2019年安徽省八年级下学期数学期末考试试卷一(含答案)
- 格式:doc
- 大小:1.23 MB
- 文档页数:16
2019年安徽体会八年级下学期期末考试试卷一数学(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:沪科版八下全册。
第Ⅰ卷一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1在实数范围内有意义,则x的取值范围是A.x<3 B.x≤3C.x>3 D.x≥32.方程x2+6x﹣5=0的左边配成完全平方后所得方程为A.(x+3)2=14 B.(x﹣3)2=14C.(x+6)2=12D.以上答案都不对3.以a、b、c为三边长能构成直角三角形的是A.a=1,b=2,c=3 B.a=32,b=42,c=52C.a,b c D.a=5,b=6,c=74.如果多边形的每一个内角都是150°,那么这个多边形的边数是A.8 B.10 C.12 D.165.2019年2月9日国际滑联四大洲花样滑冰锦标赛的花滑短节目比赛中,中国选手的得分为74.19分,当天比赛的其他四组选手的得分分别为61.91分、66.34分、61.71分、57.38分,则这5组数据的平均数、中位数分别是C .64.306分、66.34分D .64.306分、61.91分6.平行四边形ABCD 中,若2B A ∠=∠,则C ∠的度数为 A .120︒B .60︒C .30︒D .15︒7.下列说法正确的是A .对角线相等的四边形是矩形B .对角线互相垂直的四边形是菱形C .对角线相等的平行四边形是正方形D .对角线相等的菱形是正方形8.如图,在菱形ABCD 中,M 、N 分别在AB 、CD 上,且AM =CN ,MN 与AC 交于点O ,连接BO .若 ∠DAC =32°,则∠OBC 的度数为A .32°B .48°C .58°D .68°9.某超市一月份的营业额是100万元,月平均增加的百分率相同,第一季度的总营业额是364万元,若设月平均增长的百分率是x ,那么可列出的方程是 A .2100(1)364x +=B .2100100(1)100(1)364x x ++++= C .2100(12)364x +=D .2100100(1)(12)364x x ++++=10.如图,E 、F 分别是正方形ABCD 的边CD ,AD 上的点,且CE =DF ,AE ,BF 相交于点O ,下列结论:①AE =BF ;②AE ⊥BF ;③OB =OE ;④S △AOB =S 四边形DEOF .其中正确的有A .1个B .2个C .3个D .4个第Ⅱ卷二、填空题(本大题共4小题,每小题5分,共20分)11.甲、乙、丙三位选手各射击10次,成绩的平均数均为93环,方差(单位:环2)依次分别为0.026、0.015、0.032,则射击成绩最稳定的选手是_________ (填“甲”、“乙”、“丙”中的一个). 12.数,a b 在数轴上位置如图所示,则化简()222a b a b --+的结果是_________ .13.如图,在四边形ABCD 中,AD ∥BC ,∠C =90°,E 为CD 上一点,分别以EA ,EB 为折痕将两个角(∠D ,∠C )向内折叠,点C ,D 恰好落在AB 边的点F 处.若AD =3,BC =4,则EF 的长为_________.14.如图,点O 是菱形ABCD 两条对角线的交点,过O 点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为8和10时,则阴影部分的面积为_________.三、(本大题共2小题,每小题8分,满分16分) 15.计算:(1)1(31248)233÷; (2)2(253)(253)(332)+.16.用适当的方法解下列方程:(1)2560x x --=;(2)210x x --=;(3)22830x x -+=.(配方法)17.如图,在△ABC 中,BD ⊥AC ,AB =20,BC =15,CD =9.(1)求AC 的长;(2)判断△ABC 的形状并证明.18.如图,在平行四边形ABCD 中,已知M 和N 分别是AB 和DC 的中点,求证:BN =DM .五、(本大题共2小题,每小题10分,满分20分)19.如图,在四边形ABCD 中,AB CD ∥,AB AD =,AC 平分BAD ∠.(1)求证:四边形ABCD 是菱形;(2)过点C 作CE AC ⊥,交AB 的延长线于点E ,若5AB =,8AC =,求四边形ADCE 的周长.20.已知:如图,D 是△ABC 的边AB 上一点,CN ∥AB ,DN 交AC 于点M ,MA =MC .(1)求证:CD =AN ;(2)若∠AMD =50°,当∠MCD = °时,四边形ADCN 是矩形,并说明理由.六、(本题满分12分)21.嘉淇同学利用业余时间进行射击训练,一共射击7次,经过统计,制成如图所示的折线统计图.(1)这组成绩的众数是 ; (2)求这组成绩的方差;中位数,求第8次的射击成绩的最大环数.七、(本题满分12分)22.某市为推进养老服务工作的深入开展,在扩大社区养老覆盖率、规范机构养老、科学规划养老服务布局等方面作了大量工作.该市的养老机构拥有的养老床位数从2016年底的2万个增长到2018年底的2.88万个:(1)求该市这两年养老床位数的年平均增长率:(2)该市2018年底正在筹建一社区养老中心,按照规划拟建造三类养老专用房间(一个养老床位的单人间、两个养老床位的双人间、三个养老床位的三人间)共100间,若按规划需要建造的单人间的房间数为m (1215m ),双人间的房间数是单人间的2倍,求该养老中心建成后最多可提供养老床位多少个?最少提供养老床位多少个? 八、(本题满分14分)23.在矩形纸片ABCD 中,5AB =,3AD =,点E 、F 在矩形的边上,连接EF ,将纸片沿EF 折叠,点D 的对应点为点P .(1)如图1,若点P 在边AB 上,当点P 与点A 重合时,则DEF ∠=______________°,当点E 与点A 重合时,则DEF ∠=______________°;图1(2)如图2,若点P 在边AB 上,且点E 、F 分别在AD 、DC 边上,则线段AP 的取值范围是______________;图2,求(3)如图3,若点F与点C重合,点E在AD上,线段BA、FP交于点M,且AM DE线段AE的长度.图3。
安徽省数学期末考试八年级试卷及参考答案预览说明:预览图片所展示的格式为文档的源格式展示,下载源文件没有水印,内容可编辑和复制安徽省数学期末考试八年级试卷姓名_____________班级_________得分________一、选择题(本题共10小题,每小题4分,共40分)1、在统计中,样本方差可以近似地反映总体的()A 、平均状态B 、波动大小不C 、分布规律D 、集中趋势2、反比例函数图象经过点P(2,3),则下列各点中,在该函数图象上的是()A 、(B 、3(-9,)2C 、(6,1)-D 、2(9,)33、若分式223ab a b -+中和都扩大到原来的4倍,则分式的值() A 、不变B 、扩大到原来的4倍 C 、扩大到原来的5倍 D 、缩小到原来的14倍4、一只船顺流航行90千米与逆流航行60千米所用的时间相等,若水流的速度是2千米/时,求船在静水中的速度,如果设船在静水中的速度为千米/时,可列出的方程是()A 、906022x x =+-B 、906022x x =-+C 、90603x x +=D 、60903x x+= 5、如图1,正方形网格中,每个小正方形的边长为1,则网格上的三角形ABC 中,边长为无理数的边数为()A 、0 B 、1 C 、2 D 、36、已知ABCD 是平行四边形,下列结论中,不一定正确的是()A 、AB=CDB 、AC=BDC 、当AC ⊥BD 时,它是菱形 D 、当∠ABC=90°时,它是矩形7、如图2,在平行四边形ABCD 中,BD=DC ,∠C=70°,AE ⊥BD 于E ,则∠DAE 等于()A 、20°B 、25°C 、30°D 、35°8、如图3,菱形ABCD 的周长是8,E 是AB 的中点,则OE=()A 、1B 、2C 、12D 、329、如图4,在正方形ABC 中,E 为CD 上一点,CF=CE ,则下列结论错误的是()A 、BE=DFB 、BG ⊥DFC 、∠F+∠CEB=90°D 、∠FDC+∠ABG=90°10、将一张矩形纸片ABCD 如图5那样折起,使顶点C 落在C ′处,其中AB=4,若∠C’ED=30°,则折痕ED 的长为() A 、4 B 、 C 、 D 、8二、填空(本题共8小题,每小题5分,共40分)11、当m________时,分式2(1)(3)32m m m m ---+的值为零。
2019年八年级下期末考试数学试卷含答案(总12页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除人教版中小学精品教学资料第二学期期末考试八年级数学试卷一.选择题:(本题共32分,每小题4分)下列各题均有四个选项,其中只有一个....是符合题意的,把“答题卡”上相应的字母处涂黑.1.下列图形中,是中心对称图形的是A. B. C. D.2.在平面直角坐标中,点P (-3,5)在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 若一个多边形的内角和等于720°,则这个多边形的边数是A. 8B. 7C. 6D. 54. 在一个不透明的盒子中放有2个黄色乒乓球和4个白色乒乓球,所有乒乓球除颜色外完全相同,从中随机摸出1个乒乓球,摸出白色乒乓球的概率为A .12 B .13 C . 23 D .165. 在函数31-=x y 中,自变量x 的取值范围是( ) A. x ≠3 B.x ≠0 C. x >3 D. x ≠-36. 正方形具有而矩形没有的性质是( )A.对角线互相平分 B . 对边相等P M C B A D B CD A C .对角线相等 D .每条对角线平分一组对角7. 如图,函数y =a x -1的图象过点(1,2),则不等式a x -1>2的解集是A. x <1B. x >1C. x <2D. x >28.如图,矩形ABCD 中,AB =1,AD =2,M 是A D 的中点,点P 在矩形的边上,从点A 出发沿D C B A →→→运动,到达点D 运动终止.设APM △的面积为y ,点P 经过的路程为x ,那么能正确表示y 与x 之间函数关系的图象是 ( )A. B.C. D.二.填空题(本题共16分,每小题4分)9. 如图,在□ABCD 中,已知∠B =50°,那么∠C 的度数是 .10. 已知一个菱形的两条对角线的长度分别为6和8,那么这个菱形的周长是 .11. 甲和乙一起练习射击,第一轮10枪打完后两人的成绩如图所示.通常新手的成绩不太稳定,那么根据图中的信息,估计甲和乙两人中的新手是 ;他们这10次射击成绩的方差的大小关系是s 2甲 s 2乙(填“<”、“>”或“=”).12. 如图所示,在平面直角坐标系中,已知点P 0的坐标为(1,0),将线段OP 0按逆时针方向旋转45°,再将其长度伸长为OP 0的2倍,得到线段OP 1;又将线段OP 1按逆时针方向旋转45°,长度伸长为OP 1的2倍,得到线段OP 2;如此下去,得到线段OP 3,OP 4,…OP n (n 为正整数).那么点P 6 的坐标是 ,点P 2014的坐标是 .三.解答题:(本题共30分)13.用指定的方法解下列方程:(每小题5分,本题共10分)(1)x 2+4x -1=0(用配方法) (2)2x 2-8x +3=0(用公式法)14. (本题5分)已知:如图,E 、F 是□ABCD 对角线AC 上两点,AF=CE .求证:BE ∥DF .15. (本题5分)已知2514x x -=,求代数式()()()212111x x x ---++的值.16. (本题5分) 如图,四边形ABCD 中,E 、F 、G 、H 分别是AB 、BD 、CD 、AC 的中点.(1)判断四边形EFGH 是何种特殊的四边形,并说明你的理由;HG F D CB E A17. (本题5分)已知:关于x 的一元二次方程()02122=-+--m x m mx (m >0).(1)求证:方程总有两个不相等的实数根;(2)m 取何整数值时,此方程的两个实数根都为整数?四.解答题(本题共21分)18. (本题5分)判断A (1,3)、B (-2,0)、C (-4,-2)三点是否在同一直线上,并说明理由.19. (本题5分)据统计,2014年3月(共31天)北京市空气质量等级天数如下表所示:(1)请根据所给信息补全统计表;(2)请你根据“2014年3月北京市空气质量等级天数统计表”,计算2014年3月空气质量等级为优和良的天数出现的频率一共是多少(精确到0.01)(3)市环保局正式发布了北京PM2.5来源的最新研究成果,专家通过论证已经分析出汽车尾气排放是本地主要污染源.在北京市小客车数量调控方案中,将逐年增加新能源小客车的指标. 