安徽省合肥市2020届高三4月第二次质量检测数学(理)试题
- 格式:doc
- 大小:516.50 KB
- 文档页数:6
数学(理)试题一、单选题1.设复数满足,则在复平面内的对应点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】先对复数进行化简,进而可得到它在复平面内对应点的坐标,从而可得到答案。
【详解】由题意,,故在复平面内对应点为,在第一象限,故选A.【点睛】本题考查了复数的四则运算,及复数的几何意义,属于基础题。
2.若集合,,则()A.B.C.D.【答案】C【解析】求出集合,然后与集合取交集即可。
【详解】由题意,,,则,故答案为C.【点睛】本题考查了分式不等式的解法,考查了集合的交集,考查了计算能力,属于基础题。
3.已知双曲线的一条渐近线方程为,且经过点,则双曲线的方程是()A.B.C.D.【答案】C4.在中,,则()A.B.C.D.【答案】B5.下表是某电器销售公司2018年度各类电器营业收入占比和净利润占比统计表:空调类冰箱类小家电类其它类营业收入占比净利润占比则下列判断中不正确的是()A.该公司2018年度冰箱类电器营销亏损B.该公司2018年度小家电类电器营业收入和净利润相同C.该公司2018年度净利润主要由空调类电器销售提供D.剔除冰箱类电器销售数据后,该公司2018年度空调类电器销售净利润占比将会降低【答案】B6.将函数的图象上各点横坐标缩短到原来的(纵坐标不变)得到函数的图象,则下列说法正确的是()A.函数的图象关于点对称B.函数的周期是C.函数在上单调递增D.函数在上最大值是1【答案】C7.已知椭圆的左右焦点分别为,,右顶点为,上顶点为,以线段为直径的圆交线段的延长线于点,若,则该椭圆离心率是()A.B.C.D.【答案】D8.某部队在一次军演中要先后执行六项不同的任务,要求是:任务必须排在前三项执行,且执行任务之后需立即执行任务;任务、任务不能相邻.则不同的执行方案共有()A.36种B.44种C.48种D.54种【答案】B9.函数的图象大致为()A.B.C.D.【答案】A10.如图,正方形网格纸中的实线图形是一个多面体的三视图,则该多面体各表面所在平面互相垂直的有()A.2对B.3对C.4对D.5对【答案】C【解析】画出该几何体的直观图,易证平面平面,平面平面,平面平面,平面平面,从而可选出答案。
合肥市2020年高三第二次教学质量检测数学试题(理科)(考试时间:120分钟 满分:150分)注意事项1.答题前,务必在答题卡和答题卷规定的地方填写自己的姓名、准考证号和座位号后两位.2.答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.3.答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卷上书写,要求字体工整、笔迹清晰.作图题可先用铅笔在答题卷规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚,必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、草纸上答题元效.第I 卷(满分60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只一项是符合题目要求的.1.若集合{}{}22,0322≥=≤--=x x B x x x A ,则B A I =( ) A .]3,21[ B .]1,21[ C .]21,3[- D .]3,2[2.欧拉公式θθθsin cos i e i +=把自然对数的底数e ,虚数单位i ,三角函数θcos 和θsin 联系在一起,充分体现了数学的和谐美,被誉为“数学的天桥”若复数z 满足i z i e i =⋅+)(π,则z =( )A .1B .22C .23 D .2 3.若实数y x ,满足约束条件⎪⎩⎪⎨⎧≥-+≥+-≥-+032304042y x y x y x ,则y x z -=2的最小值是( )A .5-B .4-C .7D .164.已知)(x f 为奇函数,当0<x 时,2)(ex ex f x -=-(e 是自然对数的底数),则曲线)(x f y =在1=x 处的切线方程是( )A .e ex y +-=B .e ex y +-=C .e ex y +-=D .e ex y +-=5.若110tan 380cos =+οοm ,则m =( )A .4B .2C .2-D .4-6.已知函数)20,0)(tan()(πϕωϕω<<>+=x x f 的图象关于点)0,6(π成中心对称,且与直线y=a 的两个相邻交点间的距离为2π,则下列叙述正确的是( ) A .函数的最小正周期为πB .函数)(x f 图象的对称中心为))(0,6(Z k k ∈+ππC .函数)(x f 的图象可由2tan =y 的图象向左平移6π得到 D .