律。
一、数学归纳法的基本步骤1.基础步:验证命题在n=1或其他小的自然数情况下成立。
通常此步被称为“基础案例”或“基础情况”。
它是数学归纳法的起始点,确保我们的论证是有基可依的。
2.归纳假设:假设当n=k时,命题成立。
这个假设是归纳法的核心,它允许我们利用这种假设来进行进一步的推导。
3.归纳步骤:在归纳假设的基础上,证明当n=k时,命题成立,则在n=k+1时也成立。
这一步表明了命题从一个自然数延续到下一个自然数。
1.自然数求和公式:通过数学归纳法可以简单地证明自然数求和的公式,即1+2+...+n=n(n+1)/2。
通过验证基础情况n=1和归纳步骤,可以得出这一结论。
2.组合计数:在组合数学中,许多计数问题都可以利用归纳法进行证明,例如证明C(n, k) + C(n, k-1) = C(n+1, k)。
3.算法复杂度:在算法分析中,归纳法用于证明递归算法的时间复杂度。
例如,可以对归纳法求解的递推公式进行严格的时间复杂度分析。
三、数学归纳法的性质1.简洁性:归纳法通过简单的基础案例和归纳步骤,减少了需要直接证明的情况,使得证明过程简单化。
2.广泛性:适用于多种数学命题,不仅限于数论,还适用于几何、组合等各个数学领域。
3.严谨性:归纳法提供了一种结构化的证明方式,使得结果更加严谨,易于理解与复现。
1.适用范围:并非所有命题都适用于数学归纳法,特别是涉及到非自然数的情况。
2.复杂命题:有些复杂命题的归纳步骤可能过于繁琐,难以为归纳假设提供强有力的支撑。
3.直观理解:对于某些初学者而言,归纳法的逻辑可能不易理解,容易造成错误。
高中数学中的数学归纳法知识点总结数学归纳法是数学中常用的一种证明方法,在高中数学课程中占有重要的地位。
它是通过对特定命题的逐一验证来证明一般性结论的方法。
本文将对高中数学中的数学归纳法的相关知识点进行总结。
一、数学归纳法的基本思想数学归纳法是一种以自然数为基础的证明方法。
其基本思想是:假设某个命题对自然数1成立,然后假设对于任意的自然数k成立,可以证明对于自然数k+1也成立,最后通过数学归纳法原理得出该命题对所有自然数成立。
二、数学归纳法的基本步骤使用数学归纳法证明一个命题通常包括以下几个步骤:1. 基础步骤:证明该命题在自然数1上成立;2. 归纳假设:假设对于任意的自然数k,命题成立;3. 归纳证明:证明对于自然数k+1,命题也成立;4. 数学归纳法原理:根据数学归纳法原理,可以得出该命题对于所有自然数成立。
三、数学归纳法的示例下面通过几个具体的数学归纳法示例来说明其应用:1. 数列的性质证明:证明斐波那契数列的性质,即F(1)=1,F(2)=1,并且对于自然数n≥3,F(n)=F(n-1)+F(n-2)。
(1)基础步骤:当n=1或2时,斐波那契数列成立;(2)归纳假设:假设对于任意的自然数k,斐波那契数列成立;(3)归纳证明:考虑n=k+1的情况,有F(k+1)=F(k)+F(k-1),根据归纳假设,F(k)和F(k-1)都成立,因此F(k+1)也成立;(4)根据数学归纳法原理,得出斐波那契数列对所有自然数成立。
2. 数学命题的证明:证明1+2+3+...+n=n(n+1)/2。
(1)基础步骤:当n=1时,等式成立;(2)归纳假设:假设对于任意的自然数k,等式成立;(3)归纳证明:考虑n=k+1的情况,有1+2+3+...+(k+1)=k(k+1)/2+(k+1)=[(k+1)(k+2)]/2,根据归纳假设,等式成立;(4)根据数学归纳法原理,得出等式对所有自然数成立。
3. 方程求解:证明n^2-n+41是素数的情况。
数学归纳法数学归纳法是指根据归纳的原则和方法,按照事物发展和变化有目的地将一些数学问题进行有效地归类,进而达到“从现象到本质”的过程。
归纳法是指根据数学知识本身产生、发展、变化的规律,总结出一些数学规律或结论,用以指导自己进行抽象思维和具体运算,达到抽象概括并联系生活实际的目的。
数学归纳法包括:归类法、类比法、归纳法。
归类法:可以从数组或数列中把不同的变量归类出来,并对每个变量采取与变量相对应的顺序或层次归入其属性之中作为标准。
类比法:可以对每一个与各个数学分支有关的数学问题进行类比分析,然后得出各数学分支之间以及与之相关的其他数学分支之间进行类比,并对这些分类与各数学分支之间的关系进行推理,得出各种数学结论。
归纳法在教育教学中很重要,但对数学知识没有太多认识意义或者不懂得怎样运用归纳方法找到有效信息,是不能很好地解决数学问题的。
归纳法:在教学中运用较为广泛的一种方法。