已知2014年的指标为2万辆,计划2016年的指标为6万辆,假设2014~2016年新能源小客车指标的年增长率相同且均为x ,求这个年增长率x . (参考数据:449.26236.25732.13414.12≈≈≈≈,,,)20. (本题5分) 已知:在平面直角坐标系中,点A 、B 分别在x 轴正半轴上,且线段OA 、OB (OA <OB )的长分别等于方程x 2-5x +4=0的两个根,点C 在y 轴正半轴上,且OB =2OC .(1)试确定直线BC 的解析式;(2)求出△ABC 的面积.21. (本题6分)如图,正方形ABCD 的两条对角线把正方形分割成四个等腰直角三角形,将这四个三角形分别沿正方形ABCD 的边向外翻折,可得到一个新正方形EFGH .请你在矩形ABCD 中天数(天) 5 11 3 7 2画出分割线,将矩形分割成四个三角形,然后分别将这四个三角形沿矩形的边向外翻折,使得图1得到菱形,图2得到矩形,图3得到一般的平行四边形(只在矩形ABCD中画出分割线,说明分割线的作法,不画出翻折后的图形).图1 图2 图3五.解答题(本题共21分)22. (本题6分)如图,直线5+-=xy分别与x轴、y轴交于A、B两点.(1)求A、B两点的坐标;(2)已知点C坐标为(4,0),设点C关于直线AB的对称点为D,请直接写出点D的坐标;(3)请在直线AB和y轴上分别找一点M、N使△CMN的周长最短,在平面直角坐标系中作出图形,并求出点N的坐标.23. (本题7分)如图所示,在□ABCD 中,BC =2AB ,点M 是AD 的中点,CE ⊥AB 于E ,如果∠AEM=50°,求∠B 的度数.M DC B EA24. (本题8分)直线434+-=x y 与x 轴交于点A,与y 轴交于点B ,菱形ABCD 如图所示放置在平面直角坐标系中,其中点D 在x 轴负半轴上,直线m x y +=经过点C ,交x 轴于点E . ①请直接写出点C 、点D 的坐标,并求出m 的值;②点P (0,)是线段OB 上的一个动点(点P 不与0、B 重合),经过点P 且平行于x 轴的直线交AB 于M 、交CE 于N.设线段MN 的长度为d ,求d 与之间的函数关系式(不要求写自变量的取值范围);③点P (0,)是y 轴正半轴上的一个动点,为何值时点P 、C 、D 恰好能组成一个等腰三角形?房山区2013—2014学年度第二学期终结性试卷参考答案和评分参考八年级数学一、选择题(本题共32分,每小题4分)1.A 2.B 3.C 4.C 5.A 6.D 7.B 8.A二、填空题(本题共16分,每小题4分)9. 130° 10. 20 11. 乙 ;s 2甲 < s 2乙 (此题每空2分)12. (0,-64)或(0,-26) ;(0,-22014)(此题每空2分)三、解答题(本题共30分,每小题5分)13.(1)解: 142=+x x ……………………………1分5442=++x x ……………………………2分()522=+x ……………………………3分 52±=+x ……………………………4分 521+-=x 522--=x ……………………………5分(2) 解: 3,8,2=-==c b a ……………………………1分ac b 42-=∆∴()32482⨯⨯--= 40=>0 ……………………………2分HG F D C B E A 代入求根公式,得()4102822408242±=⨯±--=-±-=a ac b b x ……………………………4分 ∴方程的根是2104,210421-=+=x x ……………………………5分14.证明:∵□ABCD∴AB ∥DC, AB=CD ……………………………2分∴∠BAE=∠DCF ……………………………3分在△ABE 和△CDF 中∵⎪⎩⎪⎨⎧=∠=∠=CF AE DCF BAE CDAB∴△ABE ≌ △CDF ……………………………4分∴BE =DF ……………………………5分15.解:原式=()11212222+++-+--x x x x x ……………………………2分=11213222+---+-x x x x ……………………………3分=152+-x x ……………………………4分∵1452=-x x∴原式=15 ……………………………5分16.(1)四边形EFGH 是平行四边形 ;……………………………1分证明: 在△ACD 中 ∵G 、H 分别是CD 、AC 的中点,∴GH ∥AD,GH=21AD 在△ABC 中 ∵E 、F 分别是AB 、BD 的中点, ∴EF ∥AD,EF=21AD ……………………………2分 ∴EF ∥GH,EF=GH ……………………………3分∴四边形EFGH 是平行四边形. ………………………4分 (2) 要使四边形EFGH 是菱形,四边形ABCD 还应满足的一个条件是 AD=BC .……………………………5分17.解:(1) ()2,12,-=--==m c m b m aac b 42-=∆∴()[]()24122----=m m mm m m m 8448422+-+-= 4=>0……………………………1分∴此方程总有两个不等实根……………………………2分(2) 由求根公式得mm m x x 212,121-=-==……………………………3分 ∵方程的两个根均为整数且m 是整数 ∴m 2-1是整数,即m2是整数 ∵m >0 ∴m =1或2……………………………5分18.解:设A (1,3)、B (-2,0)两点所在直线解析式为b kx y +=∴⎩⎨⎧+-=+=b k bk 203 …………………1分解得⎩⎨⎧==21b k ……………………………3分∴2+=x y ……………………………4分 当=x -4时,2-=y∴点C 在直线AB 上,即点A 、B 、C 三点在同一条直线上.……………5分19.(1) 3 ……………………………1分(2) (5+11)÷31≈0.52,∴空气质量等级为优和良的天数出现的频率一共是0.52…………………………2分 (3)列方程得:()6122=+x ,…………………………3分解得311+-=x ,3-12-=x (不合题意,舍去)…………………4分 ∴732.0≈x 或2.73≈x %答:年增长率为73.2% …………………………5分20.解: (1) ∵OA 、OB 的长是方程x 2-5x +4=0的两个根,且OA <OB,解得1,421==x x …………………………1分 ∴OA =1,OB=4∵A 、B 分别在x 轴正半轴上,∴A (1,0)、B (4,0)…………………………2分 又∵OB =2OC ,且点C 在y 轴正半轴上FE FEADCBADCBBCDA∴OC =2,C (0,2)…………………………3分 设直线BC 的解析式为b kx y +=∴⎩⎨⎧=+=b b k 240,解得⎪⎩⎪⎨⎧=-=221b k∴直线BC 的解析式为221-+=x y …………………………4分(2)∵A (1,0)、B (4,0) ∴AB =3∵OC =2,且点C 在y 轴上 ∴3232121=⨯⨯=⋅=∆OC AB S ABC…………………………5分21.图1 图2 图3得到菱形的分割线做法:联结矩形ABCD 的对角线AC 、BD (把原矩形分割为四个全等的等腰三角形);得到矩形的分割线做法:联结矩形ABCD 的对角线BD,分别过点A 、C 作AE ⊥BD 于E,CF ⊥BD 于F (把原矩形分割为四个直角三角形);得到平行四边形的分割线做法:联结矩形ABCD 的对角线BD,分别过点A 、C 作AE ∥CF,分别交BD 于E 、 F (把原矩形分割为四个三角形).每图分割线画法正确各1分,每图分割线作法叙述基本正确各1分,共6分. 22. 解:(1) ∵直线5+-=x y 分别与x 轴、y 轴交于A 、B 两点令0=x ,则5=y ;令0=y ,则5=x∴点A 坐标为(5,0)、点B 坐标为(0, 5);…………………………2分C 关于直线AB 的对称点D (2) 点(5,1)…………………………3分的坐标为(3)作点C 关于y 轴的对称点C ′,则C ′的坐标为(-4,0) 联结C ′D 交AB 于点M ,交y 轴于点N ,…………………………4分 ∵点C 、C ′关于y 轴对称 ∴NC = NC ′,又∵点C 、D 关于直线AB 对称,∴CM=DM ,此时,△CMN 的周长=CM+MN+NC= DM +MN+ NC ′= DC ′周长最短;设直线C ′D 的解析式为b kx y +=∵点C ′的坐标为(-4,0),点D 的坐标为(5,1)∴⎩⎨⎧+=+=b k b k 4-051,解得⎪⎪⎩⎪⎪⎨⎧==9491b k ∴直线C ′D 的解析式为9491+=x y ,…………………………5分 与y 轴的交点N 的坐标为 (0,94) …………6分23.解:联结并延长CM ,交BA 的延长线于点N∵□ABCDD∴AB ∥CD, AB=CD …………………1分 ∴∠NAM=∠D ∵点M 是的AD 中点, ∴AM=DM在△NAM 和△CDM 中∵⎪⎩⎪⎨⎧∠=∠=∠=∠DMC AMN DMAM D NMA ∴△NAM ≌ △CDM ……………………2分 ∴NM=CM,NA=CD …………………………4分 ∵AB=CD∴NA= AB, 即BN=2AB ∵BC=2AB∴BC= BN, ∠N=∠NCB …………………………5分 ∵CE ⊥AB 于E,即 ∠NEC=90°且NM=CM∴EM=21NC=NM …………………………6分∴∠N=∠NEM =50°=∠NCB∴∠B=80° …………………………7分24. 解:(1)点C 的坐标为(-5,4),点D 的坐标为(-2,0)…………………………2分∵直线m x y +=经过点C , ∴=m 9 …………………………3分(2) ∵MN 经过点P (0,t )且平行于x 轴∴可设点M 的坐标为(t x M ,),点N 的坐标为(t x N ,) …………………………4分 ∵点M 在直线AB 上,直线AB 的解析式为434+-=x y ,∴t 434+-=M x ,得343+-=t x M同理点N 在直线CE 上,直线CE 的解析式为9+=x y , ∴t 9+=N x ,得9-t x N =∵MN ∥x 轴且线段MN 的长度为d ,∴()1247-9-343+=-+-=-=t t t x x d N M …………………………5分(3) ∵直线AB 的解析式为434+-=x y∴点A 的坐标为(3,0),点B 的坐标为(0,4)AB=5 ∵菱形ABCD ∴AB=BC=CD=5∴点P 运动到点B 时,△PCD 即为△BCD 是一个等腰三角形,此时t =4;…………………………6分∵点P (0,t )是y 轴正半轴上的一个动点, ∴OP =t ,PB =4-t∵点D 的坐标为(-2,0) ∴OD=2,由勾股定理得22224t OP OD PD +=+=同理,()2222425-+=+=t BP BC CP当PD=CD=5时, 224t PD +==25,∴21=t (舍负)…………………7分 当PD=CP 时,PD 2=CP 2, 24t +()2425-+=t ∴t 837=……………………8分 综上所述,t =4,21=t ,t 837=时,△PCD 均为等腰三角形. 备注:此评分标准仅提供一种解法,其他解法仿此标准酌情给分。
2019年下期八年级期末质量检测数学试题(本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至8页,全卷满分150分,考试时间120分钟。
)第Ⅰ卷(选择题共40分)一、选择题(本大题10个小题,每小题4分,共40分。
请在每小题给出的四个选项中,将唯一正确的答案序号填在题后括号里)1. 4的平方根是().A. 2± B. -2 C. 2 D. 162.下列运算正确的是().A.222()x y x y-=-B.532623xxx=⋅ C.236(3)9x x=D.1243x x x÷=3.下列说法错误的是().A.到角两边距离相等的点在这个角的平分线上.B.是无理数.C.命题“相等的角是对顶角”,它的逆命题是假命题.D.在ABC∆中,AB=AC,AD⊥BC于点D,则BD=CD,AD平分∠BAC.4.北京是我国首都,据调查北京城镇居民家庭2010﹣2017年每百户移动电话拥有量折线统计图如下图所示,请你根据图中信息,得出相邻两年每百户移动电话拥有量变化最大的是().A .2010年至2011年 B.2011年至2012年 C .2014年至2015年 D .2016年至2017年5.已知AB =8cm ,分别以线段AB 的两个端点的为圆心,5cm 为半径画弧,两弧交于点C 、D ,连结线段CD ,则CD =( )cm 。
A.3 B.4 C.5 D.66.用反证法证明“在一个三角形中,至少有一个内角小于或等于60°”时,应先假设结论的反面。
