列方程解应用题复习课2
- 格式:ppt
- 大小:444.00 KB
- 文档页数:3
教学过程复习预习1.列一元二次方程解应用题的一般步骤(1)列一元二次方程解决实际问题的关键是由已知条件确定等量关系.(2)列一元二次方程解决应用题的一般步骤:审(审题目,分清已知量、未知量之间的数量关系);设(直接方法或间接方法设未知数,有时会用未知数表示相关的量);列(根据题目中分析的等量关系,列出方程);解(解方程,注意分式方程需检验);验(检验所求方程的解能否保证满足实际问题中的存在意义)答(写出所求问题答案).2.几何面积问题三角形面积=底乘高的一半;正方形面积=边长的平方;矩形的面积=长乘宽;不规则图形面积要转化为规则的图形面积来求。
二知识讲解考点:列方程解实际问题的三个重要环节:一是全方面审题;二是把分析问题中的数量关系,并列出等量关系式;三是正确求解方程并检验方程的根是否符合实际意义。
例题精析【例题1】【题干】如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙MN 最长可利用25m),现在已备足可以砌50m长的墙的材料,试设计一种砌法,使矩形花园的面积为300m2.【答案】解:设AB=xm,则BC=(50﹣2x)m.根据题意可得,x(50﹣2x)=300,解得:x1=10,x2=15,当x=10,BC=50﹣10﹣10=30>25,故x1=10(不合题意舍去),答:可以围成AB的长为15米,BC为20米的矩形.【解析】考查一元二次方程的几何面积应用问题,已知矩形面积求满足条件的长和宽的优化设计;围墙MN最长可利用25m是解决本题的易错点;矩形周长的长、宽关系是解决本题的关键.【例题2】【题干】某住宅小区在住宅建设时留下一块1798平方米的矩形空地,准备建一个矩形的露天游泳池,设计如图所示,游泳池的长是宽的2倍,在游泳池的前侧留一块5米宽的空地,其它三侧各保留2米宽的道路及1米宽的绿化带(1)请你计算出游泳池的长和宽。
(2)已知贴1平方米瓷砖需费用50元,若游泳池深3米,现要把池底和池壁(共5个面)都贴上瓷砖,共需要费用多少元?【答案】解:(1)设游泳池的宽为x米,则长为2x米,(2x+2+5+1)(x+2+2+1+1)=1798整理,得:解得:(不合舍去)由得∴游泳池的长为50米,宽为25米。
人教版2022-2023学年七年级下册数学期末复习专题二元一次方程组的应用(方案问题)原计划两班都以班为单位分别购票,则一共应付1106元.请回答下列问题:(1)初一(2)班有多少人?(2)你作为组织者如何购票最省钱?比原计划省多少钱?4.某制药厂制造一批药品,如用旧工艺,则废水排量要比环保限制的最大量还多200吨,如用新工艺,则废水排量比环保限制的最大量少100吨,新、旧工艺的废水量之比为2:5,两种工艺的废水量各是多少?5.列二元一次方程组解应用题:学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A奖品和2个B奖品共需120元,购买5个A奖品和4个B奖品共需210元.求A B,两种奖品的单价.6.某同学在A,B两家网店发现他看中的随身听的单价相同,书包单价也相同.随身听和书包单价之和是492元,且随身听的单价比书包单价的3倍少108元.(1)求该同学看中的随身听和书包的单价各是多少元.(2)某一天恰好赶上商家促销,网店A所有商品打八折销售,网店B全场每购满100元减25元销售,怎样购买更省钱?写出必要的理由过程.7.已知:用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和2辆B型车装满货物一次可运货11吨.某物流公司现有36吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都装满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案.8.抗击新冠肺炎疫情期间,全国上下万众一心为武汉捐赠物资.某物流公司运送捐赠物资,已知用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和2辆B型车装满货物一次可运货11吨.(1)求1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?