函数)(x f 的递增区间为))(62,32(Z k k k ∈+-ππππ 7.《九章算术》中“勾股容方”问题:“今有勾五步,股十二步,问勾中容方几何?”魏晋时期数学家刘徽在其《九章算术注》中利用出入相补原理给出了这个问题的一般解法:如图1,用对角线将长和宽分别为b 和a 的矩形分成两个直角三角形,每个直角三角形再分成一个内接正方形(黄)和两个小直角三角形(朱青),将三种颜色的图形进行重组,得到如图2所示的矩形,该矩形长为a+b ,宽为内接正接正方形的边长d ,由刘徽构造的图形还可以得到许多重要的结论,如图3.设D 为斜边BC 的中点,作直角三角形ABC 的内接正方形对角线AE ,过点A 作AF ⊥BC 于点F ,则下列推理正确的是( )①由图1和图2面积相等得b a ab d +=; ②由AE≥AF 可得2222b a b a +≥+; ③由AD≥AE 可得b a b a 112222+≥+; ④由AD≥AF 可得ab b a 222≥+。
安徽省合肥市2020届高三第二次教学质量检测(数学理)doc高中数学安徽省合肥市2018年高三第二次教学质量检测数学试题〔理科〕〔考试时刻:120分钟,总分值:150分〕本卷须知: 1.答卷前,考生先使用黑色字迹的签字笔将自己的学校、姓名、准考证号填写在指定位置;核对条形码上本人的姓名和准考证号码,无误后,将共粘贴在指定的方框内。
2.非选择题答题书写要工整,字迹清晰。
修改答案时禁止使用涂改液或涂改胶条。
3.请在题号指定的答题区域内作答,在题号指定区域以外答题或超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.考试结,监考人将答题卷收回,试卷不收回。
第一卷〔总分值50分〕一、选择题〔本大题共10小题,每题5分,共50分。
在每题给出的四个选项中,只有一项为哪一项符合题目要求的〕 1.集合{|06,},{1,3,6},{1,4,5}U x x x Z A B =≤≤∈==,那么()U A C B ⋂= 〔 〕A .{1}B .{3,6}C .{4,5}D .{1,3,4,5,6}2.复数32,4a i b xi =+=+〔其中i 为虚数单位〕,假设复数aR b∈,那么实数x 的值为〔 〕A .-6B .6C .83 D .-833.sin()2sin(),sin cos 2ππαααα-=-+⋅=则〔 〕A .25B .25-C .25或25- D .15-4.双曲线22221x y a b-=,F 1是左焦点,O 是坐标原点,假设双曲线上存在点P ,使1||||PO PF =,那么此双曲线的离心率的取值范畴是〔 〕A .(]1,2B .(1,)+∞C .〔1,3〕D .[)2,+∞5.某农科院在3×3的9块式验田中选出6块种植某品种水稻进行试验,那么每行每列都有一块试验田种植水稻的概率为 〔 〕A .156B .17C .114D .3146.假设随机变量(1,4),(0),X N P x m -≤=则P(0<X<2)=〔 〕A .12m -B .12m-C .122m-D .1m -7.右图是某四棱锥的三视图,那么该几何体的表面积等于〔 〕A .3465+B .66543+C .663413+D .175+8.在直角梯形ABCD 中,AB//CD ,,45AD AB B ⊥∠=°,AB=2CD=2,M 为腰BC 的中点,那么MA MD ⋅=〔 〕A .1B .2C .3D .49.R 上可导函数()f x 的图象如下图,那么不等式2(23)()0x x f x '-->的解集为〔 〕A .(,2)(1,)-∞-⋃+∞B .(,2)(1,2)-∞-⋃C .(,1)(1,0)(2,)-∞-⋃-⋃+∞D .(,1)(1,1)(3,)-∞-⋃-⋃+∞10.已右函数21(0)()(1)1(0)x x f x f x x ⎧-≤=⎨-+>⎩,把函数()()g x f x x =-的零点按从小到大的顺序排列成一个数列,那么该数列的通项公式为 〔 〕A .*(1)()2nn n an N -=∈ B .*(1)()n a n n n N =-∈ C .*1()n a n n N =-∈D .*22()n n a n N =-∈第二卷〔总分值100分〕二、填空题〔本大题共5题,每题5分,共25分。