下列假设正确的是( ). A.假设三角形中没有一个内角小于60°.B.假设三角形中没有一个内角等于60°.C.假设三角形中没有一个内角小于或等于60°.D.假设三角形中有一个内角大于60°7.下列三条线段能构成等腰直角三角形的是( ).A. 8.数形结合是初中数学重要的思想方法,下图就是用几何图形描述了一个重要的数学公式,这个公式是( ). A.22()()a b a b a b -=+-B.222()2a b a ab b -=-+C.2()a a b a ab -=-D.222()a b a b -=-9.若223)(1)x px q x +++(的展开式后既不含x 二次项又不含x 的一次项,则2(.)p q 的值是( ).A.16B.136- C.16- D.13610.如图,AD 是△ABC 的边BC 上的高,再添加下列条件中的某一个就能推出△ABC 是等腰三角形.①BD =CD ; ②∠BAD =∠CAD ;③AB +BD =AC +CD ; ④AB ﹣BD =AC ﹣CD ;⑤∠BAD=∠ACD.可以添加的条件序号正确答案是(). A.①② B.①②③ C.①②③④ D.①②③④⑤第Ⅱ卷(非选择题,共110分)二、填空题(每小题4分,共24分)把答案直接填在横线上。
2019-2020学年安徽省八年级(下)期末数学试卷副标题题号 一 二 三 四 总分 得分一、选择题(本大题共10小题,共40.0分) 1. 要使√x −2020有意义,x 的取值范围是( )A. x ≥2020B. x ≤2020C. x >2020D. x <2020 2. 下列计算,正确的是( )A. √8+√3=√11B. √18−√2=2√2C. √9÷√3=3D. √914=3123. 下列方程中,关于x 的一元二次方程是( )A. x 2−x(x +3)=0B. ax 2+bx +c =0C. x 2−2x −3=0D. x 2−2y −1=04. 下列方程中,没有实数根的是( )A. 3x 2−√3x +2=0B. 4x 2+4x +1=0C. x 2−3x −4=0D. √3x 2−x −1=0 5. 如图所示,在数轴上点A 所表示的数为a ,则a 的值为( )A. −1−√5B. 1−√5C. −√5D. −1+√56. 为迎接春节促销活动,某服装店从1月份开始对冬装进行“折上折”(两次打折数相同)优惠活动,已知一件原价1000元的冬装,优惠后实际仅需640元,设该店冬装原本打x 折,则有( ) A. 1000(1−2x)=640 B. 1000(1−x)2=640C. 1000(x10)2=640D. 1000(1−x10)2=6407. 如图,在△ABC 中,D ,E 分别是AB ,BC 的中点,点F 在DE 延长线上,添加一个条件使四边形ADFC 为平行四边形,则这个条件是( )A. ∠B =∠FB. ∠B =∠BCFC. AC =CFD. AD =CF8.星期 日 一 二 三 四 五 六 个数1112■1310131313,平均数12,那么这组数据的方差是( )A. 87B. 107C. 1D. 979. 如图,在四边形ABCD 中,AB =BC =CD ,∠ABC =160°,∠BCD =80°,△PDC 为等边三角形,则∠ADC 的度数为( ) A. 70° B. 75° C. 80° D. 85°10. 对于实数a 、b ,定义运算“★”:a ★b ={a 2−b(a ≤b)b 2−a(a >b),关于x 的方程(2x +1)★(2x −3)=t 恰好有两个不相等的实数根,则t 的取值范围是( )A. t <154 B. t >154 C. t <−174 D. t >−174二、填空题(本大题共4小题,共20.0分)11. 如果最简二次根式√1+a 与√4a −2是同类二次根式,那么a =______. 12. 已知x 1、x 2是方程x 2+x −2=0的两个根,则1x 1+1x 2=______.13. 如图,每个小正方形边长为1,则△ABC 边AC 上的高BD 的长为______. 14. 已知平行四边形ABCD 的四个顶点都在某一个矩形上,其中BD 为这个矩形的对角线,若AB =2,BC =3,∠ABC =60°,则这个矩形的周长是______. 三、计算题(本大题共2小题,共20.0分) 15. 计算:(2√12−√13)×√6.16. 合肥长江180艺术街区进行绿化改造,用一段长40m 的篱笆和长15m 的墙AB ,围城一个矩形的花园,设平行于墙的一边DE 的长为xm ;(1)如图1,如果矩形花园的一边靠墙AB ,另三边由篱笆CDEF 围成,当花园面积为150m 2时,求x 的值; (2)如图2,如果矩形花园的一边由墙AB 和一节篱笆BF 构成,另三边由篱笆ADEF 围成,当花园面积是150m 2时,求BF 的长.四、解答题(本大题共7小题,共70.0分)17.解方程:x2+x=8−x.18.已知关于x的一元二次方程ax2+bx+12=0.(1)若x=1是方程的一个解,写出a、b满足的关系式;(2)当b=a+1时,利用根的判别式判断方程根的情况.19.著名数学家斐波那契曾研究一列数,被称为斐波那契数列(按照一定顺序排列的一列数称为数列),这个数列的第n个数为√5[(1+√52)n−(1−√52)n](n为正整数),例如这个数列的第8个数可以表示为1√5[(1+√52)8−(1−√52)8].根据以上材料,写出并计算:(1)这个数列的第1个数;(2)这个数列的第2个数.20.《九章算术》“勾股”章有一题:“今有二人同所立,甲行率七,乙行率三.乙东行,甲南行十步而斜东北与乙会.问甲乙行各几何”.大意是说,已知甲、乙二人同时从同一地点出发,甲的速度为7,乙的速度为3.乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇.那么相遇时,甲、乙各走了多远?21.(1)已知线段a,以此为边,用尺规作图(保留作图痕迹,不需写作法)作出一个含有60°的菱形;(2)如图,在菱形ABCD中,点M、N分别是边BC、CD上的点,连接AM、AN,若∠ABC=∠MAN=60°,求证:BM=CN.22.某校八年级甲、乙两班各有50名学生,为了解这两个班学生身体素质情况,进行了抽样调查.从这两个班各随机抽取10名学生进行身体素质测试,测试成绩如下甲班65 75 75 80 60 50 75 90 85 65乙班90 55 80 70 55 70 95 80 65 70成绩x人数年级50≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100甲班13321乙班21322班级平均数中位数众数甲班m7575乙班7370n根据以上信息,解答下列问题:(1)求表中m的值;(2)表中n的值为______;(3)若规定测试成绩在80分以上(含80分)的学生身体素质为优秀,请估计乙班50名学生中身体素质为优秀的学生的人数.23.如图1,正方形ABCD的顶点A、D分别在平行线l1、l2上,由B、D向l1作垂线,垂足分别为M、N.(1)求证:AM=DN;(2)如图2,正方形AEFG的顶点E在直线l2上,过点F、C分别作l2的垂线段FP、CQ,求证:FP+CQ=DE;(3)如图3,正方形AEFG的顶点A、G在直线l1上,顶点E、F在直线l2上,连接BG并延长交l2于点R,若∠BRD=30°,AE=√3,求AB.答案和解析1.【答案】A【解析】解:根据二次根式的性质可知:x−2020≥0,解得:x≥2020;故选:A.先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键.2.【答案】B【解析】解:A.√8与√3不是同类二次根式,所以不能合并,√8+√3≠√11,故错误;B.√18=3√2,与√2是同类二次根式,所以能合并,√18−√2=3√2−√2=2√2,故正确.C.√9÷√3=√9÷3=√3≠3,故错误;D.√914=√374=√372≠312,故错误;故选:B.根据二次根式的加减、除法和二次根式的性质逐一计算可得答案.本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的加减、除法法则和二次根式的性质.3.【答案】C【解析】解:A、x2−x(x+3)=0,化简后为−3x=0,不是关于x的一元二次方程,故此选项不合题意;B、ax2+bx+c=0,当a=0时,不是关于x的一元二次方程,故此选项不合题意;C、x2−2x−3=0是关于x的一元二次方程,故此选项不合题意;D、x2−2y−1=0含有2个未知数,不是关于x的一元二次方程,故此选项不合题意;故选:C.根据一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程进行分析即可.此题主要考查了一元二次方程的定义,关键是掌握判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.4.【答案】A【解析】解:A、∵△=(−√3)2−4×3×2=−21<0,∴方程3x2−√3x+2=0无实数根;B、∵△=42−4×4×1=0,∴方程4x2+4x+1=0有两个相等的实数根;C、∵(−3)2−4×1×(−4)=25>0,∴方程x2−3x+4=0有两个不相等的实数根;D、∵△=(−1)2−4×√3×(−1)=1+4√3>0,∴方程√3x2−x−1=0有两个不相等的实数根.故选:A.逐一分析四个选项中方程的根的判别式的正负,由此即可得出结论.本题考查了根的判别式,牢记“当△<0时,方程无实数根”是解题的关键.5.【答案】A【解析】解:如图,点A在以O为圆心,OB长为半径的圆上.∵在直角△BOC中,OC=2,BC=1,则根据勾股定理知OB=√OC2+BC2=√22+12=√5,∴OA=OB=√5,∴a=−1−√5.故选:A.点A在以O为圆心,OB长为半径的圆上,所以在直角△BOC中,根据勾股定理求得圆O的半径OA=OB=√5,然后由实数与数轴的关系可以求得a的值.本题考查了勾股定理、实数与数轴.找出OA=OB是解题的关键.6.【答案】C【解析】解:设该店冬装原本打x折,)2=640.依题意,得:1000⋅(x10故选:C.设该店冬装原本打x折,根据原价及经过两次打折后的价格,可得出关于x的一元二次方程,此题得解.本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.7.【答案】B【解析】解:∵在△ABC中,D,E分别是AB,BC的中点,∴DE是△ABC的中位线,∴DE//AC.A、根据∠B=∠F不能判定AC//DF,即不能判定四边形ADFC为平行四边形,故本选项错误.B、根据∠B=∠BCF可以判定CF//AB,即CF//AD,由“两组对边分别平行的四边形是平行四边形”得到四边形ADFC为平行四边形,故本选项正确.C、根据AC=CF,FD//AC,不能判定四边形ADFC为平行四边形,故本选项错误.D、根据AD=CF,FD//AC不能判定四边形ADFC为平行四边形,故本选项错误.故选:B.利用三角形中位线定理得到DE//AC,结合平行四边形的判定定理进行选择.本题三角形的中位线的性质和平行四边形的判定.三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半.8.【答案】A【解析】解:设数被墨汁覆盖的是x,则(11+12+x+13+10+13+13)÷7=12,则x=12,[(11−12)2+(12−12)2+(12−12)2+(13−12)2+(10−12)2+(13−∴S=1712)2+(13−12)2]=8,7故选:A.先根据平均数为12列出关于x的方程,解之求出x的值,再利用方差的定义列式计算可得.本题主要考查方差,解题的关键是掌握平均数和方差的定义.9.【答案】C【解析】解:∵△PDC为等边三角形;∴∠PCD=∠DPC=∠CDP=60°,且PC=CD=PD,∵AB=BC=CD,∴AB=CP,∵∠BCD=80°,∴∠BCP=∠BCD−∠DCP=80°−60°=20°,∵∠ABC=160°,∴∠ABC+∠BCP=180°,∴PC//AB,∵AB=CP,∴四边形ABCP为平行四边形,∴∠APC=∠ABC=160°,AP=BC,∴AP=DP,∠APD=360°−∠CPD−∠APC=140°,=20°,∴∠PDA=∠PAD=180°−∠APD2∴∠ADC=∠CDP+∠ADP=60°+20°=80°,故选:C.由等边三角形求得∠PCD=∠DPC=∠CDP=60°,且PC=CD=PD,进而求得∠BCP,再证明四边形ABCP为平行四边形,得AP=DP,由三角形内角和与等腰三角形性质得∠ADP,进而求得∠ADC.本题主要考查了等边三角形的性质,平行四边形的性质与判定,等腰三角形的性质,三角形内角和定理,关键在于证明四边形ABCP为平行四边形.10.【答案】D【解析】解:①当2x+1≤2x−3成立时,即1≤−3,矛盾;所以a≤b时不成立;②当2x+1>2x−3成立时,即1>−3,所以a>b时成立;则(2x−3)2−(2x+1)=t,化简得:4x2−14x+8−t=0,该一元二次方程有两个不相等的实数根,△=142−4×4×(8−t)>0;.解得:t>−174故选:D.分两种情况:①当2x+1≤2x−3成立时;②当2x+1>2x−3成立时;进行讨论即可求解.本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2−4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.同时考查了新定义的运算.11.