(2)该物流公司现有31吨货物需要运送,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都装满货物.若A型车每辆需租金100元/次,B型车每辆需租金120元/次,请你设计出所有租车方案并选出最省钱的租车方案,求出此时最少租车费.9.随着“低碳生活,绿色出行”理念的普及,新能源汽车正逐渐成为人们喜爱的交通工具.某汽车销售公司计划购进一批新能源汽车尝试进行销售,据了解2辆A 型汽车、3辆B型汽车的进价共计80万元;3辆A型汽车、2辆B型汽车的进价共计95万元(1)求A B、两种型号的汽车每辆进价分别为多少万元?(2)若该公司计划正好用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买),请你帮助该公司设计购买方案;(3)若该汽车销售公司销售1辆A型汽车可获利8000元,销售1辆B型汽车可获利5000元,在(2)中的购买方案中,假如这些新能源汽车全部售出,哪种方案获利最大?最大利润是多少元?10.某运输公司有A、B两种货车,3辆A货车与2辆B货车一次可以运货90吨,5辆A货车与4辆B货车一次可以运货160吨.(1)请问1辆A货车和1辆B货车一次可以分别运货多少吨?(2)目前有190吨货物需要运输,该运输公司计划安排A、B两种货车将全部货物一次运完(A、B两种货车均满载),其中每辆A货车一次运货花费500元,每辆B货车一次运货花费400元.请你列出所有运输方案并指出哪种运输方案费用最少.11.某汽车制造厂开发了一款新式电动汽车计划一年生产安装240辆,由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人;他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)如果工厂抽调熟练工m名,再招聘()<<名新工人,使得招聘的新工人和n n010抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案? 12.我校组织一批学生开展社会实践活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元.(1)这批学生的人数是多少?原计划租用45座客车多少辆?(2)若租用同一种客车,要使每位学生都有座位,应该怎样租用合算?13.小志从甲、乙两超市分别购买了10瓶和6瓶cc饮料,共花费51元;小云从甲、乙两超市分别购买了8瓶和12瓶cc饮料,且小云在乙超市比在甲超市多花18元,在小志和小云购买cc饮料时,甲、乙两超市cc饮料价格不一样,若只考虑价格因素,到哪家超市购买这种cc饮料便宜?请说明理由.14.有大、小两种货车,2辆大车与3辆小车一次可以运货15.5吨;5辆大车与6辆小车一次可以运货35吨.求3辆大车与5辆小车一次可以运货多少吨?15.某学校现有若干间学生宿舍,准备安排给若干名学生住宿.原计划每间住8人,则有10间宿舍无人居住.由于疫情防控需要,每间宿舍只能住5人,则有10人无法入住.问该校现有多少间学生宿舍?16.鹏程中学拟组织七年级部分师生赴滁州市琅琊山进行文学采风活动.下面是活动负责人李老师和小芳同学、小明同学有关租车问题的对话:李老师:“平安客运公司有60座和45座两种型号的客车可供租用,60座客车每辆每天的租金比45座的贵200元.”(1)全部物资一次性运送可用甲型车8辆,乙型车5辆,丙型车辆.(2)若全部物资仅用甲、乙两种车型一次性运完,需运费9600元,求甲、乙两种车型各需多少辆?(3)若该公司打算用甲、乙、丙三种车型同时参与运送,已知车辆总数为14辆,(1)甲、乙两种货车每辆可装多少吨货物?(2)若某货主共有20吨货物,计划租用该公司的货车,正好(每辆货车都满载)把这批货物运完,则该货主有________种租车方案?(3)王先生要租用该公可的甲、乙两种货车送一批货,如果租用甲种货车数量比乙种货车数量多1辆,而乙种货车每辆的运费是甲种货车的1.4倍,结果甲种货车共付运费800元,乙种货车共付运费980元,试求此次甲、乙两种货车每辆各需运费多少元?答案1.(1)每辆甲种货车能装货4吨,每辆乙种货车能装货3吨(2)方案1:租用3辆甲种货车、11辆乙种货车;方案2:租用6辆甲种货车、7辆乙种货车;方案3:租用9辆甲种货车、3辆乙种货车2.