合肥市2020年高三第二次教学质量检测理科综合试题参考答案及评分标准第Ⅰ卷 (每小题6分,共126分)题号1 2 3 4 5 6 7 8 9 10 答案C AD C B D A C C B 题号 11 12 13 14 15 16 17 18 19 20 答案D B C C B C D ABC AC BD 题号21 答案CD第Ⅱ卷22.(7分) (1)将气垫导轨调节水平 (2分)(2)②③④⑤; (1分)(3)mgL ;22211()((2d d M m t t ⎡⎤+-⎢⎥⎣⎦ (各1分) (4)气垫导轨没有水平且B 端偏低(备注:作答“由于阻力…”不给分) (2分)23.(8分) (1)9.0Ω;偏小 (各1分)(2)①如图所示(3分) ②10.0(1分) ③并联;0.05 (各1分)24.(14分)(1)只有当开关S 接1时回路中才有焦耳热产生,在导体棒上升过程,设回路中产生的焦耳热为Q ,根据能量守恒有 2012mv mgh Q =+ (2分) 又12:2:3R R =,因此电阻R 1产生的热量为 135Q Q = (1分) 21031()52Q mv mgh =-(1分)(2)当开关S 接2时,导体棒由静止开始下落,设导体棒下落的加速度为a ,由牛顿第二定律得mg ILB ma -=(1分) 又Q C U CBL v I CBLa t t t∆∆∆====∆∆∆ (2分)联立得 22mg a CB L m=+ (1分) 所以导体棒做初速度为0,加速度为a 的匀加速直线运动,设导体棒回到出发点的速度大小为v ,由22v ah = (1分)得 v = (1分)(3)当导体棒向上运动时,由于所受安培力向下且不断减小,所以导体棒做加速度逐渐减小的减速运动;当导体棒开始向下运动时做初速度为0的匀加速直线运动,由于所受安培力与重力反向,所以此过程加速度小于g(4分)25.(18分)(1)选水平向右为正方向,设甲的加速度为1a ,对甲,由牛顿第二定律11(2)m g ma μ= (1分)212m/s a = (1分)设甲速度由0v 减到0过程通过的位移为1x ,经历的时间为1t 。
合肥市2021届高三调研性检测数学试(理科)(考试时间:120分钟 满分:150分)第Ⅰ卷(60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若复数z满足1zi -=,其中i 是虚数单位,则复数z 的模为( )A.B.C.D. 3B首先根据题意得到z i =,再计算模长即可.因为1zi -=,所以221++===iz i ii.所以==z 故选:B2. 若集合{}1A xx =>∣,{}2230B x x x =--≤∣,则A B =( ) A. (1,3] B. [1,3] C. [1,1)- D. [1,)-+∞A化简集合B ,根据交集的定义,即可求解.{}2230[1,3]B x x x =--≤=-∣, {}1(1,)A x x =>=+∞∣,(1,3]A B ∴=。
故选:A.3. 若变量x ,y 满足约束条件1133x y x y x y -≤⎧⎪+≥-⎨⎪-≥⎩,则目标函数3z x y =+的最小值为( )A. 92- B. 4- C. 3- D. 1D根据变量x ,y 满足1133x y x y x y -≤⎧⎪+≥-⎨⎪-≥⎩,画出可行域,然后平移直线30x y +=,当直线在y 轴上截距最小时,目标函数取得最小值.由变量x ,y 满足1133x y x y x y -≤⎧⎪+≥-⎨⎪-≥⎩,画出可行域如图所示:平移直线30x y +=,当直线在y 轴上截距最小时,经过点1,0A ,此时目标函数取得最小值,最小值是1,故选:D4. 为了保障广大人民群众的身体健康,在新冠肺炎疫情防控期间,有关部门对辖区内15家药店所销售的A 、B 两种型号的口罩进行了抽检,每家药店抽检10包口罩(每包10只),15家药店中抽检的A 、B 型号口罩不合格数(Ⅰ、Ⅱ)的茎叶图如图所示,则下列描述不正确...的是( )A. 估计A 型号口罩的合格率小于B 型号口罩的合格率B. Ⅰ组数据的众数大于Ⅱ组数据的众数C. Ⅰ组数据的中位数大于Ⅱ组数据的中位数D. Ⅰ组数据的方差大于Ⅱ组数据的方差 D根据茎叶图中的数据计算出两种型号口罩的合格率,可判断A 选项的正误;求出两组数据的众数,可判断B 选项的正误;求出两组数据的中位数,可判断C 选项的正误;利用排除法可判断D 选项的正误. 对于A选项,由茎叶图可知,A 型号口罩的不合格数为658210124131416202130199++⨯++⨯++++++=,B 型口罩的不合格数为245682101131416212528180++++⨯++⨯+++++=,A 型号口罩的合格率为1991301115001500-=,B 型口罩的合格率为1801320115001500-=, 所以,A 型口罩的合格率小于B 型口罩的合格率,A 选项正确; 对于B 选项,Ⅰ组数据的众数为12,Ⅱ组数据的众数11,B 选项正确; 对于C 选项,Ⅰ组数据的中位数为12,Ⅱ组数据的11,C 选项正确; 由排除法可知D 选项不正确.故选:D.5. 设数列{}n a 的前n 项和为n S ,若3122n n S a =-,则5S =( )A. 81B. 121C. 243D. 364B利用递推式与等比数列求和的通项公式即可得出.31,22n n S a =-∴当2n ≥时,113122n n S a --=-,∴111313133222222n n n n n n n a S S a a a a ---⎛⎫=-=---=- ⎪⎝⎭, 化简可得:13n n a a -=, 当1n =时,1113122a S a ==-,解得:11a =. ∴数列{}n a 是等比数列,首项为1,公比为3,()()55151113121113a q S q-⨯-∴===--.