在教学过程中要根据实际情景,合理地运用归纳方法收集知识、处理问题、解决问题等过程。
归纳主要包括两个方面:一是按照事物特点进行汇总与归类;二是根据所要考察的知识点选择相应的方法加以进行。
1.汇总与归类首先,根据数学概念、公式和基本法则,将其归纳到一个有一定逻辑顺序结构和一定组织形式的总目录,然后对这些目录加以处理,整理出一个数组或者数列,使之便于操作、便于学习应用。
其次,要综合考虑一些因素导致某一元素有其独特属性,在进行相应的分类。
这就是所谓的“按属性分类”,它包括三个方面:一是每个元素都有一个基本的属性;二是各元素有自己独特的属性类型;三是其独特的属性类型与其他元素之间存在着密切的关系。
最后要注意分类的层次性和关联性。
分类首先要对各元素的属性性质做出概括(即归纳)和确定。
其次为不同类别之间建立起合理的逻辑顺序与逻辑层次(即类别)。
但在汇总和归类过程中要注意两点:一是根据一定原则、方法、事物发展演变态势进行汇总或归类;二是必须建立起合理系统且有逻辑层次结构形式和各种不同类别之间是否存在着相互关联关系。
数学归纳法总结数学归纳法是数学中一种常用的证明方法,通过对基础情况的证明和对后续情况的假设进行归纳推理,从而证明一般情况成立。
本文将从介绍数学归纳法的定义和原理出发,阐述数学归纳法的使用步骤和注意事项,最后总结其在数学领域的应用。
1. 数学归纳法的定义和原理数学归纳法是一种证明方法,其基本思想是通过两个步骤来证明某个命题的成立。
首先,证明命题在某个基础情况下成立,通常这个基础情况是一个整数。
其次,假设命题在某个情况下成立,然后通过数学推理证明命题在下一个情况下也成立。
2. 数学归纳法的使用步骤(1)第一步,证明基础情况。
首先,我们需要证明命题在基础情况下成立。
通常情况下,基础情况是一个整数,我们可以进行直接计算或推理,证明命题在该整数下成立。
(2)第二步,假设归纳假设。
假设在某个情况下,命题成立。
这个假设是数学归纳法步骤中最为关键的一步,通过该假设,我们可以推导出命题在下一个情况下的成立。
(3)第三步,证明归纳步骤。
通过使用数学推理,证明命题在下一个情况下成立。
这一步骤通常是利用归纳假设和基本推理规则进行推导。
3. 数学归纳法的注意事项(1)确保基础情况成立。
在进行数学归纳法证明时,必须确保命题在基础情况下成立,否则归纳法无法进行。
(2)确保归纳步骤正确。
在归纳步骤中,必须正确使用归纳假设和基本推理规则进行推导,以保证命题在后续情况下的成立。
(3)注意命题的递推关系。
数学归纳法证明的前提是命题在某情况下成立,则在下一个情况下也成立。
因此,需要确保命题的递推关系正确,以保证证明的有效性。
4. 数学归纳法在数学领域的应用数学归纳法在数学领域被广泛应用,特别是在证明整数的性质和定理时。
例如,证明任意正整数的和公式、整数的奇偶性、斐波那契数列等都可以通过数学归纳法进行证明。
此外,在计算机科学、概率论等领域中,数学归纳法也具有重要的应用价值。
5. 总结数学归纳法是一种常用的证明方法,通过对基础情况的证明和对后续情况的假设进行归纳推理,能够有效证明数学命题的成立。
数学归纳法相关知识总结数学归纳法是数学中一种常用的证明方法,用于证明某种性质对于所有自然数成立。
它是数学推理和证明的重要基础,具有广泛的应用。
在这篇文章中,我们将对数学归纳法的基本概念、步骤以及一些常见的应用进行总结和讨论。
一、数学归纳法的基本概念数学归纳法基于自然数的递增性质,通过证明某个性质在第一个自然数上成立,并证明该性质在一个自然数成立时也在下一个自然数上成立,从而得出该性质对于所有自然数成立的结论。
二、数学归纳法的步骤数学归纳法一般分为三个步骤:基础步骤、归纳步骤和归纳假设。
1. 基础步骤:首先证明当n等于某个确定的值时,所要证明的性质成立。
这个确定的值通常是第一个自然数1或者0。
2. 归纳步骤:假设当n等于k时,所要证明的性质成立。
然后证明当n等于k+1时,所要证明的性质也成立。
在归纳步骤中,对于任意一个自然数k,只需要证明性质在k+1上成立即可。
3. 归纳假设:在归纳步骤中,我们假设当n等于k时,所要证明的性质成立。
这个假设是数学归纳法的关键,通过它我们可以得出当n等于k+1时,所要证明的性质成立的结论。
三、数学归纳法的应用1. 数列的性质证明:数学归纳法常用于证明数列的性质。
例如,我们可以通过数学归纳法证明斐波那契数列的递推公式。
假设当n=k时,斐波那契数列的递推公式成立,即F(k) = F(k-1) + F(k-2)。