(1)A种产品4件,B种产品3件;(2)利润是12万元.3.(1)初一(2)班共有53人或59人;(2)两个一起买票更省钱,比原计划节省298元或290元4.新、旧工艺的废水排量分别为200吨和500吨5.A奖品单价30元,B奖品单价15元.6.(1)随身听单价为342元,书包单价为150元(2)在A购买书包,在B购买随身听更省钱,费用为387元7.(1)1辆A型车和1辆B型车都装满货物一次可分别运货3吨,4吨;(2)故共有四种租车方案,分别为:①A型车0辆,B型车9辆;②A型车4辆,B 型车6辆;③A型车8辆,B型车3辆;④A型车12辆,B型车0辆.8.(1)1辆A型车装满货物一次可运3吨,1辆B型车装满货物一次可运4吨;(2)共有3种租车方案:方案一,A型车9辆,B型车1辆;方案二,A型车5辆,B型车4辆;方案三,A型车1辆,B型车7辆,最省钱的租车方案是A型车1辆,B型车7辆,最少租车费为940元9.(1)A型汽车每辆的进价为25万元,B型汽车每辆的进价为10万元;(2)方案一:购进A型车6辆,B型车5辆;方案二:购进A型车4辆,B型车10辆;方案三:购进A型车2辆,B型车15辆;(3)购进A型车2辆,B型车15辆获利最大,最大利润是91000元10.(1)1辆A货车和1辆B货车一次可以分别运货20吨和15吨;(2)共有3种租车方案,方案1:租用A型车8辆,B型车2辆;方案2:租用A型车5辆,B型车6辆;方案3:租用A型车2辆,B型车10辆;租用A型车8辆,B 型车2辆最少.11.(1)每名熟练工每月可以安装4辆电动汽车,新工人每月分别安装2辆电动汽车;(2)12.(1)240人,原计划租用45座客车5辆;(2)租4辆60座客车划算.13.到甲超市购买这种cc饮料便宜.14.24.5吨15.该校现有30间学生宿舍16.(1)平安客运公司60座和45座的客车每辆每天的租金分别是1000元,800元.(2)按小明提出的租车方案,七年级师生到该公司租车一天,共需租金6000元.(3)租用5辆60座和1辆45座的客车,此时租车费为5800元.17.(1)建设一个A类美丽村庄需120万元,建设一个B类美丽村庄需180万元;(2)共需资金1080万元.18.(1)4;(2)甲种车型需8辆,乙种车型需10辆;(3)甲车2辆,乙车5辆,丙车7辆,此时的总运费为8800元.19.(1)1辆A型车满载时一次可运柑橘3吨,1辆B型车满载时一次可运柑橘2吨;(2)①共有4种租车方案,方案1:租用1辆A型车,9辆B型车;方案2:租用3辆A型车,6辆B型车;方案3:租用5辆A型车,3辆B型车;方案4:租用7辆A型车;②最省钱的租车方案是租用7辆A型车,最少租车费是840元20.(1)甲种货车每辆可装2吨货物,乙种货车每辆可装3吨货物;(2)4种租车方案;(3)甲种货车每辆需运费100元,乙种货车每辆需运费140元。
课题简易方程----找等量关系列方程,解应用题教学目标(1)能正确运用字母表示常用数量关系;(2)根据题意列方程,会找等量关系;(3)培养学生解决简单应用题的能力;(4)帮助学生分析已知条件与已知条件之间、已知条件和所求问题之间的关系。
教学内容一、检查作业,处理问题二、复习方程的解法二、处理课本,例题分析解应用题的注意点及基本步骤:1、弄清“x”只表示一个数,而不是量。
因此,在设未知数时要注明单位名称,而方程的解的右边不写单位名称2、在分析题意找等量关系时,要把未知量和已知量放在一起考虑,以防止算数解法及其思路的干扰,启发学生说出应用题的等量关系。
3、掌握分析等量关系的方法。
(1)根据常见的数量关系找等量关系。
如:时间、速度、路程;单价、数量、总价等之间的关系。
(2)根据周长、面积、体积等计算公式找等量关系。
如:三角形的面积=底×高÷2;长方形的周长=(长+宽)×2等。
(3)根据题中的重点叙述句,从整体上确定基本数量关系。
(4)对于较难理解的应用题,利用线段图、列表等方法分析题意找出等量关系。
4、掌握列方程解应用题的步骤。
(1)弄清题意,找出未知数,并用x表示;(2)找出应用题中数量之间的相等关系,列方程;(3)解方程;(4)检验,写出答案。
5、弄清列方程解应用题和用算术方法解应用题的区别与联系:列方程解应用题,未知数用字母表示参加列式。
根据题中数量间的相等关系,列出含有未知数x的等式。