故选:B.6. 函数cos ()x xx xf x e e -=+在[],ππ-上的图象大致是( )A. B.C .D.A先由函数的奇偶性定义,判断()f x 为奇函数,排除B ,D ,再由()f x 在(0,),(,)22πππ函数值的正负值判断,即可得出结论.cos (),[,]x xx xf x x e eππ-=∈-+定义域关于原点对称, cos ()(),()x xx xf x f x f x e e ---==-∴+是奇函数,图象关于原点对称,排除选项B ,D ,(0,),()0,,()022x f x x f x ππ∈>==,(,),()02x f x ππ∈<,所以选项C 不满足,选项A 满足.故选:A. 7. 周六晚上,小红和爸爸、妈妈、弟弟一起去看电影,订购的4张电影票恰好在同一排且连在一起,为安全起见,每个孩子至少有一侧有家长陪坐,则不同的坐法种数为( ) A. 8 B. 12 C. 16 D. 20C先计算出4个人的全排列,再减去不符合情况的种数即可.4个人坐四个座位,共有4424A =种坐法,当孩子坐在一起并且坐在最边上时,有一个孩子没有大人陪伴,共有222228A A =种,所以每个孩子旁边必须有大人陪着共有24-8=16种坐法. 故选:C .8. 已知函数()2)0,||2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示,则函数()f x 的单调递减区间为( )A. 32,2()88k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦B. 3,()88k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦C. 372,2()88k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦D. 37,()88k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦D由图可知,20,218822f f ππππωϕωϕ⎛⎫⎛⎫⎛⎫⎛⎫=+==+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,338288T πππ=-=,从而可求出2,4πωϕ==-,()2)4f x x π=-,进而由3222,242k x k k Z πππππ+≤-≤+∈可求得答案解:由图可知,20,218822f f ππππωϕωϕ⎛⎫⎛⎫⎛⎫⎛⎫=+==+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 所以18k πωϕπ+=,1k Z ∈,2224k ππωϕπ+=+或2232,24k k Z ππωϕπ+=+∈,因为338288T πππ=-=,所以T π=,所以2ππω=, 因为0>ω,所以2ω=, 所以14k πϕπ=-,1k Z ∈,2324k πϕπ=-+或222,4k k Z πϕπ=-+∈ 因为||2ϕπ<,所以4πϕ=-, 所以()2)4f x x π=-,由3222,242k x k k Z πππππ+≤-≤+∈, 解得37,88k x k k Z ππππ+≤≤+∈,所以()f x 的单调递减区间为37,()88k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦,故选:D 由三视图可知,几何体为一个三棱锥A BCD -, 如下图所示:根据三视图可知,4DB =,2DC =,高为2,1182323A BCD V DC DB -∴=⨯⨯⨯⨯=,∴所求几何体体积:83,故选:C .10. 在ABC 中,D 、E 、F 分别是边BC 、CA 、AB 的中点,AD 、BE 、CF 交于点G ,则:①1122EF CA BC =-;②1122BE AB BC =-+;③AD BE FC +=; ④0GA GB GC ++=. 上述结论中,正确的是( ) A. ①② B. ②③C. ②③④D. ①③④C 分析】作出图形,利用平面向量的加法法则可判断①②③④的正误. 