然后证明当n=k+1时,递推公式也成立,即F(k+1) = F(k) + F(k-1)。
通过数学归纳法,我们可以证明递推公式对所有自然数成立。
2. 数学恒等式的证明:数学归纳法也可以应用于证明一些数学恒等式。
例如,我们可以通过数学归纳法证明1+2+3+...+n = n(n+1)/2。
首先,在n=1时,等式左边为1,右边为1(1+1)/2,两边相等成立。
然后,假设当n=k时,等式成立,即1+2+3+...+k = k(k+1)/2。
接着证明当n=k+1时,等式也成立,即1+2+3+...+k+(k+1) = (k+1)(k+1+1)/2。
7.4 数学归纳法的概念一、新课引入:问题1:这里有一袋球共十二个,我们要判断这一袋球是白球,还是黑球,请问怎么办? 答案:枚举法问题2:在数列{a n }中,a 1=1,a n+1=nna a +1(n ∈N+),先计算a 2,a 3,a 4的值,再推测通项an 的公式. 答案:a 2=21,a 3=31,a 4=41.由此得到:a n =n1(n ∈N+).二、新课讲授 1、归纳法(1)概念:归纳法是由一些特殊事例推出一般结论的推理方法。
问题1中把研究对象一一都考查到了而推出结论的归纳法称为完全归纳法,对于问题2,由于自然有无数个,用完全归纳法去推出结论就不可能,它是由前4项体现的规律,进行推测得出结论的,这种归纳法称为不完全归纳法.问题3:对于任意自然数n ,比较7n-3与6(7n+9)的大小.答案1:由于当n =1,n =2,n =3,n =4时,有7n-3<6(7n+9),所以得到对任意n ∈N+,7n-3<6(7n+9).答案2:由于当n =8时,有7n-3>6(7n+9),而不是7n-3<6(7n+9),所以得到当n =1,2,3,4,5时,7n-3<6(7n+9); 当n =6,7,8,…时,7n-3>6(7n+9). 总结:仔细地占有准确的材料,不能随便算几个数就作推测,推测也要有依据. 37n -大小关系 ()679n - n=1 149< 96 n=2 17< 138 n=3 1 < 180 n=47<222n=5 49 < 264 n=6 343 > 306 n=72401>348依据数据作推测,决不是乱猜.要注意对数据作出谨慎地分析.由上表可看到,当n依1,2,3,4,…变动时,相应的7n-3的值以后一个是前一个的7倍的速度在增加,而6(7n+9)相应值的增长速度还不到2倍.完全有理由确认,当n 取较大值时,7n-3>6(7n+9)会成立的.2、归纳与证明(提前阅读资料)资料1:费马(Fermat )是17世纪法国著名数学家,他是解析几何的发明者之一,是对微积分的创立作出贡献最多的人之一,是概率论的的创始者之一,他对数论也有许多贡献. 但是,费马曾认为,当n ∈N+时,n22 +1一定都是质数,这是他对n =0,1,2,3,4作了验证后得到的.18世纪伟大的瑞士科学家欧拉(Euler )却证明了522+1=4 294 967 297=6 700 417×641,从而否定了费马的推测. 资料2:f (n )=n 2+n+41,当n ∈N+时,f (n )是否都为质数?f (0)=41,f (1)=43,f (2)=47,f (3)=53,f (4)=61, f (5)=71,f (6)=83,f (7)=97,f (8)=113,f (9)=131, f (10)=151,… f (39)=1 601. 但f (40)=1 681=412是合数.问题4:不完全归纳法为什么会出错呢? 如何避免?答案:猜测后证明. 结合问题1来说,他首先确 定第一次拿出来的是白球. 然后再构造一个命题予以证明.命题的条件是:“设某一次拿出来的是白球”,结论是“下一次拿出来的也是白球”. 这个命题不是孤立地研究“某一次”,“下一次”取的到底是不是白球,而是研究若某一次是白球这个条件能保证下一次也是白球的逻辑必然性.大家看,是否证明了上述两条,就使问题得到解决了呢?下面我们用数学语言描述下这种证明方法.2、数学归纳法例如:多米诺骨牌游戏要取得成功,必须靠两条:(1)骨牌的排列,保证前一张牌倒则后一张牌也必定倒; (2)第一张牌被推倒. 用这种思想设计出来的,用于证明不完全归纳法推测所得命题的正确性的证明方法就是数学 归纳法.例如(问题2):(1)当n =1时,左式=a 1=1,右式=11=1.此时公式成立. (2)设n =k 时,公式成立,即a k =k1.以此为条件来证明n =k+1时,公式也成立,即a k+1=11+k 也成立. 