用算术方法解应用题,未知数不参加列式,根据题中数量间的关系,确定解答方法,再列式计算。
列方程解应用题和用算术方法解应用题都是以四则运算的意义和常见的数量关系为基础和依据的。
例1、A型号手机的售价是2836元,比B型号手机售价的3倍少776元,B型号手机的售价是多少钱?分析根据“B型号手机售价的3倍少776元”这句话,我们可以找到等量关系。
B型号手机的价钱⨯3-776=A型号手机的价钱B型号手机的价钱⨯3-776= 2836解:设B型号手机的售价是x元。
一元二次方程复习课(二)复习目标:1.能熟练列一元二次方程解增长率问题、面积问题和利润问题;2.通过列方程解应用题,进一步提高逻辑思维能力和分析问题、解决问题的能力。
3.体会数学来源于实践,又反过来作用于实践,增强用数学的意识。
重点难点:重点:根据实际问题,寻找相等关系,从而列出方程,解决实际问题;难点:等量关系的寻找;复习过程:一、课前预习:解一元二次方程应用题的一般步骤:(1)审:审题要弄清已知量和未知量,问题中的等量关系;(2)设:设未知数,直接和间接两种设法,因题而异;(3)列:列方程,一般先找出能够表达应用题全部含义的一个相等关系,列代数式相等关系中的各个量,即方程;(4)解:求出所列方程的解;(5)检验:检验方程的解是否正确,是否符合题意;(6)答:写出答案。
二、课上探究:环节一:自主整理1.某工厂1月份的产值是5万元,3月份的产值达到7.2万元,这两个月的产值的平均增长率是多少?2.学校准备在图书馆后面的场地边建一个面积为50平方米的自行车棚。
一边利用图书馆的后墙(墙长18米),并利用已有总长为25米的铁围栏。
问自行车棚的长和宽各为多少?环节二:交流提升:某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件。
后来经过市场调查,发现这种商品单价每降低1元,其销售量可增加10件。
要获得2160元的利润每件应降价多少元?分析:本题中的等量关系是:一天获得的总利润=___________________________。
若设每件降价x元,那么每件的利润是____________,每天可售出__________件,每天的利润为______________。
可列方程并求解。
环节三:经验交流:针对上面题目出现的问题,小组内交流一下,解相关类型的题目时应注意些什么?还存在什么疑惑?三、达标测验:1.某工厂1月份生产零件2万个,第一季度共生产零件7.98万个,若每月的增长率都是x,依题意可列方程_________________________________。
列方程组解应用题(复习教案)一、教学目标1. 回顾和巩固方程组的概念和基本性质。
2. 提高学生解决实际问题的能力,学会将实际问题转化为方程组。
3. 培养学生运用方程组解决应用题的能力。
二、教学内容1. 方程组的概念和基本性质。
2. 实际问题转化为方程组的方法。
3. 运用方程组解决应用题。
三、教学重点与难点1. 重点:方程组的概念和基本性质,实际问题转化为方程组的方法。
2. 难点:运用方程组解决实际问题。
四、教学方法1. 采用问题驱动法,引导学生主动探索、解决问题。
2. 用实例讲解方程组的概念和基本性质,让学生在实践中掌握。
3. 分组讨论法,培养学生合作学习的能力。
五、教学过程1. 导入新课:通过复习方程组的概念和基本性质,引导学生回顾已学知识。
2. 讲解实例:结合实际问题,讲解如何将问题转化为方程组。
3. 小组讨论:学生分组讨论,分享各自解决问题的方法,互相学习。
4. 练习巩固:布置练习题,让学生运用方程组解决实际问题。
5. 总结评价:对学生的练习进行点评,总结课堂教学。
教案内容待补充。
六、教学案例1. 案例一:两个人开始爬楼梯,一个人每步上2个台阶,另一个人每步上3个台阶,他们出发并到达顶部,问他们每步上多少个台阶?2. 案例二:一个长方形的长是宽的2倍,如果长方形的周长是30cm,求长方形的长和宽。
七、教学活动1. 学生分组讨论,将案例一和案例二转化为方程组。
2. 各小组汇报讨论结果,教师点评并指导。
3. 学生独立完成练习题,教师巡回指导。
八、练习题1. 一个人骑自行车每小时行驶15公里,另一个人骑摩托车每小时行驶30公里,他们出发并到达目的地,问他们的出发地距离目的地有多远?2. 一个三角形的三边长分别是6cm、8cm和10cm,证明这个三角形是直角三角形。