如下图所示:对于①,F 、E 分别为AB 、AC 的中点,111222FE BC CA BC ∴=≠-,①错误; 对于②,以BA 、BC 为邻边作平行四边形ABCO ,由平面向量加法的平行四边形法则可得2BE BO BA BC AB BC ==+=-+,1122BE AB BC ∴=-+,②正确;对于③,由②同理可得2AD AB AC =+,1122AD AB AC ∴=+,同理可得1122CF CA CB =+,()102AD BE CF AB AC BA BC CA CB ∴++=+++++=, AD BE CF FC ∴+=-=,③正确;对于④,易知点G 为ABC 的重心,所以,23GA AD =-,23GB BE =-,23GC CF =-,因此,()203GA GB GC AD BE CF ++=-++=,④正确.故选:C. 11. 双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为1F 、2F ,M 为C 的渐近线上一点,直线2F M 交C 于点N ,且20F M OM ⋅=,2232F M F N =(O 为坐标原点),则双曲线C 的离心率为( ) A. 5 B. 2 C. 3 D. 2 A设点M 为第一象限内的点,求出直线2F M 的方程,可求得点M 的坐标,由2232F M F N =可求得点N 的坐标,再将点N 的坐标代入双曲线C 的方程,进而可求得双曲线C 的离心率.设点M 为第一象限内的点,可知直线OM 的方程为by x a=,()2,0F c ,2F M OM ⊥,所以,直线2F M 的方程为()ay x c b=--, 联立()b y x a a y x c b ⎧=⎪⎪⎨⎪=--⎪⎩,解得2a x c ab y c ⎧=⎪⎪⎨⎪=⎪⎩,即点2,a ab M c c ⎛⎫ ⎪⎝⎭,设点(),N x y ,()222,,0,a ab b ab F M c c c c c ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,()2,F N x c y =-,2232F M F N =,()23232b x c c ab y c ⎧-=-⎪⎪∴⎨⎪=⎪⎩,解得222323a c x c ab y c ⎧+=⎪⎪⎨⎪=⎪⎩,即点2222,33a c ab N c c ⎛⎫+ ⎪⎝⎭,将点N 的坐标代入双曲线C 的方程得22222222331a c ab c c a b ⎛⎫+⎛⎫ ⎪ ⎪⎝⎭⎝⎭-=, 可得22249e e e⎛⎫+-= ⎪⎝⎭,整理得25e =,1e >,解得5e =故选:A.12. 已知a 、b R ∈,函数()()3210f x ax bx x a =+++<恰有两个零点,则+a b 的取值范围( )A. (),0-∞B. (),1-∞-C. 1,4⎛⎫-∞- ⎪⎝⎭D. 1,4⎛⎫-∞ ⎪⎝⎭D利用导数分析函数()y f x =的单调性,可得出该函数的极小值()10f x =,由题意得出()()2111321111321010f x ax bx f x ax bx x ⎧=++=⎪⎨=+++='⎪⎩,进而可得23112111223a x xb x x ⎧=+⎪⎪⎨⎪=--⎪⎩,可得出32111222a b x x x +=--,令110t x =<,由0a <可得出12t <-,构造函数()32222g t t t t =--,求得函数()y g t =在区间1,2⎛⎫-∞- ⎪⎝⎭上的值域,由此可求得+a b 的取值范围.()321f x ax bx x =+++且0a <,()2321f x ax bx '=++,24120b a ∆=->, 则方程()0f x '=必有两个不等的实根1x 、2x ,设12x x <, 由韦达定理得1223bx x a+=-,12103x x a=<,则必有120x x <<,且()21113210f x ax bx '=++=,① 当1x x <或2x x >时,()0f x '<;当12x x x <<时,()0f x '>.所以,函数()y f x =的单调递增区间为()12,x x ,单调递减区间为()1,x -∞和()2,x +∞.由于()010f =>,若函数()y f x =有两个零点,则()32111110f x ax bx x =+++=,②联立①②得21132111321010ax bx ax bx x ⎧++=⎨+++=⎩,可得23112111223a x xb x x ⎧=+⎪⎪⎨⎪=--⎪⎩,所以,32111222a b x x x +=--, 令110t x =<,令()32222g t t t t =--,则()a b g t +=, ()3222210a t t t t =+=+<,解得12t <-,()()()()2264223212311g t t t t t t t '=--=--=+-.当12t <-时,()0g t '>,此时,函数()y g t =单调递增,则()321111122222224a b g t g ⎛⎫⎛⎫⎛⎫⎛⎫+=<-=⨯--⨯--⨯-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.