注意:这里是证明递推关系成立,证明a k+1=11+k 成立时,必须用到ak =k1这个条件依已知条件,a k+1=111111+=+=+k kk a a kk. 下面我们用数学语言描述下这种证明方法. (1)数学归纳法的概念:(i )证明当n 取第一个值()*00n n N ∈时命题成立;(ii )假设当()*0,n k k N k n =∈≥时命题成立,证明当n=k+1时命题也成立.在完成了上面的两个步骤后,我们就可以断定这个命题对于从0n 开始的所有正整数n 都成立,这种证明方法叫做数学归纳法. (2)反例用数学归纳法证明:nn ⎪⎭⎫⎝⎛-=++++21121.....21212132(n ∈N+)时,其中第二步采用下面证法:(ii )设n =k 时,等式成立,即kn ⎪⎭⎫⎝⎛-=++++21121.....21212132,则当n =k+1时,1112211211211212121.....2121+++⎪⎭⎫ ⎝⎛-=-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛-=+++k k k k ,即n =k+1时等式也成立.这是不正确的.因为递推思想要求的不是n =k ,n =k+1时命题到底成立不成立,而是n =k 时命题成立作为条件能否保证n =k+1时命题成立这个结论正确,即要求的这种逻辑关系是否成立.证明的主要部分应改为1112211212112121.....2121+++⎪⎭⎫ ⎝⎛-=+⎪⎭⎫ ⎝⎛-=++++k k k k k4、例题举隅例1、用数学归纳法证明:()213521n n ++++-=.证明:(i )当n=1时,左边=右边=1,等式成立; (ii )假设当()*,1n k k N k =∈≥时,等式成立,即()213521k k ++++-=那么当n=k+1时,()()()()22213521211211211k k k k k k k ++++-++-⎡⎤⎣⎦=++-⎡⎤⎣⎦=++=+等式也成立.根据(i )(ii )可以断定,()213521n n ++++-=对任何*n N ∈都成立.例2、用数学归纳法证明()()22221211236n n n n ++++++=证明:(i) 当n=1时,左边=右边=1,等式成立; (ii )假设当()*,1n k k N k =∈≥时,等式成立,即()()22221211236k k k k ++++++=那么当n=k+1时,()()()()()()()()()()()()()()()()2222222212311211612161612161612236122116k k k k k k k k k k k k k k k k k k k k ++++++++=++++++=++++=+++=++++⎡⎤⎣⎦=等式也成立.根据(i )(ii )可以断定,()()22221211236n n n n ++++++=对任何*n N ∈都成立.小结:(1)由于证明当n=k+1等式成立时,需证明的结论形式是已知的,只要将原等式中的n 换成k+1即得,因此学生在证明过程中,证明步骤必须完整,不能跳步骤;(2)有些等式证明题在证明当n=k+1正确时,需用恒等变形,技巧较高,对基础较差的学生来说完成很困难,这时可通过左、右边的多项式乘法来完成.例3、用数学归纳法证明:()()21427310311n n n n ⨯+⨯+⨯+++=+证明:(i )当n=1时,左边=右边=4,等式成立; (ii )假设当()*,1n k k N k =∈≥,等式成立,即()()21427310311k k k k ⨯+⨯+⨯+++=+那么当n=k+1时,()()()()()()()()()()()()()22214273103113111131111311144111k k k k k k k k k k k k k k k k k ⨯+⨯+⨯+++++++⎡⎤⎣⎦=+++++⎡⎤⎣⎦=+++++⎡⎤⎣⎦=+++=+++⎡⎤⎣⎦等式也成立.根据(i )(ii )可以断定,()()22221211236n n n n ++++++=对任何*n N ∈都成立.