【答案】1【解析】【分析】根据同类二次根式的定义建立关于a的方程,求出a的值.本题考查了同类二次根式,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.【解答】解:∵最简二次根式√1+a与√4a−2是同类二次根式,∴1+a=4a−2,解得a=1.故答案为1.12.【答案】12【解析】解:∵x1、x2是方程x2+x−2=0的两个根,∴x1+x2=−1,x1x2=−2,∴1x1+1x2=x1+x2x1x2=12.故答案为:12.由一元二次方程的根与系数之间的关系求得两根之积与两根之和,将1x1+1x2变形为x1+x2x1x2,再代入数值计算即可求解.考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系为:x1+x2=−ba,x1⋅x2=ca.13.【答案】85【解析】【分析】此题考查了勾股定理,以及三角形的面积,熟练掌握勾股定理是解本题的关键.根据网格,利用勾股定理求出AC的长,AB的长,以及AB边上的高,利用三角形面积公式求出三角形ABC面积,而三角形ABC面积可以由AC与BD乘积的一半来求,利用面积法即可求出BD的长.【解答】解:根据勾股定理得:AC=√32+42=5,由网格得:S△ABC=12×2×4=4,且S△ABC=12AC⋅BD=12×5BD,∴12×5BD=4,解得:BD=85.故答案为:8514.【答案】7+3√3或8+2√3【解析】解:分为两种情况:①如图,分别过D、B作DG⊥BA,BH⊥DC,垂足分别为G、H;则四边形BHDG为矩形,所以BH=DG,HC=AG,∠HBA=90°,∵∠ABC=60°,∴∠HBC=30°,则HC=32,由勾股定理得:BH=√32−(32)2=32√3;∴矩形BHDG的周长=2(32√3+32+2)=7+3√3;②如图,分别过B、D作BE⊥DA,DF⊥BC,垂足分别为E、F;则四边形BEDF为矩形;所以BE=DF,AE=CF,∠E=∠EBF=90°,∵∠ABC=60°,∴∠ABE=30°,则AE=1;BE=√22−12=√3;∴矩形BEDF的周长=2(√3+1+3)=8+2√3,故答案:7+3√3或8+2√3.分为两种情况,画出图形,①解直角三角形求出AG和DG,再求出矩形的候车即可;②解直角三角形求出BE和AE,再求出矩形的周长即可.本题考查了解直角三角形,矩形的性质和平行四边形的性质等知识点,能求出符合的所有情况是解此题的关键.15.【答案】解:原式=2√12×6−√13×6=12√2−√2=11√2.【解析】原式利用乘法分配律计算即可得到结果.此题考查了二次根式的混合运算,熟练掌握运算法则是解本题的关键.16.【答案】解:(1)由题意得:12(40−x)x=150;解得:x1=10,x2=30,∵30>15∴x=30舍去,∴x=10m;答:x的值为10m;(2)设BF=y;则12(25−2y)(y+15)=150;解得y1=−152(舍去),y2=5,答:BF的长为5m.【解析】(1)设平行于墙的一边DE的长为xm,则CD的长为40−x2m,利用矩形的面积公式即可得出关于x的一元二次方程,解之取小于15的值即可得出结论;(2)设BF的长为y,利用矩形的面积公式即可得出关于y的一元二次方程,解之即可求出结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.17.【答案】解:化简整理原方程得:x2+2x−8=0,由因式分解可知:(x−2)(x+4)=0,则x−2=0或x+4=0,解得:x1=2或x2=−4.【解析】先整理为一般式,再利用因式分解法求解可得.本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.18.【答案】解:(1)若x=1是方程的一个解,则a(1)2+b(1)+12=0,解得:a+b=−12;(2)△=b2−4a×12=b2−2a,∵b=a+1,∴△=(a+1)2−2a=a2+2a+1−2a=a2+1>0,∴原方程有两个不相等的实数根.【解析】(1)代入法可求a、b满足的关系式;(2)由方程的系数结合根的判别式、b=a+1,可得出△=a2+1>0,进而可找出方程ax2+bx+12=0有两个不相等实数根.本题考查了根的判别式以及解一元二次方程,解题的关键是:(2)牢记“当△>0时,方程有两个不相等实数根”.19.【答案】解:(1)第1个数,当n=1时,√5(1+√52−1−√52)=√5×√5=1;(2)第2个数,当n=2时,1√5[(1+√52)2−(1−√52)2]=1√5(1+√52+1−√52)(1+√52−1−√52)=×1×√5=1.√5【解析】(1)把n=1代入式子化简求得答案即可.(2)把n=2代入式子化简求得答案即可.此题考查二次根式的混合运算、化简求值以及应用,理解题意,找出运算的方法是解决问题的关键.20.【答案】解:设经x秒二人在B处相遇,这时乙共行AB=3x,甲共行AC+BC=7x,∵AC=10,∴BC=7x−10,又∵∠A=90°,∴BC2=AC2+AB2,∴(7x−10)2=102+(3x)2,∴x=0(舍去)或x=3.5,∴AB=3x=10.5,AC+BC=7x=24.5,答:甲走了24.5步,乙走了10.5步.【解析】设经x秒二人在B处相遇,然后利用勾股定理列出方程即可求得甲乙两人走的步数.本题考查了勾股定理的应用,解题的关键是从实际问题中抽象出直角三角形,尤其本题中的文言文更不容易理解.21.【答案】解:(1)如图所示四边形ACBD即为所作的菱形;(2)如图,连接AC,∵∠ABC=∠MAN=60°,∴△ABC和△ACD均为等边三角形,∴AB=AC,∴∠B=∠CAN=60°,∠BAC=∠MAN=60°,∴∠BAM=∠CAN,又AB=AC,∴△ABM≌△ACN(ASA),【解析】(1)作边长为a的等边三角形即可解决问题.(2)连接AC,证明△ABM≌△ACN(ASA)可得结论.本题考查作图−应用与设计,等边三角形的性质,全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.【答案】70【解析】解:(1)x−甲=110(65+75+75+80+60+50+75+90+85+65)=72,答:表中m的值为72.∴m的值为72.(2)乙班成绩出现次数最多的数是70,共出现3次,因此众数是70,故答案为:70.(3)50×2+210=20人答:乙班50名学生中身体素质为优秀的学生约为20人.(1)根据平均数的计算公式,求出甲班10个人的平均成绩,(2)乙班的众数就是找出乙班成绩出现次数最多的数,(3)样本估计总体,用乙班人数50去乘样本中优秀人数所占的比.考查平均数、中位数、众数意义和求法,理解各个统计量的意义,掌握平均数、众数、中位数的求法是解决问题的前提.23.【答案】(1)证明:∵四边形ABCD是正方形,∴AB=AD,∵BM⊥AN,DN⊥AN,∴∠AMB=∠DNA=90°,∴∠ABM+∠BAM=∠DAN+∠BAM=90°,∴∠ABM=∠DAN,在△ABM和△DAN中,{∠AMB=∠DNA ∠ABM=∠DAN AB=AD,∴△ABM≌△DAN(AAS),∴AM=DN;(2)证明:过点A作AK⊥DE于K,如图2所示:∵四边形AEFG是正方形,∴EF=EA,∠AEF=90°,∵FP⊥PE,AK⊥DE,∴∠FPE=∠EKA=90°,∵∠PEF+∠AEK=90°,∠KAE+∠AEK= 90°,∴∠PEF=∠KAE,在△PEF和△KAE中,{∠FPE=∠EKA ∠PEF=∠KAE EF=EA,∴△PEF≌△KAE(AAS),∴FP=EK,同理:△ADK≌△DCQ(AAS),∴FP+CQ=EK+DK=DE;(3)解:分别过B、D作BM⊥l1,DN⊥l1,M、N分别为垂足,如图3所示:则四边形AEDN为矩形,∴AE=DN=√3,由(1)证明知:AM=DN,∴AM=√3,∵四边形AEFG是正方形,∴AG=AE=√3,∴GM=AG+AM=√3+√3=2√3,∵l1//l2,∴∠BGM=∠BRD=30°,设BM=x,则BG=2x,在Rt△GBM中,由勾股定理得:BG2=BM2+GM2,即(2x)2=x2+(2√3)2,解得:x1=2,x2=−2(不合题意舍去),∴BM=2,在Rt△ABM中,由勾股定理得:AB=√AM2+BM2=√(√3)2+22=√7.【解析】(1)证△ABM≌△DAN(AAS),即可得出AM=DN;(2)过点A作AK⊥DE于K,证△PEF≌△KAE(AAS),得FP=EK,同理△ADK≌△DCQ(AAS),得DK=CQ,即可得出结论;(3)分别过B、D作BM⊥l1,DN⊥l1,M、N分别为垂足,则AE=DN=√3,由(1)知AM=DN=√3,由正方形的性质得AG=AE=√3,则GM=AG+AM=2√3,由平行线的性质得∠BGM=∠BRD=30°,设BM=x,则BG=2BM=2x,在Rt△GBM中,由勾股定理得出方程,求出BM=2,在Rt△ABM中,由勾股定理即可得出答案.本题是四边形综合题目,考查了正方形的性质、矩形的性质、全等三角形的判定与性质、勾股定理、含30°角的直角三角形的性质、平行线的性质等知识;本题综合性强,熟练掌握正方形的性质和勾股定理,证明三角形全等是解题的关键.。
安徽省2019-2020年八年级下学期期末考试数学试题一、选择题(每小题4分,共40分)1.(2015春•和县期末)使代数式有意义的x的取值范围是()A.x≥0 B.x≠C.x取一切实数D.x≥0且x≠考点:二次根式有意义的条件;分式有意义的条件.分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.解答:解:根据题意得:x≥0且3x﹣1≠0,解得:x≥0且x≠.故选:D.点评:本题考查的是二次根式有意义的条件和分式有意义的条件,掌握分式有意义,分母不为0、二次根式的被开方数是非负数是解题的关键.2.(2012•自贡)如图,在平行四边形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则线段BE,EC的长度分别为()A.2和3 B.3和2 C.4和1 D. 1和4考点:平行四边形的性质.分析:根据平行四边形的性质和角平分线,可推出AB=BE,再由已知条件即可求解.解答:解:∵AE平分∠BAD∴∠BAE=∠DAE∵▱ABCD∴AD∥BC∴∠DAE=∠AEB∴∠BAE=∠BEA∴AB=BE=3∴EC=AD﹣BE=2故选B.点评:命题立意:考查平行四边形性质及等腰三角形的性质.3.(2012•东莞市校级一模)一组数据从小到大排列为1,2,4,x,6,9.这组数据的中位数是5,那么这组数据的众数为()A. 4 B. 5 C. 5.5 D. 6考点:众数;中位数.专题:应用题.分析:先根据中位数的定义可求得x,再根据众数的定义就可以求解.解答:解:根据题意得,(4+x)÷2=5,得x=6,则这组数据的众数为6.故选D.点评:本题主要考查了众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数);众数是一组数据中出现次数最多的数,难度适中.4.(2010•眉山)如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90° B.60° C.45°D. 30°考点:勾股定理.分析:根据勾股定理即可得到AB,BC,AC的长度,进行判断即可.解答:解:根据勾股定理可以得到:AC=BC=,AB=.∵()2+()2=()2.∴AC2+BC2=AB2.∴△ABC是等腰直角三角形.∴∠ABC=45°.故选C.点评:本题考查了勾股定理,判断△ABC是等腰直角三角形是解决本题的关键.5.(2015春•和县期末)若一次函数y=(m﹣7)x﹣2的图象经过第二、三、四象限,则m的取值范围是()A.m>0 B.m<0 C.m>7 D. m<7考点:一次函数图象与系数的关系.分析:一次函数y=(m﹣7)x﹣2的图象经过第二、三、四象限,则一次项系数m﹣7是负数,即可求得m的范围.解答:解:根据题意得:m﹣7<0,解得:m<7.故选D.点评:本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.6.(2013•娄底)一次函数y=kx+b(k≠0)的图象如图所示,当y>0时,x的取值范围是()A.x<0 B.x>0 C.x<2 D. x>2考点:一次函数的图象.分析:根据函数图象与x轴的交点坐标可直接解答.从函数图象的角度看,就是确定直线y=kx+b<0的解集,就是图象在x轴下方部分所有的点的横坐标所构成的集合.解答:解:因为直线y=kx+b与x轴的交点坐标为(2,0),由函数的图象可知当y>0时,x的取值范围是x<2.故选:C.点评:此题考查一次函数的图象,运用观察法解一元一次不等式通常是从交点观察两边得解.7.(2015春•和县期末)甲、乙两艘客轮同时离开港口,航行的速度都是40m/min,甲客轮用15min 到达A,乙客轮用20min到达B.若A、B两处的直线距离为1000m,甲客轮沿着北偏东30°的方向航行,则乙客轮的航行方向可能是()A.北偏西30°B.南偏西30°C.