传热学-第六章5
- 格式:ppt
- 大小:1.86 MB
- 文档页数:25
传热学第六章答案解析第六章复习题1、什么叫做两个现象相似,它们有什么共性?答:指那些用相同形式并具有相同内容的微分方程式所描述的现象,如果在相应的时刻与相应的地点上与现象有关的物理量一一对于成比例,则称为两个现象相似。
凡相似的现象,都有一个十分重要的特性,即描述该现象的同名特征数(准则)对应相等。
(1)初始条件。
指非稳态问题中初始时刻的物理量分布。
(2)边界条件。
所研究系统边界上的温度(或热六密度)、速度分布等条件。
(3)几何条件。
换热表面的几何形状、位置、以及表面的粗糙度等。
(4)物理条件。
物体的种类与物性。
2.试举出工程技术中应用相似原理的两个例子.3.当一个由若干个物理量所组成的试验数据转换成数目较少的无量纲以后,这个试验数据的性质起了什么变化?4.外掠单管与管内流动这两个流动现象在本质上有什么不同?5、对于外接管束的换热,整个管束的平均表面传热系数只有在流动方向管排数大于一定值后才与排数无关,试分析原因。
答:因后排管受到前排管尾流的影响(扰动)作用对平均表面传热系数的影响直到10排管子以上的管子才能消失。
6、试简述充分发展的管内流动与换热这一概念的含义。
答:由于流体由大空间进入管内时,管内形成的边界层由零开始发展直到管子的中心线位置,这种影响才不发生变法,同样在此时对流换热系数才不受局部对流换热系数的影响。
7、什么叫大空间自然对流换热?什么叫有限自然对流换热?这与强制对流中的外部流动和内部流动有什么异同?答:大空间作自然对流时,流体的冷却过程与加热过程互不影响,当其流动时形成的边界层相互干扰时,称为有限空间自然对流。
这与外部流动和内部流动的划分有类似的地方,但流动的动因不同,一个由外在因素引起的流动,一个是由流体的温度不同而引起的流动。
8.简述射流冲击传热时被冲击表面上局部表面传热系数的分布规律.9.简述数数,数,Gr Nu Pr 的物理意义.Bi Nu 数与数有什么区别? 10.对于新遇到的一种对流传热现象,在从参考资料中寻找换热的特征数方程时要注意什么?相似原理与量纲分析6-1 、在一台缩小成为实物1/8的模型中,用200C 的空气来模拟实物中平均温度为2000C 空气的加热过程。
6. 对流换热基础理论6.1 知识结构1. 对流换热的特点;2. 换热系数h 及其影响因素; 3. 对流换热问题的数学描述:(1) 假设:不可压缩牛顿型流体,常物性,无内热源,忽略粘性耗散; (2) 方程组(换热、能量、动量、质量)各项物理涵义;(3) 平板层流强制对流的精确解(边界层理论,数量级分析简化); (4) 平板层流强制对流的近似解(边界层理论,边界层积分)。
4. 实验求解方法: (1) 相似原理相似性质:彼此相似的现象,其同名准则必定相等。
相似判据:同类现象,单值性条件相似,同名已定准则相等,则现象相似。
相似解:实验关联式(准则方程式)。
(2) 准则确定方法:方程分析法、量纲分析法。
(3) 实验数据处理:误差分析,作图法求系数,数据回归。
(4) 实验关联式应用条件:适用范围,定性温度,特征尺度,特征流速,修正系数(入口、弯道、特性)。
5. 对流换热中常用准则(Nu 、Re 、Gr 、Pr )的定义式及其物理涵义。
6.2 重点内容剖析6.2.1 概述对流换热——流体与固体壁面之间的热交换。
t h q t hA ∆=⇒∆=Φ…………(h 的定义式) (6-1) 一、任务求取 h=f (流体、物性、流态、换热面形状等)的具体表达式 二、思路(对流换热量=附壁薄层导热量)()t A h t t A h yt Ax w x y ∆=-=∂∂-=Φ∞=0λ (6-2)()x y x ytt h 0=∂∂∆-=⇒λ (6-3)式中:h x —— 局部表面传热系数λ —— 流体导热系数Δt —— 流体与壁面传热温差求取表面传热系数的问题←求取附面层温度变化率←求取流体温度场三、研究方法1·理论解——建立微分方程组→求解2·实验解—— 相似原理,量纲分析→实验准则→实验关联式四、影响对流换热的因素1· 流动的动力(1) 自然对流——由于流体各部分密度不同而引起的流动,其流动强度与受热不均匀程度、流体性质和空间大小及位置有关。
第六章 单相流体对流换热及准则关联式第一节 管内受迫对流换热本章重点:准确掌握准则方程式的适用条件和定性温度、定型尺寸的确定。
1-1 一般分析),,,,,,,,(l c t t u f h p f w μαρλ=流体受迫在管内对流换热时,还应考虑以下因素的影响:① 进口段与充分发展段,② 平均流速与平均温度,③ 物性场的不均匀性,④ 管子的几何特征。
一、进口段与充分发展段1.流体在管内流动的主要特征是,流动存在着两个明显的流动区段,即流动进口(或发展)段和流动充分发展段,如图所示。
(1)从管子进口到边界层汇合处的这段管长内的流动称为管内流动进口段。
(2)进入定型流动的区域称为流动充分发展段。
在流动充分发展段,流体的径向速度分量v 为零,且轴向速度u 不再沿轴向变化,即:0=∂∂xu, 0=v 2.管内的流态(1)如果边界层在管中心处汇合时流体流动仍然保持层流,那么进入充分发展区后也就继续保持层流流动状态,从而构成流体管内层流流动过程。
2300Re <用νdu m =Re 判断流态, 式中 m u 为管内流体的截面平均流速, d 为管子的内直径,ν为流体的运动黏度。
(2)如果边界层在管中心处汇合时流体已经从层流流动完全转变为紊流流动,那么进入充分发展区后就会维持紊流流动状态,从而构成流体管内紊流流动过程。
410Re >(3)如果边界层汇合时正处于流动从层流向紊流过渡的区域,那么其后的流动就会是过渡性的不稳定的流动,称为流体管内过渡流动过程。
410Re 2300<<3.热进口段和热充分发展段当流体温度和管壁温度不同时,在管子的进口区域同时也有热边界层在发展,随着流体向管内深入,热边界层最后也会在管中心汇合,从而进入热充分发展的流动换热区域,在热边界层汇合之前也就必然存在热进口区段。
随着流动从层流变为紊流, 热边界层亦有层流和紊流热边界层之分。
热充分发展段的特征对常物性流体,在常热流和常壁温边界条件下,热充分发展段的特征是:)(1x f t f =及)(2x f t w =与管内任意点的温度),(r x f t =组成的无量纲温度⎪⎪⎭⎫⎝⎛--x f x w w t t t t ,,x ,随管长保持不变,即: 0,,x ,=⎪⎪⎭⎫ ⎝⎛--∂∂x f x w w t t t t x 式中,t —管内任意点的温度,),(r x f t = ⇒xf x w w t t tt ,,x ,--仅是r 的函数。