例4、用数学归纳法证明:()()()()222222*123421221.n n n n n N -+-++--=-+∈证明:(i )当n=1时,左边=右边=-3,等式成立; (ii )假设当()*,1n k k N k =∈≥,等式成立,即()()()222222123421221k k k k -+-++--=-+那么当n=k+1时,()()()()()()()()()()()22222222222123421221222121222531231211k k k k k k k k k k k k k k -+-++--++-+=-+++-+=---=-++=-+++⎡⎤⎣⎦等式也成立.根据(i )(ii )可以断定,()()()()222222*123421221.n n n n n N -+-++--=-+∈对任何*n N ∈都成立.5、巩固练习 练习7.4、7.5三、课堂小结1、归纳法是一种由特殊到一般的推理方法.分完全归纳法和不完全归纳法二种,完全归纳法只局限于有限个元素,而不完全归纳法得出的结论不具有可靠性,必须用数学归纳法进行严格证明; 归纳法是有一系列特殊事例得出一边结论的推理方法,它属于归纳推理.2、数学归纳法它是一种演绎推理方法,是一种证明命题的方法!它的基本思想是递推(递归)思想,它的操作步骤必须是二步,因此,它不属于“不完全归纳法”!甚至连“归纳法”都不是!3、数学归纳法适用的范围是:证明某些与连续自然数有关的命题.四、作业布置同步练习7.4AB课堂教学设计说明1.数学归纳法是一种用于证明与自然数n有关的命题的正确性的证明方法.它的操作步骤简单、明确,教学重点应该是方法的应用.但是我们认为不能把教学过程当作方法的灌输,技能的操练.对方法作简单的灌输,学生必然疑虑重重.为什么必须是二步呢?于是教师反复举例,说明二步缺一不可.你怎么知道n=k时命题成立呢?教师又不得不作出解释,可学生仍未完全接受.学完了数学归纳法的学生又往往有应该用时但想不起来的问题,等等.为此,我们设想强化数学归纳法产生过程的教学,把数学归纳法的产生寓于对归纳法的分析、认识当中,把数学归纳法的产生与不完全归纳法的完善结合起来.这样不仅使学生可以看到数学归纳法产生的背景,从一开始就注意它的功能,为使用它打下良好的基础,而且可以强化归纳思想的教学,这不仅是对中学数学中以演绎思想为主的教学的重要补充,也是引导学生发展创新能力的良机.数学归纳法产生的过程分二个阶段,第一阶段从对归纳法的认识开始,到对不完全归纳法的认识,再到不完全归纳法可靠性的认识,直到怎么办结束.第二阶段是对策酝酿,从介绍递推思想开始,到认识递推思想,运用递推思想,直到归纳出二个步骤结束.把递推思想的介绍、理解、运用放在主要位置,必然对理解数学归纳法的实质带来指导意义,也是在教学过程中努力挖掘、渗透隐含于教学内容中的数学思想的一种尝试.2.在教学方法上,这里运用了在教师指导下的师生共同讨论、探索的方法.目的是在于加强学生对教学过程的参与程度.为了使这种参与有一定的智能度,教师应做好发动、组织、引导和点拨.学生的思维参与往往是从问题开始的,尽快提出适当的问题,并提出思维要求,让学生尽快投入到思维活动中来,是十分重要的.这就要求教师把每节课的课题作出层次分明的分解,并选择适当的问题,把课题的研究内容落于问题中,在逐渐展开中,引导学生用已学的知识、方法予以解决,并获得新的发展.本节课的教学设计也想在这方面作些研究.3.理解数学归纳法中的递推思想,还要注意其中第二步,证明n=k+1命题成立时必须用到n=k时命题成立这个条件.。
7.4数学归纳法教学目标设计:知识与技能:1.了解数学归纳法的原理,培养学生观察、归纳、发现的能力;2.能区分不完全归纳法与完全归纳法;学会由特殊到一般的思维方式.过程与方法: 1.了解数学归纳法的原理,并能以递推思想作指导,掌握用数学归纳法证明命题的一般步骤.2.能用数学归纳法证明一些简单的数学命题,并能严格按照数学归纳法证明问题的格式书写.情感态度价值观:发展以学生为主体,通过积极参与数学学习和问题解决的过程,增强学习的探究意识,养成严谨、慎密的思维习惯.激发学习热情。
加深对数学归纳法中递推思想的理解.教学重点:数学归纳法的原理及证明步骤.教学难点:数学归纳法中递推思想的理解.教学过程:一、概念引入:1、等差数列通项公式的得到,引出归纳法概念2、举例说明生活中或数学中归纳法的运用3、完善归纳法的认识:(1)问题:已知数列{}n a 的通项22)55(+-=n n a n ,计算4321,,,a a a a 的值,从中得到什么结论?计算5a 又得到什么结论?(2)数学史上两个著名问题1)费马的猜测:N n ∈时,122+n一定都是质数.2)N n n n n f ∈++=,41)(2时)(n f 一定为质数.这两个猜测正确吗?二、讲解新课1、有关概念归纳法:从特殊的事例推出一般的原理的推导方法.完全归纳法:对一个问题的所有情况出现的情形逐一加以研究,从中得出它们的共有性质,这种产生结论的方法叫做完全归纳法。