南偏东60°D.南偏西30°考点:勾股定理的逆定理;方向角.专题:应用题.分析:首先根据速度和时间计算出行驶路程,再根据勾股定理逆定理结合路程可判断出甲和乙两艘轮船的行驶路线呈垂直关系,进而可得答案.解答:解:甲的路程:40×15=600米,乙的路程:20×40=800米,∵6002+8002=10002,∴甲和乙两艘轮船的行驶路线呈垂直关系,∵甲客轮沿着北偏东30°,∴乙客轮的航行方向可能是南偏东60°,故选:C.点评:此题主要考查了勾股定理逆定理,关键是掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.8.(2012•长沙)甲、乙两学生在军训打靶训练中,打靶的总次数相同,且所中环数的平均数也相同,但甲的成绩比乙的成绩稳定,那么两者的方差的大小关系是()A.<B.>C.= D.不能确定考点:方差.分析:方差越小,表示这个样本或总体的波动越小,即越稳定.根据方差的意义判断.解答:解:根据方差的意义知,射击成绩比较稳定,则方差较小,∵甲的成绩比乙的成绩稳定,∴有:S甲2<S乙2.故选A.点评:本题考查了方差的意义,方差反映的是数据的稳定情况,方差越小,表示这个样本或总体的波动越小,即越稳定;反之,表示数据越不稳定.9.(2015春•和县期末)菱形的两条对角线的长分别为6和8,则菱形的高为()A.B.C.D.考点:菱形的性质.分析:根据对角线的长度即可计算菱形的面积,根据菱形对角线互相垂直平分的性质,可以求得△AOB为直角三角形,根据AO,BO可以求得AB的值,根据菱形的面积和边长即可解题.解答:解:由题意知AC=6,BD=8,则菱形的面积S=×6×8=24,∵菱形对角线互相垂直平分,∴△AOB为直角三角形,AO=3,BO=4,∴AB==5,∴菱形的高h==.故选A.点评:本题考查了勾股定理在直角三角形中的运用,菱形面积的计算,本题中求根据AO,BO的值求AB是解题的关键.10.(2015春•和县期末)实数a,b在数轴上的位置如图所示,则化简﹣﹣结果是()A.﹣2a﹣1 B.﹣1 C.2b﹣1 D. 1考点:二次根式的性质与化简;实数与数轴.分析:根据题意得出a﹣b>0,1﹣a<0,b<0,进而化简求出即可.解答:解:由数轴可得:a﹣b>0,1﹣a<0,b<0,则原式=a﹣b+1﹣a+b=1.故选:D.点评:此题主要考查了二次根式的性质与化简,正确得出a﹣b,1﹣a的符号是解题关键.二、填空题(每小题5分,共20分)11.(5分)(2015春•和县期末)某校组织八年级三个班学生数学竞赛,竞赛结果三个班总平均分为72.5,已知一班参赛人数30人,平均分75分,二班参赛人数30人,平均分为80分,三班参赛人数40人,则三班的平均分为65分.考点:加权平均数.分析:根据平均数的定义首先求得三班的总分,然后根据平均数公式即可求解.解答:解:三班的平均分是:[72.5×(30+30+40)﹣75×75﹣30×80]=65(分).故答案是:65分.点评:本题考查了平均数计算公式,要求三班的平均分,根据公式求得三班的分数的总和,除以班级中参赛人数,正确理解平均数公式是关键.12.(5分)(2015春•和县期末)把﹣m根号外的因式移到根号内,则得.考点:二次根式的性质与化简.分析:根据二次根式的性质得出m<0,进而化简求出即可.解答:解:﹣m==.故答案为:.点评:此题主要考查了二次根式的性质与化简,正确得出m的符号是解题关键.13.(5分)(2015春•和县期末)给出下列五个命题:①32、42、52是一组勾股数;②y=3x是正比例函数,但不是一次函数;③对角线互相垂直且相等的四边形是正方形;④无论x为何值,一定都是二次根式;⑤一组数据的中位数有且只有一个,但众数可能不止一个;其中正确的是⑤(写出所有正确命题的序号)考点:命题与定理.分析:根据勾股数的定义对①进行判断;根据一次函数与正比例函数的关系对②进行判断;根据正方形的判定方法对③进行判断;根据二次根式的定义对④进行判断;根据中位数和众数的定义对⑤进行判断.解答:解:32、42、52不是一组勾股数,所以①错误;y=3x是正比例函数,也是一次函数,所以②错误;对角线互相垂直平分且相等的四边形是正方形,所以③错误;当x≥0时,是二次根式,所以④错误;一组数据的中位数有且只有一个,但众数可能不止一个,所以⑤正确.故答案为⑤.点评:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.14.(5分)(2015春•和县期末)某农资销售部连续8天调进一批化肥进行销售,在开始调进化肥的第7天开始销售.若进货期间每天调入化肥的吨数与销售期间每天销售化肥的吨数都保持不变,这个销售部的化肥存量S(单位:吨)与时间t(单位:天)之间的函数关系如图所示,则该销售部这次化肥销售活动(从开始进货到销售完毕)所用时间是10天.考点:一次函数的应用.分析:通过分析题意和图象可求调入化肥的速度,销售化肥的速度;从而可计算最后销售化肥16吨所花的时间.解答:解:调入化肥的速度是24÷6=4吨/天,当在第6天时,库存物资应该有24吨,在第8天时库存16吨,所以销售化肥的速度是=8(吨/天),所以剩余的16吨完全调出需要16÷8=2(天),故该门市部这次化肥销售活动(从开始进货到销售完毕)所用时间是8+2=10(天).故答案为10天.点评:此题主要考查了一次函数的应用.解题的关键是注意调入化肥需8天,但6天后调入化肥和销售化肥同时进行.三、解答题(本大题共8小题,满分90分)15.(10分)(2015春•和县期末).考点:二次根式的混合运算.分析:将二次根式化简,前一个括号提与后一个括号相乘,再利用平方差公式.解答:解:原式=4﹣+(﹣1)(+1)=4﹣+2.点评:本题考查了二次根式的混合运算.熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.16.(10分)(2015春•和县期末)(1)某水果批发商,批发苹果不少于80kg时,批发价为2.5元/kg,小张携现金2500元到这个市场采购苹果,并以批发价买进,设购买的苹果为xkg,小张付款后还剩余现金y元,写出y与x的函数关系式,并指出自变量x的取值范围.(2)在直角坐标系中,直接画出函数y=|x+1|的图象.考点:一次函数的应用.分析:(1)利用已知批发价为每千克2.5元,小王携带现金2500元到这个市场采购苹果,求出解析式,又因为批发苹果不少于80千克时,批发价为每千克2.5元,所以x≥80kg.(2)画分段函数的图象,当x≥﹣1时,y=x+1;当x<﹣1时,y=﹣x﹣1;根据一次函数图象画图即可.解答:解:(1)由已知批发价为每千克2.5元,小王携带现金2500元到这个市场采购苹果得y与x的函数关系式:y=2500﹣2.5x,∵批发苹果不少于80千克时,批发价为每千克2.5元,∴x≥80kg,∴至多可以买2500÷2.5=1000kg.故自变量x的取值范围:80≤x≤1000;综上所述,y与x之间的函数关系式为:y=300﹣2.5x(80≤x≤1000);(2)当x≥﹣1时,y=x+1;当x<﹣1时,y=﹣x﹣1;函数图象如下图:点评:第一小题考查了一次函数的应用.利用一次函数性质,解决实际问题,把复杂的实际问题转换为数学问题;第二小题考查分段函数图象的画法,注意自变量和函数的取值范围.17.(10分)(2015春•和县期末)已知m,n,d为一个直角三角形的三边长,且有=8n﹣n2﹣16,求三角形三边长分别为多少?考点:勾股定理;非负数的性质:偶次方;非负数的性质:算术平方根.专题:分类讨论.分析:首先根据非负数的性质可得,计算出m、n的值,再利用勾股定理计算出d的长度即可.解答:解:∵=8n﹣n2﹣16,∴=﹣(4﹣n)2,∴,解得:,∵m,n,d为一个直角三角形的三边长,∴d==3,或d==.点评:此题主要考查了非负数的性质,以及勾股定理,关键是注意要分类讨论,不要漏解.18.(12分)(2015春•和县期末)已知:在平面直角坐标系中,点A(1,0),点B(4,0),点C 在y轴正半轴上,且OB=2OC.(1)试确定直线BC的解析式;(2)在平面内确定点M,使得以点M、A、B、C为顶点的四边形是平行四边形,请直接写出点M 的坐标.考点:一次函数综合题.分析:(1)易求B(4,0),C(0,2).把它们的坐标分别代入直线BC的解析式y=kx+b(k≠0),列出关于k、b的方程组,通过解该方程组即可求得它们的值;(2)需要分类讨论:以AB为边的平行四边形和以AB为对角线的平行四边形.解答:解:(1)∵B(4,0),∴OB=4,又∵OB=2OC,C在y轴正半轴上,∴C(0,2).设直线BC的解析式为y=kx+b(k≠0).∵过点B(4,0),C(0,2),∴,解得,∴直线BC的解析式为y=﹣x+2.(2)如图,①当BC为对角线时,易求M1(3,2);②当AC为对角线时,CM∥AB,且CM=AB.所以M2(﹣3,2);③当AB为对角线时,AC∥BM,且AC=BM.则|M y|=OC=2,|M x|=OB+OA=5,所以M3(5,﹣2).综上所述,符合条件的点M的坐标是M1(3,2),M2(﹣3,2),M3(5,﹣2).点评:本题考查了一次函数综合题.期中涉及到了待定系数法求一次函数解析式,坐标与图形的性质,平行四边形的判定与性质.解题时,注意分类讨论,以防错解或漏解.19.(12分)(2015春•和县期末)观察下列图形的变化过程,解答以下问题:如图,在△ABC中,D为BC边上的一动点(D点不与B、C两点重合).DE∥AC交AB于E点,DF∥AB交AC于F点.(1)试探索AD满足什么条件时,四边形AEDF为菱形,并说明理由;(2)在(1)的条件下,△ABC满足什么条件时,四边形AEDF为正方形.为什么?考点:正方形的判定;平行四边形的判定与性质;菱形的判定.专题:动点型.分析:(1)当AD平分∠EAF时,四边形AEDF为菱形,首先由题意推出四边形AEDF为平行四边形,然后根据角平分线的性质和平行线的性质推出∠EAD=∠FDA,∠EAD=∠FAD,通过等量代换求出∠FAD=∠FDA,确定AF=DF后,即可推出结果;(2)当△ABC为直角三角形,∠BAC=90°时,四边形AEDF为正方形,首先根据(1)所推出的结论四边形AEDF为菱形,通过正方形的判定定理(一个内角为直角的菱形为正方形),即可推出结论.解答:解:(1)当AD平分∠EAF时,四边形AEDF为菱形,∵DE∥AC,DF∥AB,∴四边形AEDF为平行四边形,∴∠EAD=∠FDA,∵AD平分∠EAF,∴∠EAD=∠FAD,∴∠FAD=∠FDA,∴AF=DF,∴四边形AEDF为菱形;(2)当△ABC为直角三角形,∠BAC=90°时,四边形AEDF为正方形,理由:由(1)知,四边形AEDF为菱形,∵∠BAC=90°,∴四边形AEDF为正方形.点评:本题主要考查菱形的判定定理计正方形的判定定理,平行四边形的判定定理及性质,平行线的性质等知识点的综合运用.(1)小题关键在于通过求证相等的角,确定AF=DF;(2)小题关键在于确定根据正方形的判定定理确定∠BAC=90°这一条件.20.(12分)(2012•吉林)为宣传节约用水,小明随机调查了某小区部分家庭5月份的用水情况,并将收集的数据整理成如下统计图.(1)小明一共调查了多少户家庭?(2)求所调查家庭5月份用水量的众数、平均数;(3)若该小区有400户居民,请你估计这个小区5月份的用水量.考点:条形统计图;用样本估计总体;加权平均数;众数.分析:(1)条形图上户数之和即为调查的家庭户数;(2)根据众数定义:一组数据中出现次数最多的数据叫做众数;加权平均数:若n个数x1,x2,x3,…,x n的权分别是w1,w2,w3,…,w n,则=就是这n个数的加权平均数,进行计算即可;(3)利用样本估计总体的方法,用400×所调查的20户家庭的平均用水量即可.解答:解:(1)1+1+3+6+4+2+2+1=20,答:小明一共调查了20户家庭;(2)每月用水4吨的户数最多,有6户,故众数为4吨;平均数:(1×1+1×2+3×3+4×6+5×4+6×2+7×2+8×1)÷20=4.5(吨);(3)400×4.5=1800(吨),答:估计这个小区5月份的用水量为1800吨.点评:此题主要考查了条形统计图,众数,平均数,以及用样本估计总体,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.21.(12分)(2013•南通)如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求证:四边形BCDE是矩形.考点:矩形的判定;全等三角形的判定与性质.专题:证明题.分析:求出∠BAE=∠CAD,证△BAE≌△CAD,推出∠BEA=∠CDA,BE=CD,得出平行四边形BCDE,根据平行线性质得出∠BED+∠CDE=180°,求出∠BED,根据矩形的判定求出即可.解答:证明:∵∠BAD=∠CAE,∴∠BAD﹣∠BAC=∠CAE﹣∠BAC,∴∠BAE=∠CAD,∵在△BAE和△CAD中∴△BAE≌△CAD(SAS),∴∠BEA=∠CDA,BE=CD,∵DE=CB,∴四边形BCDE是平行四边形,∵AE=AD,∴∠AED=∠ADE,∵∠BEA=∠CDA,∴∠BED=∠CDE,∵四边形BCDE是平行四边形,∴BE∥CD,∴∠CDE+∠BED=180°,∴∠BED=∠CDE=90°,∴四边形BCDE是矩形.