故选:D.第Ⅱ卷(90分)二、填空题:本大题共4小题,每小题5分,满分20分.把答案填写在答题卡上的相应位置. 13. 若命题:p 若直线l 与平面α内的所有直线都不平行,则直线l 与平面α不平行;则命题p ⌝是________命题(填“真”或“假”).假先写出p ⌝,再判断真假即可.命题:p 若直线l 与平面α内的所有直线都不平行,则直线l 与平面α不平行; 命题p ⌝:若直线l 与平面α内的所有直线都不平行,则直线l 与平面α平行,假命题. 故答案为:假命题.14. 若直线l 经过抛物线24x y =-的焦点且与圆22(1)(2)1x y -+-=相切,则直线l 的方程为________.0x =或4330x y --=先根据抛物线方程24x y =-,求得焦点坐标()0,1F -,再分直线的斜率不存在和直线的斜率存在时,两种情况设直线方程,然后利用圆心到直线的距离等于半径求解. 因为抛物线方程为24x y =-, 所以焦点坐标为:()0,1F -,当直线的斜率不存在时,设直线方程为:0x =, 圆心到直线的距离为1d r ,符合题意,当直线的斜率存在时,设直线方程为:1y kx =-,即10kx y --=, 圆心到直线的距离为2311k d r k -===+,解得43k =, 所以直线方程为4330x y --=, 故答案为:0x =或4330x y --=15. 已知函数()cos ()f x x x x R =-∈,α,β是钝角三角形的两个锐角,则(cos )f α________(sin )f β (填写:“>”或“<”或“=”).>对函数()f x 求导判断其单调性,再由钝角三角形内角判断cos ,sin αβ的大小. 由()1sin 0f x x '=+≥,可得()f x 在R 上单调递增, 因为α,β是钝角三角形两个锐角,所以2παβ+<,022ππβα<<-<,sin y x =在0,2π⎛⎫ ⎪⎝⎭上单调增,sin sin 2πβα⎛⎫∴<- ⎪⎝⎭,sin cos βα<,所以()(cos )sin f f αβ> 故答案为:>16. 已知三棱锥P ABC -的顶点P 在底面的射影O 为ABC 的垂心,若2ABC OBC PBC S S S ⋅=△△△,且三棱锥P ABC -的外接球半径为3,则PAB PBC PAC S S S ++△△△的最大值为________. 18连AO 交BC 于D ,由顶点P 在底面的射影O 为ABC 的垂心,得AD BC ⊥,进而证明,,BC PA PC AB PD BC ⊥⊥⊥,由2ABC OBC PBC S S S ⋅=△△△。
机密★启用前华大新高考联盟2020届高三4月教学质量测评理科数学本试题卷共4页.23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝#试顺利★注意事项:1 .答短前.先将fl己的姓名■准考iE弓域可在答距长上.并将准琴江号条形研财在答恩K上的指定位2.逸押IS的作答:侦小应燃目的答案愫勺涂黑・耳在试K上的区域均无效.3.填空*和解答题的作答:用签字笔宜接答在容愆卡上酉应的答题IK域内.写在试题尝,草SI纸和答W卡上的菲答题区域均无效.4.选考也的作答■先把所送趣口的醴号在答粗N上指定的位置用2B松宅涂SL答宝珂在答履卞上对应的谷(SH域内" 。
在武!»■・草棉舐和答的|?上的曹咨IS风域均无效.5 .考试培束后.崎将谷曜卡上交.-、选择题:本题共12小越,每小越5分,共60分,在每小题纶出的四个选项中,只有一项是符合题目萋求的。
1.已W?»r»l+4-.则r •iA.OB.1C.72D.22.设«^A-{xlx>3}-B-Ullog>(x-a»0|.Wa=3 是8UA 的A .充分不必要条件 B.2要不充分条件C充妾条件 D.既不充分又K必要条件3.i殳等是数列修」的前〃顼和为S..已知七5s,+., 30.岫S«A.85B.97C.100D.1754.槐晋时期的数学家弟薇首创常剧术.为计算圈周率建星『严密的戒论即完脊的算法.所时割倒术.就是以间内按正多边形的而枳.来无限逼近同血枳.对澈形容他的利同术说,•割之弥细.所失弥少.割之又割.以至丁木讨刮.则勺网合体.而尤所失矣...比;I企一1盘内■一内按正I二边形•将loottSTM机撤入间盘内.发现只右I粒豆子不在正十.边形内.据此实羚估计网周宇的近似值为A-T R 16r22C T n T5.已tU^=lg2.>»-ln3.c ~ log,3•则A.《rVz VyB.Vy<rC.x<y<t\lz<T<y6 .执行如图所示程序也图.设输出教据构成集合人•从集合人中任取一个兀素m,则事件“函敢fM)=/+”rr在[0・+c>上是增雨数”的借率为理科教学忒题第1页(共4贞〉7 .设/(x).g(r)分别为定义在-5 I的奇函牧和偶函数.日/(”+g(«r) = 2e,cgr(e为自然对数的底j = /(x)-«(x)的图象大致为&某病。