不完全归纳法:对一个问题的一部分可能出现情形加以研究,从中推出问题所具有的性质,这种产生结论的方法叫做不完全归纳法。
(完全归纳法往往是不可行的,而不完全归纳法往往是不可靠的)2、数学归纳法——与自然数有关的数学命题的证明方法原理:递推思想——多米诺骨牌步骤:(Ⅰ) 证明当n 取第一个值)2,1,(000=∈*n N n n 时,命题成立;(Ⅱ) 假设当),(0*n k N k k n ≥∈=时命题成立,证明当1+=k n 时命题也成立.在完成上面两个步骤后,我们就可以断定这个命题对于从0n 开始的所有正整数n 都成立.这种证明方法叫做数学归纳法.说明:以上两步缺一不可:第一步是基础;第二步是递推的依据.三、例题举隅例1、用数学归纳法证明:2)12(531n n =-++++ .证明:(1)当n=1时,左边=1,右边=1,等式成立.(2)假设当n=k 时,等式成立,就是1+3+5+…+(2k -1)=2k ,那么1+3+5+…+(2k -1)+[2(k+1)-1]=k 2+[2(k+1)-1]=k 2+2k+1=2)1(+k ∴n=k+1时也成立.由(1)和(2),可知等式对任何n ∈N *都成立.例2、用数学归纳法证明:6)12)(1(3212222++=++++n n n n . 上述两例师生共同讨论完成.完成两例讨论后向学生指出:(1)由于证明当n=k+1等式成立时,需证明的结论形式是已知的,只要将原等式中的n 换成k+1即得,因此学生在证明过程中,证明步骤必须完整,不能跳步骤;(2)有些等式证明题在证明当n=k+1正确时,需用恒等变形,技巧较高,对基础较差的学生来说完成很困难,这时可通过左、右边的多项式乘法来完成.例3、求证:2213++…221(21)(41)3n n n +-=- (n ∈N *). 证明:(1)当n=1时,左边=1,右边=13×1×(4-1)=1等式成立. (2)假设当n=k (k ∈N *)时等式成立,即2222113(21)(41)3k k k +++-=- , 则n=k+1时,222222232135(21)(21)1(41)(21)31(412113)3k k k k k k k k ++++-++=-++=+++ 又21(1)[4(1)1]3k k ++- 2321(1)[2(1)1][2(1)1]311(23)(21)(1)(483)(1)331(412113)3k k k k k k k k k k k k =++++-=+++=+++=+++ 即2222221135(21)(21)(1)[4(1)1]3k k k k ++++-++=++- 等式成立. 由(1)(2)知,等式对任何n ∈N*都成立.练习:P31/四、小结:数学归纳法的概念及步骤五、作业:六、教后感要强化数学归纳法产生过程的教学,把数学归纳法的产生寓于对归纳法的分析、认识当中,把数学归纳法的产生与不完全归纳法的完善结合起来.这样不仅使学生可以看到数学归纳法产生的背景,从一开始就注意它的功能,为使用它打下良好的基础,而且可以强化归纳思想的教学,运用数学归纳法证明与正整数有关的数学命题,两个步骤缺一不可.理解数学归纳法中的递推思想,尤其要注意其中第二步,证明n =k +1命题成立时必须要用到n =k 时命题成立这个条件.这些内容都将放在下一课时完成,这种理解不仅使我们能够正确认识数学归纳法的原理与本质,也为证明过程中第二步的设计指明了思维方向.。
资源信息表
7.4 数学归纳法
上海市建平中学李坚
一、教学内容分析
数学归纳法是一种用于证明与自然数n有关的命题的正确性的证明方法.它的操作步骤简单、明确,教学重点应该是方法的应用.但是我们认为不能把教学过程当作方法的灌输,技能的操练.对方法作简单的灌输,学生必然疑虑重重.为什么必须是二步呢?于是教师反复举例,说明二步缺一不可.你怎么知道n=k时命题成立呢?教师又不得不作出解释,可学生仍未完全接受.学完了数学归纳法的学生又往往有应该用时但想不起来的问题,等等.为此,我们设想强化数学归纳法产生过程的教学,把数学归纳法的产生寓于对归纳法的分析、认识当中,把数学归纳法的产生与不完全归纳法的完善结合起来.这样不仅使学生可以看到数学归纳法产生的背景,从一开始就注意它的功能,为使用它打下良好的基础,而且可以强化归纳思想的教学,这不仅是对中学数学中以演绎思想为主的教学的重要补充,也是引导学生发展创新能力的良机.