点评:本题考查了矩形的判定,平行四边形的性质和判定,平行线的性质全等三角形的性质和判定的应用,主要考查学生运用定理进行推理的能力,注意:有一个角是直角的平行四边形是矩形.22.(12分)(2013•广安)某商场筹集资金12.8万元,一次性购进空调、彩电共30台.根据市场需要,这些空调、彩电可以全部销售,全部销售后利润不少于1.5万元,其中空调、彩电的进价和售价见表格.空调彩电进价(元/台)5400 3500售价(元/台)6100 3900设商场计划购进空调x台,空调和彩电全部销售后商场获得的利润为y元.(1)试写出y与x的函数关系式;(2)商场有哪几种进货方案可供选择?(3)选择哪种进货方案,商场获利最大?最大利润是多少元?考点:一次函数的应用;一元一次不等式组的应用.专题:销售问题.分析:(1)y=(空调售价﹣空调进价)x+(彩电售价﹣彩电进价)×(30﹣x);(2)根据用于一次性购进空调、彩电共30台,总资金为12.8万元,全部销售后利润不少于1.5万元.得到一元一次不等式组,求出满足题意的x的正整数值即可;(3)利用y与x的函数关系式y=300x+12000的增减性来选择哪种方案获利最大,并求此时的最大利润即可.解答:解:(1)设商场计划购进空调x台,则计划购进彩电(30﹣x)台,由题意,得y=(6100﹣5400)x+(3900﹣3500)(30﹣x)=300x+12000(0≤x≤30);(2)依题意,有,解得10≤x≤12.∵x为整数,∴x=10,11,12.即商场有三种方案可供选择:方案1:购空调10台,购彩电20台;方案2:购空调11台,购彩电19台;方案3:购空调12台,购彩电18台;(3)∵y=300x+12000,k=300>0,∴y随x的增大而增大,即当x=12时,y有最大值,y最大=300×12+12000=15600元.故选择方案3:购空调12台,购彩电18台时,商场获利最大,最大利润是15600元.点评:本题主要考查了一次函数和一元一次不等式组的实际应用,难度适中,得出商场获得的利润y与购进空调x的函数关系式是解题的关键.在解答一次函数的应用问题中,要注意自变量的取值范围还必须使实际问题有意义.。
安徽省八年级下学期数学期末考试卷姓名:________ 班级:________ 成绩:________一、选择题:本大题有10个小题,每小题3分,共30分. (共10题;共30分)1. (3分)(2017·平塘模拟) 若分式有意义,则x的取值范围是()A . x>B . x≤ 且x≠0C . x≥D . x>且x≠02. (3分) (2019八下·岐山期末) 如图,∠1、∠2、∠3、∠4、∠5是五边形ABCDE的外角,且∠1=∠2=∠3=∠4=70°,则∠AED的度数是()A . 110°B . 108°C . 105°D . 100°3. (3分)“长三角”16个城市中浙江省有7个城市。
下图分别表示2004年这7个城市GDP(国民生产总值)的总量和增长速度。
则下列对嘉兴经济的评价,错误的是()A . GDP总量列第五位B . GDP总量超过平均值C . 经济增长速度列第二位D . 经济增长速度超过平均值4. (3分)用反证法证明命题“钝角三角形中必有一个内角小于45°”时,首先应该假设这个三角形中()A . 有一个内角小于45°B . 每一个内角都小于45°C . 有一个内角大于等于45°D . 每一个内角都大于等于45°5. (3分) (2019八下·长春期末) 某景点的参观人数逐年增加,据统计,2015年为10.8万人次,2017年为16.8万人次.设参观人次的平均年增长率为x,则()A . 10.8(1+x)=16.8B . 16.8(1﹣x)=10.8C . 10.8(1+x)2=16.8D . 10.8[(1+x)+(1+x)2]=16.86. (3分)(2017·濮阳模拟) 某小学为了了解各年级留守儿童的数量,对一到六年级留守儿童数量进行了统计,得到每个年级的留守儿童人数分别为10,15,10,17,18,20.对于这组数据,下列说法错误的是()A . 平均数是15B . 众数是10C . 中位数是17D . 方差是7. (3分)已知关于x的一元二次方程x2+x+c=0有一个解为x=1,则c的值为()A . -2B . 0C . 1D . 28. (3分)(2019·九龙坡模拟) 估计(2 - )× 的值应在()A . 2和3之间B . 3和4之间C . 4和5之间D . 5和6之间9. (3分)如图所示:边长分别为1和2的两个正方形,其中一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形内去掉小正方形后的面积为s,那么s与t的大致图象应为A .B .C .D .10. (3分) (2019八上·南岗月考) 已知:如图,点P是等边△ABC内的一点,连接PA、PB、PC,以PB为边作等边△BPD,连接CD,若∠APB=150°,BD=6,CD=8,△APB的面积为().A . 48B . 24C . 12D . 10二、填空题(本题有6个小题,每小题4分,共24分) (共6题;共24分)11. (4分)(2020·黔南) 如图,正方形ABCD的边长为10,点A的坐标为(﹣8,0),点B在y轴上,若反比例函数y=(k≠0)的图象过点C,则该反比例函数的解析式为________.12. (4分)如图,半圆的半径OC=2,线段BC与CD是半圆的两条弦,BC=CD,延长CD交直径BA的延长线于点E,若AE=2,则弦BD的长为________.13. (4分) (2017八下·荣昌期中) 已知,则(a+1)(b﹣1)=________.14. (4分) (2017八下·丛台期末) 已知一组数据x1 , x2 , x3 , x4 , x5的平均数是2,那么另一组数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均数是________.15. (4分) (2018九上·定兴期中) 如图,△ABC中,DE是BC的垂直平分线,DE交AC于点E,连接BE.若BE=9,BC=12,则cosC=________.16. (4分) (2018九上·台州期末) 如图,矩形ABCD中,AB=5,BC=7,E为BC上的动点,将矩形沿直线AE 翻折,使点B的对应点B'落在∠ADC的平分线上,过点B'作B'F⊥BC于点F,求△B'EF的周长________.三、解答题(共7小题,满分66分) (共7题;共66分)17. (8分) (2018九上·林州期中)(1) 2x2﹣5x﹣1=0;(2) 6x2﹣3x﹣1=2x﹣218. (8.0分) (2020七下·沙河口期末) 为了解七年级学生的课外阅读时间的情况,某区对区内所有学校的七年级学生进行了抽样调查,并将收集的数据分成五组进行整理,绘制成如下的统计图表的一部分.结合以上信息,解答下列问题:(1)求的值;(2)补全“阅读人数条形统计图”;(3)若该区七年级学生数为3800人,估计课外阅读时间在20小时以下(不含20小时)的学生人数.19. (8分) (2019八上·天台月考) 如图是小朋友荡秋千的侧面示意图,静止时秋千位于铅垂线BD上,转轴B到地面的距离BD=3m.小亮在荡秋千过程中,当秋千摆动到最高点A时,测得点A到BD的距离AC=2m,点A到地面的距离AE=1.8m;当他从A处摆动到A′处时,有A'B⊥AB.(1)求A′ 到BD的距离;(2)求A′ 到地面的距离.20. (8分)(2017·永康模拟) 探究:如图1,直线l与坐标轴的正半轴分别交于A,B两点,与反比例函数y= (k>0,x>0)的图象交于C,D两点(点C在点D的左边),过点C作CE⊥y轴于点E,过点D作DF⊥x轴于点F,CE与DF交于点G(a,b).(1)若,请用含n的代数式表示;(2)求证:AC=BD;应用:如图2,直线l与坐标轴的正半轴分别交于点A,B两点,与反比例函数y= (k>0,x>0)的图象交于点C,D两点(点C在点D的左边),已知,△OBD的面积为1,试用含m的代数式表示k.21. (10分) (2019九上·兴化月考) 如图,△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,与CA 的延长线相交于点E,过点D作DF⊥AC于点F.(1)证明:DF是⊙O的切线;(2)若AC=3AE,FC=6,求AF的长.22. (12分)(2019·绥化) 已知关于x的方程kx2-3x+1=0有实数根(1)求k的取值范围(2)若该方程有两个实数根,分别为x1和x2,当x1+x2+x1x2=4时,求k的值23. (12分) (2017七下·柳州期末) 如图1,在平面直角坐标系中,OA=7,OC=18,将点C先向上平移7个单位,再向左平移4个单位,得到点B,连接AB,BC.(1)填空:点B的坐标为________;(2)如图2,BF平分∠ABC交x轴于点F,CD平分∠BCO交BF于点D,过点F作FH⊥BF交BC的延长线于点H,试判断DC与FH的位置关系,并说明理由;(3)若点P从点C出发以每秒2个单位长度的速度沿CO方向移动,同时点Q从点O出发以每秒1个单位长度的速度沿OA方向移动,设移动的时间为t秒(0<t<7),四边形OPBA与△OQB的面积分别记为S1,S2,是否存在一段时间,使S1<2S2?若存在,求出t的取值范围;若不存在,试说明理由.参考答案一、选择题:本大题有10个小题,每小题3分,共30分. (共10题;共30分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题(本题有6个小题,每小题4分,共24分) (共6题;共24分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题(共7小题,满分66分) (共7题;共66分)答案:17-1、答案:17-2、考点:解析:答案:18-1、答案:18-2、答案:18-3、考点:解析:答案:19-1、答案:19-2、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、答案:23-3、考点:解析:。
12019八年级下学期数学期末试卷题 号 一 二 三 总 分得 分本试卷分第Ⅰ卷和第Ⅱ卷两部分。
考试时间90分钟,满分120分1.不等式21>+x 的解集是 A 、1>xB 、1<xC 、1≥xD 、1≤x2.要使分式242--x x 为零,那么x 的值是 A 、2-B 、2C 、±2D 、03.下列多项式能因式分解的是A 、x 2-yB 、x 2+1C 、x 2+xy +y 2D 、442+-x x4.若4x ²+m xy +9y ²是一个完全平方式,则m = A 、6 B 、12 C 、±6 D 、±125.下列化简正确的是 A 、b a ba b a +=++22B 、1-=+--ba baC 、1-=---ba b aD 、b a ba b a -=--22(密封线内不要答题)…………………………………密………………………………封…………………………………线………………………………………学校 班级 姓名 准考证号26.如果三角形三个外角度数之比是3∶4∶5,则此三角形一定是 A 、锐角三角形 B 、钝角三角形 C 、直角三角形D 、不能确定7.已知如图,一张矩形报纸ABCD 的长acm AB =,宽bcm BC =, E 、F 分别为AB 、CD 的中点。
若矩形AEFD 与矩形ABCD 相似, 则a ∶b 等于 A 、2∶ 1B 、1∶2C 、3∶1D 、1∶38.下列两个命题:①如果两个角是对顶角,那么这两个角相等;②如果一个等腰三角形有一个内角为︒60,那么这个等腰三角形一定是等边三角形。
则以下结论正确的是A 、只有命题①正确B 、只有命题②正确C 、命题①②都正确D 、命题①②都不正确9.为了解我校八年级800名学生期中数学考试情况,从中抽取了200名 学生的数学成绩进行统计。
下列判断:①这种调查方式是抽样调查;②800名学生是总体;③每名学生的数学成绩是个体;④200名学生是总体的一个样本;⑤200名学生是样本容量。