九、课堂小结1. 学生总结本节课所学内容,分享自己的学习心得。
2. 教师点评学生的学习情况,对课堂教学进行总结。
十、课后作业1. 巩固方程组的概念和基本性质,复习实际问题转化为方程组的方法。
6.3(1)问题解决(第一课时)上海华东师大一附中实验小学郑未力教学目标:【知识与技能】1、能根据题意正确寻找等量关系。
2、能用方程解答简单的两、三步计算的应用题。
3、初步体会利用等量关系解答应用题的优越性。
【过程与方法】1、学生经历自主探索的过程,培养学生有条理的思考问题。
2、发展学生思维的灵活性,培养学生观察、推理、运用知识的能力。
3、经历比较标准的方法,验证的过程,培养合理的思维。
【情感、态度与价值观】1、引导学生积极参与探索、思考的过程。
2、培养学生实事求是、独立思考、解决问题的习惯和能力。
教学重点及难点:正确说出每道题的等量关系。
教学过程设计:一、复习准备说出下列题中的等量关系:1、爸爸的年龄比小胖大27岁。
2、买3支钢笔的价钱可以买4支铅笔。
3、小亚带一些钱去买东西,找回1.2元。
二、探究新知1、出示例题1:小胖带了80元去电影院买电影票,他一共买了5张儿童票,售票员找给他5元,儿童票多少元一张?问:你能用方程来解答吗?2、独立尝试,教师巡视指导。
3、反馈交流。
可能出现以下三种解法:①解:设儿童票x元一张. ②解:设儿童票x元一张.80-5x=5, 5x+5=805x=80-5,5x=75,x=75÷5,x=15答:儿童票15元一张。
③、解:设儿童票x元一张.5x=80-54、说说是怎么想的?①数量关系分别是:付出的钱-用去的钱=找回的钱 (符合事情的发展顺序)用去的钱+找回的钱=付出的钱用去的钱=付出的前-找回的钱②找到等量关系中的每一个量。
用去的钱=一张儿童票的价钱×儿童票的张数(又是一个等量关系)所以:设儿童票x元一张,用去的钱就是5x元。
5、怎样检验?①检验方程是否符合题意。
②检验x=15是否是方程的解。
小结:顺着题意找到等量关系,列出方程解答,很方便。
[借助多媒体,理解题目中等量关系。
教师可以让学生先自己写出等量关系,再组织交流,使学生能通过自己思考,理解题目含义,再通过老师的指导,列出方程。
列方程解应用题(二)1、理解和掌握列方程解答问题的步骤和基本方法,能够正确列出ax=b的方程解答比较容易的问题。
2、自主探究,正确地列出方程解答问题。
3、培养学生独立探究的好习惯,并渗透环保教育。
教学重点:能够正确列出ax=b的方程解答比较容易的问题。
教学难点:根据题意找到等量关系,列出方程。
例题情境图。
一、导入新课1、你知道一个滴水的水龙头每分钟浪费多少水吗?如果想要知道每分钟浪费的水,你能想到什么办法?介绍教材中一位少先队员的做法:拿桶接了一段时间,然后称出其一共接了多少质量的水。
今天我们一起来研究这个问题。
[板书课题:解方程]二、探究新知1、出示教材第61页例4的情境图,组织学生审题,分析题目的已知条件和问题。
2、找出题目的等量关系。
提问:半小时的接水量表示什么?每分钟滴水量、30分钟、半小时的滴水量三者之间有什么关系?[板书:每分钟滴水量×30=半小时滴水量半小时滴水量÷每分钟滴水量=30半小时滴水量÷30=每分钟滴水量]3、根据等量关系式,哪些量是已知的?哪些量是未知的?我们应该设哪个量为未知数?[板书:设每分钟滴水量为X克]怎样根据等量关系列出议程,与同位说一说自己的想法。
提醒:设每分钟滴水量为X克,与已知条件“共接水1.8千克”单位不一致,应该怎样解决呢?[板书:1.8kg=1800g]组织学生列出方程,并在课本上完成解题过程的填空。
提醒学生要验算。
指名学生回答,集体订正。
[板书:解;设每分钟滴水量为X克。
每分钟滴的水×30=半小时滴的水1.8kg=1800g30x=180030x÷30=1800÷30x=600与同位交流验算的过程,集体核对。
三、巩固练习1、教材练习十一第6题。
让学生找出题目中的数量关系,指名口答。
再根据数量关系列出方程解答。
2、实践运用学校买来20米长的布,准备做16件儿童表演服。
每件儿童表演服用布多少米?王老师买奖品,其中有42棵练习本,是日记本的3倍。
列方程解应用题(优秀6篇)列方程解应用题篇一教学目标1.初步学会列方程解比较容易的两步应用题。
2.知道列方程解应用题的关键是找应用题中相等的数量关系。