合肥市2020年高三第二次教学质量检测数学试题(理科)(考试时间:120分钟满分:150分)第I 卷(满分60分)一、选择题:本大题共12小题,每小题5分,满分60分在每小题给出的四个选项中,只有一项 是符合题目要求的。
1.若集合2230|2x A x x x B x --≤≥={|},={,则A B =I =A . 1,32⎡⎤⎢⎥⎣⎦B . 1,12⎡⎤⎢⎥⎣⎦C . 13,2⎡⎤-⎢⎥⎣⎦ D .[]2,3 2.欧拉公式i cos sin e θθθ=+把自然对数的底数e ,虚数单位i ,三角函数cos sin θθ和联系在一起,充分体现了数学的和谐美,被誉为“数学的天桥”若复数z 满足i (i)i e z π+=g 则z =A . 1B .2 C .2D3.若实数x ,y 满足约束条件240403230x y x y x y +-≥⎧⎪-+≥⎨⎪+-≥⎩则2z x y -=的最小值是A . 5-B . 4-C . 7D .164.已知f x ()为奇函数,当0x <时,2x f x e ex --()=(e 是自然对数的底数)则曲线y f x =()在1x =处的切线方程是A . y ex e =-+B . y ex e =+C . y ex e =-D .11(2)2y e x e e e=--+ 5.若cos801m o o=,则m = A . 4 B . 2 C . 2- D .4- 6.已知函数tan 002f x x πωϕωϕ()=(+)(>,<<)的图象关于点6π(,0)成中心对称,且与直线y a =的两个相邻交点间的距离为2π,则下列叙述正确的是 A.函数f x ()的最小正周期为π B.函数f x ()图象的对称中心为(0)6k k Z ππ∈+,() C.函数f x ()的图象可由tan 2y x =的图象向左平移6π得到D.函数f x ()的递增区间为,()2326k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭ 7.《九章算术》中“勾股容方”问题:“今有勾五步,股十二步,问勾中容方几何?”魏晋时期数学家刘徽在其《九章算术注》中利用出相补原理给出了这个问题的一般解法:如图1,用对角线将长和宽分别为b 和a 的矩形分成两个直角三角形,每个直角三角形再分成一个内接正方形(黄)和两个小直角三角形(朱、青).将三种颜色的图形进行重组,得到如图2所示的矩形,该矩形长为a b +,宽为内接正方形的边长d ,由刘构造的图形还可以得到许多重要的结论,如图3.设D 为斜边BC 的中点,作直角三角形ABC 的内接正方形对角线AE ,过点A 作AF BC ⊥于点F ,则下列推理正确的是①由图1和图2面积相等得ab d a b += ②由AE AF ≥2222a b a b ++≥ ③由AD AE ≥222112a b a b+≥+ ④由AD AF ≥可得222a b ab +≥ A . ①②③④ B . ①②④ C . ②③④ D .①③ 8.为了实施“科技下乡,精准脱贫”战略,某县科技特派员带着A ,B ,C 三个农业扶贫项目进驻某村,对该村仅有的甲、乙、丙、丁四个贫困户进行产业帮扶经过前期实际调研得知,这四个贫困户选择A ,B ,C 三个扶贫项目的意向如下表:扶贫项目 AB C 贫困户 甲、乙、丙、丁甲、乙、丙 丙、丁若每个贫困户只能从自己已登记的选择意向项目中随机选取一项,且每个项目至多有两个贫困户选择,则不同的选法种数有A . 24种B . 16种C . 10种D .8种9.几何体是由一个半球挖去一个圆柱形成的,其三视图如图所示已知半球的半径为6,则当此几何体体积最小时,它的表面积等于A . 24πB . (1833π+C . 21πD .(182)π+ 10.已知抛物线C:24y x =的焦点为F ,过点D (3,0)的直线交抛物线C 于点A ,B ,若13FA FB -u u u r u u u r =则FA FB u u u r u u u r g =A . 9-B . 11-C . 12-D .2311.若关于x 的不等式22ln 4ax a x x --->有且只有两个整数解,则实数a 的取值范围是A . (]2ln3,2ln 2--B . (),2ln 2-∞-C . (],2ln3-∞-D .(),2ln3-∞-12.在三棱锥P ABC -中,二面角P AB C P AC B P BC A ------、和的大小均等于3π, ::3:4:5AB AC BC =,设三棱锥P ABC -外接球的球心为O ,直线PO 与平面ABC 交于点Q ,则PO OQ = A . 14B . 2C . 3D .4 第Ⅱ卷(非选择题共90分)本卷包括必考题和选考题两部分第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题、第(23)题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,满分20分.第16题第一空2分,第二空3分.把答案填在答题卡上的相应位置.13.已知向量a b 和满足22,1,a a b a b --=||==则a b =g _________.14.三人制足球(也称为笼式足球)以其独特的魅力,吸引着中国众多的业余足球爱好者,在某次三人制足球传球训练中,A 队有甲、乙、丙三名队员参加。