2019-2020学年安徽六安市霍邱县八年级第二学期期末数学试卷一、选择题(共10小题).1.若有意义,则x的取值范围是()A.x≥2B.x≥﹣2C.x>2D.x>﹣22.下列运算正确的是()A.=﹣2B.(2)2=6C.+=D.×=3.用配方法解方程x2﹣6x﹣8=0时,配方结果正确的是()A.(x﹣3)2=17B.(x﹣3)2=14C.(x﹣6)2=44D.(x﹣3)2=1 4.如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A.6B.7C.8D.95.一个三角形三个内角之比为1:2:3,其所对三边之比为()A.1:2:3B.1::C.1::2D.1::3 6.如图,矩形ABCD的对角线AC=10,∠BOC=120°,则AB的长度是()A.5B.6C.8D.57.一组数据4,5,6,7,7,8的中位数和众数分别是()A.7,7B.7,6.5C.5.5,7D.6.5,78.为执行“均衡教育“政策,某区2017年投入教育经费2500万元,预计到2019年底三年累计投入1.2亿元,若每年投入教育经费的年平均增长百分率为x,则下列方程正确的是()A.2500(1+2x)=12000B.2500(1+x)2=1200C.2500+2500(1+x)+2500(1+2x)=12000D.2500+2500(1+x)+2500(1+x)2=120009.下列命题正确的是()A.一组对边相等,另一组对边平行的四边形一定是平行四边形B.对角线相等的四边形一定是矩形C.两条对角线互相垂直的四边形一定是菱形D.两条对角线相等且互相垂直平分的四边形一定是正方形10.如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE=3,AF=5,则AC的长为()A.4B.4C.10D.8二、填空题(本大题共有4小题,每小题5分,共计20分)11.计算÷的结果是.12.已知x1,x2是关于x的方程x2﹣(m﹣1)x﹣m=0的两个根,且x1+x2=3,则m的值是.13.四边形具有不稳定性.如图,矩形ABCD按箭头方向变形成平行四边形A'B'C'D',变形后∠A'=30°,若矩形ABCD的面积是9,则平行四边形A'B'C'D'的面积是14.如图,Rt△ABC中,∠ACB=90°,AC=12,BC=5,延长BC至点D,连接AD,若△ABD是以AD为其中一腰的等腰三角形,则线段DC的长等于.三、解答题(本大题共有9小题,共计90分)15.计算:.16.解方程:x2﹣6x﹣4=0.17.已知:如图,E,F为▱ABCD对角线AC上的两点,且AE=CF,连接BE,DF,求证:BE=DF.18.已知关于x的方程x2+2(m﹣1)x+m2+5=0有两个不相等的实数根,化简:.19.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点都在网格交点上,请按要求完成下列各题.(1)线段AB的长为,BC的长为.(2)点D也在格点上,且以A,B,C,D为顶点的四边形是平行四边形.请在网格图中画出一个符合条件的平行四边形;(3)设(2)中你所画的平行四边形的面积为S,请通过计算说明;S=AC•BC.20.观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,…按照以上规律,解决下列问题:(1)写出第5个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明其正确性.21.某校初二学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):′1号2号3号4号5号总分甲班1009811089103500乙班891009511997500经统计发现两班总数相等.此时有学生建议,可以通过考察数据中的其他信息作为参考.请你回答下列问题:(1)计算两班的优秀率;(2)求两班比赛数据的中位数;(3)计算两班比赛数据的方差哪一个小?(4)根据以上三条信息,你认为应该把冠军奖状发给哪一个班级?简述你的理由.方差的公式为.22.“疫情”期间,李晨在家制作一种工艺品,并通过网络平台进行线上销售.经过一段时间后发现:当售价是40元/件时,每天可售出该商品60件,且售价每降低1元,就会多售出3件,设该商品的售价为x元/件(20≤x≤40).(1)请用含售价x(元/件)的代数式表示每天能售出该工艺品的件数;(2)已知每件工艺品需要20元成本,每天销售该工艺品的纯利润为900元.①求该商品的售价;②为了支持“抗疫”行动,李晨决定每销售一件该工艺品便通过网络平台自动向某救助基金会捐款0.5元,求李晨每天通过销售该工艺品面捐款的数额.23.我们给出如下定义:把对角线相等的四边形叫做“对等四边形”.如图①,在四边形ABCD中,AC=BD,四边形ABCD就是“对等四边形”.(1)下列四边形中,一定是“对等四边形”的是(填序号)①平行四边形②矩形③菱形④梯形(2)如图②,在“对等四边形”ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,求证:四边形EFGH是菱形.(3)在(2)的条件下,若四边形EFGH也是“对等四边形”,且对角线长为2,求四边形ABCD的面积.参考答案一、选择题(共10小题).1.若有意义,则x的取值范围是()A.x≥2B.x≥﹣2C.x>2D.x>﹣2【分析】二次根式有意义,被开方数是非负数.解:依题意,得x﹣2≥0,解得,x≥2.故选:A.2.下列运算正确的是()A.=﹣2B.(2)2=6C.+=D.×=【分析】根据二次根式的性质以及二次根式加法,乘法及乘方运算法则计算即可.解:A:=2,故本选项错误;B:=12,故本选项错误;C:与不是同类二次根式,不能合并,故本选项错误;D:根据二次根式乘法运算的法则知本选项正确.故选:D.3.用配方法解方程x2﹣6x﹣8=0时,配方结果正确的是()A.(x﹣3)2=17B.(x﹣3)2=14C.(x﹣6)2=44D.(x﹣3)2=1【分析】方程利用完全平方公式变形即可得到结果.解:用配方法解方程x2﹣6x﹣8=0时,配方结果为(x﹣3)2=17,故选:A.4.如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A.6B.7C.8D.9【分析】根据多边形的内角和公式及外角的特征计算.解:多边形的外角和是360°,根据题意得:180°•(n﹣2)=3×360°解得n=8.故选:C.5.一个三角形三个内角之比为1:2:3,其所对三边之比为()A.1:2:3B.1::C.1::2D.1::3【分析】求出三角形的各个内角,利用直角三角形30度角的性质解决问题即可.解:设△ABC中,∠A:∠B:∠C=1:2:3,∵∠A+∠B+∠C=180°,∴∠A=30°,∠B=60°,∠C=90°,设BC=a,则AB=2a,AC=a,∴BC:AC:AB=1::2,故选:C.6.如图,矩形ABCD的对角线AC=10,∠BOC=120°,则AB的长度是()A.5B.6C.8D.5【分析】由矩形的性质得出OA=OB=4,证明△AOB是等边三角形,得出AB=OA即可.解:∵四边形ABCD是矩形,∴OA=AC=5,OB=OD,AC=BD=10,∴OA=OB=5,∵∠BOC=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=5;故选:A.7.一组数据4,5,6,7,7,8的中位数和众数分别是()A.7,7B.7,6.5C.5.5,7D.6.5,7【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.解:在这一组数据中7是出现次数最多的,故众数是7,而将这组数据从小到大的顺序排列后,处于中间位置的数是6,7,那么由中位数的定义可知,这组数据的中位数是(6+7)÷2=6.5.故选:D.8.为执行“均衡教育“政策,某区2017年投入教育经费2500万元,预计到2019年底三年累计投入1.2亿元,若每年投入教育经费的年平均增长百分率为x,则下列方程正确的是()A.2500(1+2x)=12000B.2500(1+x)2=1200C.2500+2500(1+x)+2500(1+2x)=12000D.2500+2500(1+x)+2500(1+x)2=12000【分析】设每年投入教育经费的年平均增长百分率为x,根据题意可得,2017年投入教育经费+2017年投入教育经费×(1+增长率)+2017年投入教育经费×(1+增长率)2=1.2亿元,据此列方程.解:设每年投入教育经费的年平均增长百分率为x,由题意得,2500+2500×(1+x)+2500(1+x)2=12000.故选:D.9.下列命题正确的是()A.一组对边相等,另一组对边平行的四边形一定是平行四边形B.对角线相等的四边形一定是矩形C.两条对角线互相垂直的四边形一定是菱形D.两条对角线相等且互相垂直平分的四边形一定是正方形【分析】A、一组对边相等,另一组对边平行的四边形不一定为平行四边形,例如等腰梯形满足一组对边相等,另一组对边平行,但不是平行四边形;B、对角线相等的四边形不一定为矩形,例题等腰梯形的对角线相等,但不是矩形,应改为对角线相等的平行四边形为矩形;C、对角线互相垂直的四边形不一定为菱形,例如:画出图形,如图所示,AC与BD垂直,但是显然ABCD不是菱形,应改为对角线互相垂直的平行四边形是菱形;D、两条对角线相等且互相垂直平分的四边形是正方形,根据题意画出相应的图形,如图所示,根据对角线互相平分,得到四边形为平行四边形,再由平行四边形的对角线相等,得到平行四边形为矩形,最后根据矩形的对角线互相垂直得到矩形为正方形.解:A、一组对边相等,另一组对边平行的四边形不一定是平行四边形,例如等腰梯形,一组对边平行,另一组对边相等,不是平行四边形,故本选项为假命题;B、对角线相等的四边形不一定是矩形,例如等腰梯形对角线相等,但不是矩形,故本选项为假命题;C、两条对角线互相垂直的四边形不一定是菱形,如图所示:AC⊥BD,但四边形ABCD不是菱形,本选项为假命题;D、两条对角线相等且互相垂直平分的四边形是正方形,已知:四边形ABCD,AC=BD,AC⊥BD,OA=OC,OB=OD,求证:四边形ABCD为正方形,证明:∵OA=OC,OB=OD,∴四边形为平行四边形,又AC=BD,∴四边形ABCD为矩形,∵AC⊥BD,∴四边形ABCD为正方形,则本选项为真命题,故选:D.10.如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE=3,AF=5,则AC的长为()A.4B.4C.10D.8【分析】连接AE,由线段垂直平分线的性质得出OA=OC,AE=CE,证明△AOF≌△COE得出AF=CE=5,得出AE=CE=5,BC=BE+CE=8,由勾股定理求出AB==4,再由勾股定理求出AC即可.解:连接AE,如图:∵EF是AC的垂直平分线,∴OA=OC,AE=CE,∵四边形ABCD是矩形,∴∠B=90°,AD∥BC,∴∠OAF=∠OCE,在△AOF和△COE中,,∴△AOF≌△COE(ASA),∴AF=CE=5,∴AE=CE=5,BC=BE+CE=3+5=8,∴AB===4,∴AC===4;故选:A.二、填空题(本大题共有4小题,每小题5分,共计20分)11.计算÷的结果是3.【分析】根据二次根式的性质把化简,再根据二次根式的性质计算即可.解:.故答案为:312.已知x1,x2是关于x的方程x2﹣(m﹣1)x﹣m=0的两个根,且x1+x2=3,则m的值是4.【分析】根据方程的系数结合两根之和等于3,即可得出关于m的一元一次方程,解之即可得出m的值.解:∵x1,x2是关于x的方程x2﹣(m﹣1)x﹣m=0的两个根,且x1+x2=3,∴m﹣1=3,∴m=4.故答案为:4.13.四边形具有不稳定性.如图,矩形ABCD按箭头方向变形成平行四边形A'B'C'D',变形后∠A'=30°,若矩形ABCD的面积是9,则平行四边形A'B'C'D'的面积是【分析】根据30°角所对的直角边等于斜边的一半,可知平行四边形的高等于矩形的宽的一半,由于底不变,所以平行四边形A'B'C'D'的面积是矩形面积的一半.解:由题意可知,平行四边形A'B'C'D'的底边A'D'与矩形的长AD相等,平行四边形A'B'C'D'的高变为矩形的宽的一半,所以平行四边形A'B'C'D'的面积是矩形面积的一半.所以平行四边形A'B'C'D'的面积是.故答案为:.14.如图,Rt△ABC中,∠ACB=90°,AC=12,BC=5,延长BC至点D,连接AD,若△ABD是以AD为其中一腰的等腰三角形,则线段DC的长等于5或.【分析】先利用勾股定理求出AB的长,再分①AD=AB;②AD=BD两种情况进行讨论即可得出结论.解:∵Rt△ABC中,∠ACB=90°,AC=12,BC=5,∴AB===13.∵△ABD是以AD为其中一腰的等腰三角形,∴分两种情况:①当AD=AB时,∵AC⊥BD,∴DC=BC=5;②当AD=BD时,设DC=x,则AD=BD=5+x.∵Rt△ADC中,∠ACD=90°,∴DC2+AC2=AD2,即x2+122=(5+x)2,解得x=.综上所述,线段DC的长等于5或.故答案为:5或.三、解答题(本大题共有9小题,共计90分)15.计算:.【分析】首先利用乘法分配律计算乘法,然后化简,再算加减即可.解:原式=+﹣4=2+﹣4=﹣2+.16.解方程:x2﹣6x﹣4=0.【分析】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数.解:移项得x2﹣6x=4,配方得x2﹣6x+9=4+9,即(x﹣3)2=13,开方得x﹣3=±,∴x1=3+,x2=3﹣.17.已知:如图,E,F为▱ABCD对角线AC上的两点,且AE=CF,连接BE,DF,求证:BE=DF.【分析】证明△AEB≌△CFD,即可得出结论.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC.∴∠BAE=∠DCF.在△AEB和△CFD中,,∴△AEB≌△CFD(SAS).∴BE=DF.18.已知关于x的方程x2+2(m﹣1)x+m2+5=0有两个不相等的实数根,化简:.【分析】首先利用根的判别式确定m的取值范围,再化简二次根式,利用绝对值的性质计算即可.解:∵x2+2(m﹣1)x+m2+5=0有两个不相等的实数根,∴△=4(m﹣1)2﹣4(m2+5)≥0,即﹣8m﹣16≥0,解得:m<﹣2,则=|1﹣m|+|m+2|=1﹣m﹣m﹣2=﹣2m﹣1.19.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点都在网格交点上,请按要求完成下列各题.(1)线段AB的长为5,BC的长为2.(2)点D也在格点上,且以A,B,C,D为顶点的四边形是平行四边形.请在网格图中画出一个符合条件的平行四边形;(3)设(2)中你所画的平行四边形的面积为S,请通过计算说明;S=AC•BC.【分析】(1)利用勾股定理计算即可.(2)根据平行四边形的判定画出图形即可.(3)利用勾股定理的逆定理证明解:(1)由题意,AB==5,BC==2,故答案为5,.(2)如图所示.(3)由勾股定理得,又∵AB=5,,∴AC2+BC2=AB2,∴∠ACB=90°,由勾股定理逆定理得△ACB为以AC和BC为直角边的直角三角形,∵,又∵所作的平行四边形的面积为△ACB面积的两倍,∴S=AC•BC.20.观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,…按照以上规律,解决下列问题:(1)写出第5个等式:5+1;(2)写出你猜想的第n个等式:(+1)(n+1﹣)=n+1(用含n的等式表示),并证明其正确性.【分析】(1)根据所给等式可得答案;(2)首先写出第n个等式,然后再利用二次根式的乘法进行计算即可.【解答】(1)解:(+1)(6﹣)=5+1,故答案为:5+1;(2)(+1)(n+1﹣)=n+1,证明:∵=∴,故答案为:(+1)(n+1﹣)=n+1.21.某校初二学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):′1号2号3号4号5号总分甲班1009811089103500乙班891009511997500经统计发现两班总数相等.此时有学生建议,可以通过考察数据中的其他信息作为参考.请你回答下列问题:(1)计算两班的优秀率;(2)求两班比赛数据的中位数;(3)计算两班比赛数据的方差哪一个小?(4)根据以上三条信息,你认为应该把冠军奖状发给哪一个班级?简述你的理由.方差的公式为.【分析】(1)优秀率等于100分以上(含100分)的人数除以总人数;(2)按大小顺序排列,中间一个数或两个数的平均数为中位数;(3)由方差的公式进行计算即可;(4)根据比赛成绩的优秀率高,中位数大,方差小,综合评定,则甲班踢毽子水平较好.解:(1)甲班的优秀率为:3÷5=0.6=60%,乙班的优秀率为:2÷5=0.4=40%;(2)甲班5名学生比赛成绩的中位数是100个乙班5名学生比赛成绩的中位数是97个;(3)甲班的平均分为,乙班的平均分为==100,甲班在这次比赛中的方差为:,乙班在这次比赛中的方差为:∴S甲2<S乙2;(4)甲班定为冠军.因为甲班5名学生的比赛成绩的优秀率比乙班高,中位数比乙班大,方差比乙班小,综合评定甲班踢毽子水平较好.22.“疫情”期间,李晨在家制作一种工艺品,并通过网络平台进行线上销售.经过一段时间后发现:当售价是40元/件时,每天可售出该商品60件,且售价每降低1元,就会多售出3件,设该商品的售价为x元/件(20≤x≤40).(1)请用含售价x(元/件)的代数式表示每天能售出该工艺品的件数;(2)已知每件工艺品需要20元成本,每天销售该工艺品的纯利润为900元.①求该商品的售价;②为了支持“抗疫”行动,李晨决定每销售一件该工艺品便通过网络平台自动向某救助基金会捐款0.5元,求李晨每天通过销售该工艺品面捐款的数额.【分析】(1)由该商品的售价结合售价每降低1元就会多售出3件,即可得出每天售出该工艺品的件数;(2)①根据总利润=每件工艺品的利润×销售数量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;②根据每天通过销售该工艺品面捐款的数额=0.5×每天销售的数量,即可得出结论.解:(1)∵该商品的售价为x元/件(20≤x≤40),且当售价是40元/件时,每天可售出该商品60件,且售价每降低1元,就会多售出3件,∴每天能售出该工艺品的件数为60+3(40﹣x)=(180﹣3x)件.(2)①依题意,得:(x﹣20)(180﹣3x)=900,整理,得:x2﹣80x+1500=0,解得:x1=30,x2=50(不合题意,舍去).答:该商品的售价为30元/件.②0.5×(180﹣3×30)=45(元).答:李晨每天通过销售该工艺品面捐款的数额为45元.23.我们给出如下定义:把对角线相等的四边形叫做“对等四边形”.如图①,在四边形ABCD中,AC=BD,四边形ABCD就是“对等四边形”.(1)下列四边形中,一定是“对等四边形”的是②(填序号)①平行四边形②矩形③菱形④梯形(2)如图②,在“对等四边形”ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,求证:四边形EFGH是菱形.(3)在(2)的条件下,若四边形EFGH也是“对等四边形”,且对角线长为2,求四边形ABCD的面积.【分析】(1)由矩形的性质可求解;(2)由三角形中位线定理可得EH=BD=FG,EF=AC=GH,由“对等四边形”的性质可得AC=BD,可得EH=FG=EF=GH,可得结论;(3)先证四边形EFGH是正方形,边长为,可得EF⊥FG,EF=FG=,由三角形中位线定理解得BD⊥AC,BD=AC=,可求解.解:(1)∵矩形的对角线相等,∴矩形一定是“对等四边形”,故答案为:②;(2)证明:连接AC、BD,∵点E,F,G,H分别为边AB,BC,CD,DA的中点,∴EH=BD=FG,EF=AC=GH,∵四边形ABCD是“对等四边形”,∴AC=BD,∴EH=FG=EF=GH,∴四边形EFGH是菱形;(3)连接EG,HF,∵四边形EFGH是菱形,∴GE与HF互相垂直平分,又∵四边形EFGH是“对等四边形”,且对角线长为2,∴GE=HF=2,∴四边形EFGH是正方形,边长为,∴EF⊥FG,EF=FG=,∵点E,F,G,H分别为边AB,BC,CD,DA的中点,∴FG∥BD,FG=BD,EF∥AC,EF=AC,∴BD⊥AC,BD=AC=,∴四边形ABCD的面积等于AC×BD=4.。
2019年安徽体会八年级下学期期末考试试卷一
数学
(考试时间:120分钟试卷满分:150分)
注意事项:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:沪科版八下全册。
第Ⅰ卷
一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)
1在实数范围内有意义,则x的取值范围是
A.x<3 B.x≤3C.x>3 D.x≥3
2.方程x2+6x﹣5=0的左边配成完全平方后所得方程为
A.(x+3)2=14 B.(x﹣3)2=14
C.(x+6)2=1
2
D.以上答案都不对
3.以a、b、c为三边长能构成直角三角形的是
A.a=1,b=2,c=3 B.a=32,b=42,c=52
C.a,b c D.a=5,b=6,c=7
4.如果多边形的每一个内角都是150°,那么这个多边形的边数是
A.8 B.10 C.12 D.16
5.2019年2月9日国际滑联四大洲花样滑冰锦标赛的花滑短节目比赛中,中国选手的得分为74.19分,当天比赛的其他四组选手的得分分别为61.91分、66.34分、61.71分、57.38分,则这5组数据的平均数、中位数分别是
C .64.306分、66.34分
D .64.306分、61.91分
6.平行四边形ABCD 中,若2B A ∠=∠,则C ∠的度数为 A .120︒
B .60︒
C .30︒
D .15︒
7.下列说法正确的是
A .对角线相等的四边形是矩形
B .对角线互相垂直的四边形是菱形
C .对角线相等的平行四边形是正方形
D .对角线相等的菱形是正方形
8.如图,在菱形ABCD 中,M 、N 分别在AB 、CD 上,且AM =CN ,MN 与AC 交于点O ,连接BO .若 ∠DAC =32°,则∠OBC 的度数为
A .32°
B .48°
C .58°
D .68°
9.某超市一月份的营业额是100万元,月平均增加的百分率相同,第一季度的总营业额是364万元,若设月平均增长的百分率是x ,那么可列出的方程是 A .2
100(1)364x +=
B .2
100100(1)100(1)364x x ++++= C .2
100(12)364x +=
D .2
100100(1)(12)364x x ++++=
10.如图,E 、F 分别是正方形ABCD 的边CD ,AD 上的点,且CE =DF ,AE ,BF 相交于点O ,下列结
论:①AE =BF ;②AE ⊥BF ;③OB =OE ;④S △AOB =S 四边形DEOF .其中正确的有
A .1个
B .2个
C .3个
D .4个
第Ⅱ卷
二、填空题(本大题共4小题,每小题5分,共20分)
11.甲、乙、丙三位选手各射击10次,成绩的平均数均为93环,方差(单位:环2)依次分别为0.026、0.015、
0.032,则射击成绩最稳定的选手是_________ (填“甲”、“乙”、“丙”中的一个). 12.数,a b 在数轴上位置如图所示,则化简()
2
2
2
a b a b --
+的结果是_________ .
13.如图,在四边形ABCD 中,AD ∥BC ,∠C =90°,E 为CD 上一点,分别以EA ,EB 为折痕将两个角
(∠D ,∠C )向内折叠,点C ,D 恰好落在AB 边的点F 处.若AD =3,BC =4,则EF 的长为_________.
14.如图,点O 是菱形ABCD 两条对角线的交点,过O 点的三条直线将菱形分成阴影和空白部分.当
菱形的两条对角线的长分别为8和10时,则阴影部分的面积为_________.
三、(本大题共2小题,每小题8分,满分16分) 15.计算:
(1)1
(31248)233
÷; (2)2
(253)(253)(332)+.
16.用适当的方法解下列方程:
(1)2
560x x --=;
(2)2
10x x --=;
(3)2
2830x x -+=.(配方法)
17.如图,在△ABC 中,BD ⊥AC ,AB =20,BC =15,CD =9.
(1)求AC 的长;
(2)判断△ABC 的形状并证明.
18.如图,在平行四边形ABCD 中,已知M 和N 分别是AB 和DC 的中点,
求证:BN =DM .
五、(本大题共2小题,每小题10分,满分20分)
19.如图,在四边形ABCD 中,AB CD ∥,AB AD =,AC 平分BAD ∠.
(1)求证:四边形ABCD 是菱形;
(2)过点C 作CE AC ⊥,交AB 的延长线于点E ,若5AB =,8AC =,求四边形ADCE 的周长.
20.已知:如图,D 是△ABC 的边AB 上一点,CN ∥AB ,DN 交AC 于点M ,MA =MC .
(1)求证:CD =AN ;
(2)若∠AMD =50°,当∠MCD = °时,四边形ADCN 是矩形,并说明理由.
六、(本题满分12分)
21.嘉淇同学利用业余时间进行射击训练,一共射击7次,经过统计,制成如图所示的折线统计图.
(1)这组成绩的众数是 ; (2)求这组成绩的方差;
中位数,求第8次的射击成绩的最大环数.
七、(本题满分12分)
22.某市为推进养老服务工作的深入开展,在扩大社区养老覆盖率、规范机构养老、科学规划养老服务
布局等方面作了大量工作.该市的养老机构拥有的养老床位数从2016年底的2万个增长到2018年底的2.88万个:
(1)求该市这两年养老床位数的年平均增长率:
(2)该市2018年底正在筹建一社区养老中心,按照规划拟建造三类养老专用房间(一个养老床位的单人间、两个养老床位的双人间、三个养老床位的三人间)共100间,若按规划需要建造的单人间的房间数为m (1215m ),双人间的房间数是单人间的2倍,求该养老中心建成后最多可提供养老床位多少个?最少提供养老床位多少个? 八、(本题满分14分)
23.在矩形纸片ABCD 中,5AB =,3AD =,点E 、F 在矩形的边上,连接EF ,将纸片沿EF 折
叠,点D 的对应点为点P .
(1)如图1,若点P 在边AB 上,当点P 与点A 重合时,则DEF ∠=______________°,当点E 与点A 重合时,则DEF ∠=______________°;
图1
(2)如图2,若点P 在边AB 上,且点E 、F 分别在AD 、DC 边上,则线段AP 的取值范围是______________;
图2
,求(3)如图3,若点F与点C重合,点E在AD上,线段BA、FP交于点M,且AM DE
线段AE的长度.
图3。