教学重点列方程解应用题的方法步骤。
教学难点根据题意分析数量间的相等关系。
教学过程一、复习准备(一)口算(二)练习(课件演示:列方程解应用题)商店原有一些饺子粉,卖出35千克以后,还剩40千克。
这个商店原来有饺子粉多少千克?1.读题,现解题意。
2.学生独立解答。
3.集体订正。
解法一:35+40=75(千克)解法二:设原来有千克饺子粉。
答:原来有75千克饺子粉。
(三)教师说明:这种方法(解法二)就是我们今天要学习的列方程解应用题。
板书课题:列方程解应用题二、新授教学(一)教学例1(继续演示课件:列方程解应用题)例1.商店原来有一些饺子粉,每袋5千克,卖出7袋后,还剩40千克。
这个商店原来有多少千克饺子粉?1.读题,理解题意。
2.教师提问:通过读题你都知道了什么?教师板书:原有的重量-卖出的重量=剩下的重量3.教师提问:等号左边表示什么?等号右边表示什么?卖出的饺子粉重量直接给了吗?应该怎样表示?教师板书:原有的重量-每袋的重量×卖出的袋数=剩下的重量4.根据等量关系式列出方程并解答。
教师板书:解:设原来有千克饺子粉。
答:原来有75千克饺子粉。
5.小结:列方程解应用题的关键是什么?(二)教学例2 (继续演示课件:列方程解应用题)例2.小青买4节五号电池,付出8.5元,找回0.1元。
每节五号电池的价钱是多少元?1.读题,理解题意。
2.提问:要解答这道题关键是什么?3.学生独立解答。
4.学生汇报解答过程。
(三)总结列方程解应用题的一般步骤(继续演示课件:列方程解应用题)(四)练习商店原来有15袋饺子粉,卖出35千克以后,还剩40千克,每袋饺子粉重多少千克?三、课堂小结今天你学习了哪些知识?列方程解应用题的关键是什么?步骤呢?四、课堂练习(一)把每个方程补充完整。
人教版小学五年级上册数学《列方程解应用题》教案范文(通用6篇)人教版小学五年级上册数学《列方程解应用题》范文篇1教学目标:1、能够找出数量间的等量关系,列出方程;2、根据等式的性质,解方程。
教学过程:一、等量关系用含字母的式子表示出题中的数量关系;找出数量间的等量关系,再列方程。
单价×()=总价工作时间=()÷()()×时间=路程()×数量=总产量三角形面积=()×()÷2 长方形面积=()×()正方形周长÷()=边长(上底+下底)×()÷()=梯形面积长方形周长=(+)×2 平行四边形面积=()×()二、列方程解应用题列方程解应用题的一般步骤是(1)弄清题意,找出(),并用()表示;(2)找出应用题中()的相等关系,列方程;(3)();(4)检验,写出()。
常用关系:付出的钱数-()=找回的钱数已修的米数+()=总共要修的米数总路程-()=剩下的路程三、归纳总结,布置作业人教版小学五年级上册数学《列方程解应用题》教案范文篇2 教学目标:1.在理解题意的基础上寻找等量关系,初步掌握列方程解两、三步计算的简单实际问题。
2.从不同角度探究解题的思路,让学生学会在计算公式中求各个量的方法。
3.让学生初步体会利用等量关系分析问题的优越性。
教学重点:1.让学生学习在计算公式中求各个量的方法。
2.让学生体会利用等量关系分析问题的优越性。
教具准备:配套教与学的平台教学过程:一、复习引入1.解方程8x ÷ 2 =28 7(x+3)÷ 2 =282(x +17 )=40 6(5+x)÷ 2 =362.任意选择一题进行检验。
3.复习以前学过的公式:C=2(a+b)C=4a S=ab S=ah÷2 S=(a+b)h÷2 ……4.揭示课题:列方程解应用题(1)[说明:复习部分安排解方程,一方面帮助学生巩固方程的合理解法;另一方面也对方程的检验格式稍作复习,便于学生养成良好的验算习惯。
一元二次方程的应用教学目标【知识与技能】会建立一元二次方程的模型解决实际问题,并能根据具体问题的实际意义,对方程解的合理性作出解释.【过程与方法】进一步培养学生化实际问题为数学问题的能力和分析问题,解决问题的能力,培养学生用数学的意识.【情感态度】让学生进一步感受一元二次方程的应用价值,提高学生的数学应用意识.【教学重点】应用一元二次方程解决实际问题.【教学难点】从实际问题中建立一元二次方程的模型.