甲、乙丙三人都等可能地将球传给另外两位队友中的一个人。
若由甲开始发球(记为第一次传球),则第4次传球后,球仍回到甲的概率等于_________.15.已知双曲线C:222210,0x y a b a b-=(>>)的右焦点为点F ,点B 是虚轴的一个端点,点P 为双曲线C 左支上一个动点,若△BPF 周长的最小值等于实轴长的4倍,则双曲线C 的渐近线方程为_____________16.已知△ABC 三个内角A ,B ,C 所对的边分别为,,a b c ,若sin ,sin ,sin A B C 成等比数列, ,sin B A sinA sinC -(),成等差数列,则:(1)C =__________ (2) tan tan A B= 三、解答题:本大题共6小题,满分70分解答应写出文字说明证明过程或演算步骤.17.(本小题满分12分)已知等差数列n a {}的前n 项和为n S ,271,14a S ==,数列n b {}满足221232n nn b b b b +⋯g g =(1)求数列n n a b {}和{}的通项公式;(2)若数列n c {}满足cos n n n c b a π=(),求数列n c {}的前2n 项和2n T .18.(本小题满分12分)如图(1),在矩形ABCD 中,E ,F 在边CD 上,BC CE EF FD ===沿,BE AF 将△CBE 和△DAF 折起,使CBE DAF ABEF 平面和平面都与平面垂直,如图(2)(1)试判断图(2)中直线CD 与AB 的位置关系,并说明理由;(2)求平面ADF 和平面DEF 所成锐角二面角的余弦值19.(本小题满分12分)已知椭圆C 的方程为22143x y +=,斜率为12的直线与椭圆C 交于A ,B 两点,点P 3(1,)2在直线l 的左上方. (1)若以AB 为直径的圆恰好经过椭圆C 的右焦点2F ,求此时直线l 的方程;(2)求证:△PAB 的内切圆的圆心在定直线1x =上.20.(本小题满分12分)某企业拟对某条生产线进行技术升级,现有两种方案可供选择:方案A 是报废原有生产线,重建一条新的生产线;方案B 是对原有生产线进行技术改造,由于受诸多不可控因素的影响,市场销售状态可能会发生变化.该企业管理者对历年产品销售市场行情及回报率进行了调研,编制出下表:(1)以预期平均年利润的期望值为决策依据,问:该企业应选择哪种方案?(2)记该生产线升级后的产品(以下简称“新产品)的年产量为x (万件),通过核算,实行方案A 时新产品的年度总成本1y (万元)为32118101603y x x x -=++,实行方案B 时新产品的年度总成本2y (万元)为32213201003y x x x -=++.已知0.2,20p x ≤=.若按(1)的标准选择方案,则市场行情为畅销、平销和滞销时,新产品的单价t (元)分别为60,360,604x x --,且生产的新产品当年都能卖出去试问:当x 取何值时,新产品年利润的期望取得最大值?并判断这一年利润能否达到预期目标.21.(本小题满分12分)已知函数sin xfx e x ()=(e 是自然对数的底数) (1)求f x ()的单调递减区间(2)记,03g x f x ax a -()=()若<<,试讨论g x ()在(0,)π上的零点个数.(参考数据2 4.8e π≈)请考生在第22、23题中任选一题作答注意:只能做所选定的题目,如果多做,则按所做的第一个题目计分,作答时,请用2B 铅笔在答题卡上,将所选题号对应的方框涂黑.22.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线C 的参数方程为3cos 4sin (129cos sin 55x y ϕϕϕϕϕ=-⎧⎪⎨=+⎪⎩为参数).以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,直线l 的极坐标方程为3in πρθ(+.(1)写出曲线C 的普通方程和直线l 的直角坐标方程;(2)若直线l 与曲线C 交于P ,Q 两点,M (2,0),求MP MQ +的值23.(本小题满分10分)选修4-5:不等式选讲 已知不等式135x x m --+<的解集为3,2n ()(1)求n 的值; (2)若三个正实数,,a b c 满足a b c m ++=,证明:2222222b c c a a b a b c ≥+++++.。