数学归纳法产生的过程分二个阶段,第一阶段从对归纳法的认识开始,到对不完全归纳法的认识,再到不完全归纳法可靠性的认识,直到怎么办结束.第二阶段是对策酝酿,从介绍递推思想开始,到认识递推思想,运用递推思想,直到归纳出二个步骤结束.
理解数学归纳法中的递推思想,还要注意其中第二步,证明n=k+1命题成立时必须用到n=k时命题成立这个条件.
1. 从对归纳法的认识开始,到对不完全归纳法的认识,再到不完全归纳法可靠性的认识,再到数学归纳法的科学性的认识;
2.对数学归纳法的叙述数学步骤地掌握;
3.形成观察、归纳、推广的意识,提高运用知识解决问题的能力,渗透分类讨论、方程等数学思想方法.
三、教学重点及难点
重点:归纳法意义的认识和数学归纳法产生过程的分析;
难点:数学归纳法中递推思想的理解.
四、教学用具准备
实物投影仪
五、教学流程设计
一、复习引入
问题1:这里有一袋球共十二个,我们要判断这一袋球是白球,还是黑球,请问怎么办?
方法一:把它倒出来看一看就可以了.
特点:方法是正确的,但操作上缺乏顺序性.
方法二:一个一个拿,拿一个看一个.
比如结果为:第一个白球,第二个白球,第三个白球,……,第十二个白球,由此得到:这一袋球都是白球.
特点:有顺序,有过程.
问题2:在数列{}n a 中,*111,,()1n n n
a a a n N a +==
∈+,先算出234,,a a a 的值,再推测通项n a 的公式. 过程:212a =,313a =,414a =,由此得到:*1,()n a n N n =∈, 解决以上两个问题用的都是归纳法. 二、讲解新课:
1. 归纳法:由一些特殊事例推出一般结论的推理方法.
特点:由特殊→一般.
2. 不完全归纳法: 根据事物的部分(而不是全部)特例得出一般结论的推理方法叫做不完全归纳法.
如我们在推导涉及所有正整数的等差数列通项公式时,在考察了n=1,2,3,4几种特殊情形后得出的一般公式,就是作的一种不完
全归纳.
我们已经知道,不完全归纳法所得到的命题并不能保证它成立,所以这种方法并不能作为一种论证方法;同时也应看到,不完全归纳法是研究数学的一把钥匙,是发现数学规律的一种重要手段.在问题探索中,为了寻求一般规律,往往先考察一些特例,通过对这些特例的不完全归纳形成猜想,然后再试图去证明或否定这种猜想.因而学会用不完全归纳法对问题进行探索,对提高我们的数学能力十分重要.
3. 完全归纳法:把研究对象一一都考查到了而推出结论的归纳法称为完全归纳法.
完全归纳法是一种在研究了事物的所有(有限种)特殊情况后得出一般结论的推理方法,又叫做枚举法.与不完全归纳法不同,用完全归纳法得出的结论是可靠的.通常在事物包括的特殊情况数不多时,采用完全归纳法.
4.数学归纳法:对于某些与自然数n有关的命题常常采用下面的方法来证明它的正确性:先证明当n取第一个值n0时命题成立;然后假设当n=k(k N*,k≥n0)时命题成立,证明当n=k+1时命题也成立这种证明方法就叫做数学归纳法.
5. 数学归纳法的基本思想:即先验证使结论有意义的最小的正整数n0,如果当n= n0时,命题成立,再假设当n=k(k≥n0,k∈N*)时,命题成立.(这时命题是否成立不是确定的),根据这个假设,如能推出当n=k+1时,命题也成立,那么就可以递推出对所有不小于n0的正
整数n0+1,n0+2,…,命题都成立.
6.用数学归纳法证明一个与正整数有关的命题的步骤:
(1)证明:当n取第一个值n0结论正确;
(2)假设当n=k(k∈N*,且k≥n0)时结论正确,证明当n=k+1时结论也正确.
由(1),(2)可知,命题对于从n0开始的所有正整数n都正确.
三、例题分析
例1 用数学归纳法证明:如果{a n}是一个等差数列,那么a n=a1+(n -1)d对一切n∈N*都成立.
证明:(1)当n=1时,左边=a1,右边=a1+0·d=a1,等式成立.
(2)假设当n=k时等式成立,就是a k=a1+(k-1)d.
那么a k+1=a k+d=[a1+(k-1)d]+d=a1+[(k+1)-1]d,
这就是说,当n=k+1时,等式也成立.