教学过程一、情景导入,初步认知复习列方程解应用题的一般步骤:(1)审题:仔细阅读题目,分析题意,明确题目要求,弄清已知数、未知数以及它们之间的关系;(2)设未知数:用字母(如x)表示题中的未知数,通常是求什么量,就设这个量为x;( 3)列方程:根据题中已知量和未知量之间的关系列出方程;( 4)解方程:求出所给方程的解;( 5)检验:既要检验所求方程的解是否满足所列出的方程,又要检验它是否能使实际问题有意义;( 6)作答:根据题意,选择合理的答案.2. 说一说,矩形的面积与它的两邻边长有什么关系?【教学说明】复习相关知识,为本节课的学习作准备.二、思考探究,获取新知1. 思考:如图,在一长为40cm,宽为28cm的矩形铁皮的四角截去四个全等的小正方形后,折成一个无盖的长方体盒子,若已知长方体盒子的底面积为364平方厘米,求截去的四个小正方形的边长.(1) 弓I导学生审题,弄清已知数、未知数以及它们之间的关系;(2) 确定本题的等量关系是:盒子的底面积=盒子的底面长X盒子的底面宽;(3) 引导学生根据题意设未知数;(4) 引导学生根据等量关系列方程;(5) 引导学生求出所列方程的解;(6) 检验所求方程的解合理性;(7) 根据题意作答.【教学说明】设未知数和作答时都不要漏写单位,多项式时要加括号再写单位•2. 如图,一长为32m,宽为20m的矩形地面上修建有同样宽的道路(图中阴影部分),余下部分进行了绿化,若已知绿化面积为540m2,求道路的宽.分析:本题考查了一元二次方程的应用,这类题目体现了数形结合的思想,如图,需利用平移把不规则的图形变为规则图形,进而即可列出方程,求出答案.还要注意根据题意考虑根的合理性,从而确定根的取舍. 本题可设道路宽为x米,利用平移把不规则的图形变为规则图形,如此一来,所有草坪面积之和就变为了( 32-x )( 20-x )米2,进而即可列出方程,求出答案.解:设道路宽为x米(32-x ) (20-x)=540解得:x i=2, X2=50 (不合题意,舍去)答:设道路宽为2米3. 如图所示,在厶ABC 中,/ C=90° ,AC=6cm.BC=8cm,点P 沿AC 边从点A 向终点C 以1cm/s 的速度移动,同时点 Q 沿CB 边从C 向终点B 以2cm/s 的速度移动,且当其中一点达到终点 时,另一点也随之停止移动,问点 P 、Q 出发几秒后,可使△ PCQ 的面积为9cm?解:设xs 后,可使△ PCQ 的面积为9cm2.由题意得,AP=xcm PC= (6-x ) cm, CQ=2xcmi 则 1/2 • (6 — x) • 2x=9 .2整理,得 x -6x+9=0 ,解得 X 1=X 2=3.所以P 、Q 同时出发,3s 后可使△ PCQ 的面积为9cm2.【教学说明】使学生感受、明白在几何图形中利用一元二次方程解决实际问题的过程与方法.三、运用新知,深化理解准备在长 30m,宽20m 的矩形草坪上修两横两纵四条路宽为3xcm,则可列方程为.3xm 则纵路宽为2xm,我们利用“图形经过移动,它的面横四条路移动一下(目的是求出路面的宽, 至于实际施工, 2 x 的代数式表示为(30-4x)(20-6x)m ,又由题意可知余下草坪的面积为原草坪面积的四分之三,可列方程则可列方程:(30 — 4x)(20 — 6x)=3/4 X 30 X 20【答案】 (30-4x ) (20-6x)=3/4 X 30 X 20 小路,横纵路的宽度之比为 3 : 2,若使余下的草坪面积是原来草坪面积的四分之三,若横 1.如图,某中学为方便师生活动,分析:若设小路的横路宽为 积大小不会改变”的道理,把纵、 仍可按原图的位置修路),则余下的草坪面积可用含2.在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,那么x满足的方程是()2A. x +130x-1400=02B. x +65x-350=02C. x -130x-1400=02D. x -65x-350=0【答案】B3. 如图,利用一面墙(墙的长度不超过45m),用80m长的篱笆围一个矩形场地.(1)怎样围才能使矩形场地的面积为75001?⑵能否使所围矩形场地的面积为810m2,为什么?解:(1)设所围矩形ABCD勺长AB为x米,则宽AD为12( 80-x )米.依题意,得x • 1/2 (80-x ) =750.2即,x -80x+1500=0 ,解此方程,得x仁30, X2=50.•••墙的长度不超过45m,「. x2=50不合题意,应舍去.当x=30 时,1/2 (80-x ) =1/2 X( 80-30 ) =25,所以,当所围矩形的长为30m宽为25m时,能使矩形的面积为750nt(2)不能.因为由x • 1/2 (80-x ) =810 得x2-80x+1620=0 .2 2又••• b-4ac= (-80) -4 x 1 x 1620=-80 v 0,•••上述方程没有实数根.因此,不能使所围矩形场地的面积为810m2.4. 如图①,在一幅矩形地毯的四周镶有宽度相同的边. 如图②,地毯中央的矩形图案长6米、宽3米,整个地毯的面积是40平方米.求花边的宽.① ②分析:本题可根据地毯的面积为40平方米来列方程,其等量关系式可表示为:(矩形图案的长+两个花边的宽)X(矩形图案的宽+两个花边的宽)=地毯的面积.解:设花边的宽为x米,根据题意得(2x+6)(2x+3)=40,解得x i=1, X2=-11/2 ,X2=-11/2不合题意,舍去.答:花边的宽为1米.5. 我校原有一块正方形空地,后来在这块空地上划出部分区域栽种花草(如图),原空地一边减少了1m另一边减少了2m使剩余的空地面积为12m2,求原正方形的边长.分析:本题可设原正方形的边长为xm,则剩余的空地长为(x-1 )m宽为(x-2 )m根据长方形的面积公式方程可列出,进而可求出原正方形的边长.解:设原正方形的边长为xm,依题意有(x-1 )( x-2 ) =122整理,得x -3x-10=0 ./•(x-5 )(x+2)=0,••• X1=5, X2=-2 (不合题意,舍去)答:原正方形的边长5m6. 小明家有一块长8m宽6m的矩形空地,现准备在该空地上建造一个十字花园(图中x值.解:据题意,得(8-x )( 6-x ) =1/2 X 8 X 6.解得x1=12,x2=2.X1不合题意,舍去./• x=2.【教学说明】进一步提高分析问题、解决问题的能力,深刻体会方程的思想方法在解应用问题中的用途.四、师生互动、课堂小结先小组内交流收获和感想, 而后以小组为单位派代表进行总结. 教师作以补充.课后作业布置作业:教材“习题 2.5 ”中第3、4、7题.教学反思本节课以学生熟悉的现实生活为问题的背景,让学生从具体的问题情境中抽象出数量关系,归纳出变化规律,并能用数学符号表示,最终解决实际问题. 这类注重联系实际考查学生数学应用能力的问题,体现时代性,并且结合社会热点、焦点问题,引导学生关注国家、人类和世界的命运. 既有强烈的德育功能,又可以让学生从数学的角度分析社会现象,体会数学在现实生活中的作用.。
沪教版六年级(上)数学辅导教学讲义1.主要复习、拓展小学阶段“行程问题”的解决方法;2.尝试用方程解决其他新类型的应用题;3.强化列方程解应用题的思想.复习回顾上次课的预习思考内容1.一般来说,行程问题会牵涉到“速度”、“时间”、“路程”这三个数量,关键的数量关系为:×=速度×时间=路程2.这个公式又可以演变为:“速度和×时间=”、“速度差×时间=”路程和,路程差3.相遇问题:相向而行同时出发到相遇时甲、乙两人所用的时间相等。
基本公式:速度和×相遇时间=相遇路程4.追击问题:同向而行同时出发到相遇(即追击)时,甲、乙两人所用的时间相等。
基本公式:速度差×追击时间=追击路程这部分如果学校进度慢,学生没有理解可以举一些例子,通过画图让学生理解基本公式的含义本讲重点复习应用题中最难的一类——行程问题,并且在课内的基础上进行拓展。
同时,也提供了一些没有见过的应用题类型让同学们进行挑战,掌握用方程解应用题的关键。
在解决行程问题时,往往通过“甲路程+乙路程=总路程”或是“甲路程-乙路程=总路程”这类等量关系来解决问题。
要找到这样路程间的关系,辅助的路程线段图就十分重要。
除此之外,“甲路程”“乙路程”则更多是通过“甲路程=甲速度×甲时间”这样的关系来得到。
分析清楚从开始到结果的整个过程,是解决行程问题的关键所在。
在分析行程问题时,还要注意“甲”“乙”的速度、时间之间的关系,往往设出其中一个后,其他都与其相关,能够写清。
所以在设未知数时,往往是设某个人的“时间”或者“速度”作为x,较少会出现设路程为x的情况。
这部分关于行程问题的分析可以强调下,但学生可能感觉不大。
在后面对例题的讲解是可以反过来进行强化。
除此之外,还有许多不属于之前学过的类型的应用题,同样可以用方程来解决。
“找到关键量设x”、“用带x的式子表示其他量”、“找到等量关系列方程”的顺序来解决即可。