由(1)和(2)可以判定,等式对任何n∈N*都成立.
例2 用数学归纳法证明:1+3+5+…+(2n-1)=n2.
证明:(1)当n=1时,左边=1,右边=1,等式成立.
(2)假设当n=k时,等式成立,就是1+3+5+…+(2k-1)=k2,
那么1+3+5+…+(2k-1)+[2(k+1)-1]=k2+[2(k+1)-1]=k2+2k+1=(k+1)2.
∴n=k+1时也成立.
由(1)和(2),可知等式对任何n∈N*都成立.
四、课堂练习:
1.用数学归纳法证明:1+2+3+…+n=
(1)2
n n +. 证明:(1)当n=1时,左边=1,右边=1(11)2
⨯+=1.∴等式成立. (2)假设当n=k 时,等式成立,即1+2+3+…+k=(1)2k k +. 那么当n=k+1时,
11123(1)(1)(1)(1)(11)22
k k k k k k k +++⋅⋅⋅+++=+++=+++ ∴n=k+1时,等式也成立.
由(1)(2)可知等式对一切n ∈N *都成立.
2.首项为a 1,公比为q 的等比数列的通项公式是:a n =a 1q n-1.
证明:(1)n=1时,左边=a 1,右边=a 1·q 1-1=a 1q 0=a 1.
∴左边=右边.
(2)假设当n=k 时等式成立.即a k =a 1q k -1.那么当n=k+1时.
a k +1=a k q=a 1q k -1·q=a 1q (k+1)-1.
∴n=k+1时等式也成立.
由(1)、(2)可知等式对一切n ∈N *都成立.
五、课堂小结 (引导学生归纳,教师提炼)
(1)中心内容是归纳法和数学归纳法;
(2)归纳法是一种由特殊到一般的推理方法,分类是完全归纳法和不完全归纳法二种,完全归纳法只局限于有限个元素,而不完全归纳法得出的结论不具有可靠性,必须用数学归纳法进行严格证明;
(3)数学归纳法作为一种证明方法,它的基本思想是递推(递归)思想,它的证明步骤必须是两步,最后还要总结;(4)本节课所涉及到的数学思想方法有:递推思想、分类讨论思想、数形结合思想、函
数与方程思想.
六、作业
七、教学设计说明
数学归纳法是一种用于证明与自然数n有关的命题的正确性的证明方法.它的操作步骤简单、明确,教学重点不应该是方法的应用,不能把教学过程当作方法的灌输,技能的操练.所以要强化数学归纳法产生过程的教学,把数学归纳法的产生寓于对归纳法的分析、认识当中,把数学归纳法的产生与不完全归纳法的完善结合起来.这样不仅使学生可以看到数学归纳法产生的背景,从一开始就注意它的功能,为使用它打下良好的基础,而且可以强化归纳思想的教学,这不仅是对中学数学中以演绎思想为主的教学的重要补充,也是引导学生发展创新能力的良机.运用数学归纳法证明与正整数有关的数学命题,两个步骤缺一不可.理解数学归纳法中的递推思想,尤其要注意其中第二步,证明n=k+1命题成立时必须要用到n=k时命题成立这个条件.这些内容都将放在下一课时完成,这种理解不仅使我们能够正确认识数学归纳法的原理与本质,也为证明过程中第二步的设计指明了思维方向.
相关数学史资料介绍
资料1: 费马(Fermat)是17世纪法国著名的数学家,他是解析几何的发明者之一,是对微积分的创立作出贡献最多的人之一,是概率论的创始者之一,他对数论也有许多贡献.但是,费马曾认为,当
n+一定都是质数,这是他对n=0,1,2,3,4时的值分n∈N时,221
别为3,5,17,257,65537作了验证后得到的.
18世纪伟大的瑞士科学家欧拉(Euler)却证明了当n=5时,
5
2
+ =4 294 967 297=6 700 417×641,从而否定了费马的推测.21
有人说,费马为什么不再多算一个数呢?今天我们是无法回答的.但是要告诉同学们,失误的关键不在于多算一个上!
资料2:f(n)=n2+n+41,当n∈N时,f(n)是否都为质数?
f(0)=41,f(1)=43,f(2)=47,f(3)=53,f(4)=61,f(5)=71,f(6)=83,f(7)=97,f(8)=113,f(9)=131,f(10)=151,… f(39)=1 601.
但是f(40)=1 681=412是合数.
算了39个数不算少了吧,但还不行!我们介绍以上两个资料,说明用不完全归纳法得出的结论可能是错误的.
对于生活、生产中的实际问题,得出的结论的正确性,应接受实践的检验,因为实践是检验真理的唯一标准.对于数学问题,应寻求数学证明.。