大跨径三塔悬索桥抗风性能分析
- 格式:pdf
- 大小:294.39 KB
- 文档页数:3
大跨径悬索桥施工及成桥阶段抗风措施研究大跨径悬索桥是一种重要的桥梁结构,具有结构简洁、承载能力大等优点,因此在现代桥梁工程中得到广泛应用。
在其施工和成桥阶段,由于结构特点以及环境条件等因素的影响,悬索桥具有较高的抗风要求。
对大跨径悬索桥施工及成桥阶段的抗风措施进行研究,对于确保悬索桥工程的安全和顺利进行具有重要意义。
悬索桥的施工和成桥阶段是其整个工程过程中最为关键的阶段。
在这个阶段,结构受到外部环境的影响较大,尤其是风力的影响。
由于悬索桥结构本身具有较大的自重和灵敏度,一旦受到大风的影响,可能会发生结构破坏,导致严重的安全事故。
在施工和成桥阶段,必须采取一系列的抗风措施,以确保悬索桥工程的安全可靠性。
针对大跨径悬索桥施工阶段的抗风措施,需要从结构的设计和施工工艺两方面进行考虑。
在结构的设计方面,可以采用风洞试验等手段,对悬索桥结构在风力作用下的响应进行研究,并根据试验结果进行结构设计的优化。
在施工工艺方面,可以采取加强材料、加固结构等措施,以提高悬索桥结构的抗风性能。
针对大跨径悬索桥成桥阶段的抗风措施,需要考虑结构的稳定性和安全性。
在这个阶段,悬索桥结构通常处于未完全固定的状态,如果受到大风的冲击,可能会引发结构的摇晃和振动,从而导致结构的破坏。
在成桥阶段,需要采取临时加固措施,以提高悬索桥结构的抗风性能。
除了上述的抗风措施之外,还需要对悬索桥的施工和成桥过程进行系统的监测和控制。
通过实时监测结构的变形和位移等参数,可以及时发现结构的异常情况,并采取相应的措施进行处理,以保证悬索桥工程的安全进行。
需要指出的是,对于大跨径悬索桥的施工及成桥阶段抗风措施的研究,还存在一些问题亟待解决。
如何有效地进行结构的抗风设计和施工工艺的改进,如何在成桥阶段确保结构的稳定性和安全性等。
需要加强相关研究工作,不断提高大跨径悬索桥工程的抗风性能,确保工程的安全可靠性。
悬索桥抗风综述4700字摘要:本文以大跨径悬索桥的抗风为研究对象,总结阐述了抗风研究的历史过程,着重分析了桥梁抗风设计的方法:采用拉索系统提高扁平箱梁形式悬索桥颤振临界风速;通过改善桥梁断面的外形来减小气动力的空气动力学措施;在加劲梁上安装一些辅助装置来增大结构的阻尼,并减小作用在结构上的气动力,从而达到提高悬索桥气动稳定性的目的的机械措施。
文中还对超长跨径悬索桥建设的可行性进行了研究。
关键词:桥梁抗风,拉索系统,空气动力学,机械措施,阻尼器1. 塔科玛桥的倒塌1940年华盛顿州塔科玛市的海面上刮起了风速19m/s的强风,刚竣工的全新的塔科玛悬索桥在风的吹动下,诱发了扭转振动导致了可怕的跨桥事故。
设计塔科玛桥时充分考虑了风的静力作用,还委托华盛顿大学做了模型试验,并无任何疏忽与漏洞。
事故的原因并不是风的静力作用,而是随时间变化的风产生的作用力所致。
塔科玛桥的悲剧发生之后,美国采用的确保悬索桥抗风稳定性的方法主要是两种。
一种是采用桁架加劲梁和开敞式的桥面使涡旋分散的方法,另一种是由自重增加刚度的方法。
北美抗风对策的实质是桁架和重量。
2. 欧洲抗风方式的改进欧洲的技术人员开始注意到了一种新的途径,例如采用扁平的翼型断面(Airfoil or Aerofoil Section)以减小风的作用力或者抑制涡旋的产生。
加劲梁由桁架向翼型断面箱梁的转变使悬索桥变得更加轻,更加经济了。
箱梁的另一个优点是和桁架相比,风的抗力仅为1/3,由于塔顶主缆传来的水平反力是由桥面系70%的风力而产生的,风的抗力减少至1/3,无疑对塔的设计带来很大的影响”。
采用这种方式的赛文桥由于忽视了悬索桥的重量而造的太轻了,在风作用和车辆行驶作用下,成为极敏感的结构。
风洞试验的结果,虽然没有出现塔科玛桥那样的破坏振动,但却总是常常出现发出嘎啦嘎啦响声的振动。
3. 20世纪末的悬索桥20世纪才真正是长大悬索桥的发展时期,日本架设了跨度近2 000m的世界第一的明石海峡大桥。
摘要三塔自锚式悬索桥是一种新结构形式,不仅省去了庞大的锚锭,相对降低了造价,外形也比较美观,因此应该会越来越受到人们的青睐,对中小跨径的桥梁设计来说,三塔自锚式悬索桥是一个适合的且有竞争力的桥型。
本文在总结国内外相关文献的基础上,以螺洲大桥为工程实例,对三塔自锚式悬索桥的力学特性以及各设计参数变化对内力的影响规律进行了仔细的研究,根据螺洲大桥三塔自锚式悬索桥的结构特点,采用桥梁有限元计算程序midas/civil对桥梁进行离散,建立了三塔自锚式悬索桥的空间有限元计算模型那个,对该桥进行了静、动力分析,对各种控制因素进行研究和比较,主要结论如下:(1)以螺洲大桥大桥为背景,研究了混凝土自锚式悬索桥的静力性能,分析比较了三塔自锚式悬索桥与地锚式悬索桥的差别,自锚式悬索桥的跨中弯矩和挠度均比地锚式悬索桥的要大一些,这主要是因为自锚式悬索桥主梁中存在着巨大的轴向压力,从而降低了主梁的刚度。
弹性理论和非线性有限元模型计算结果比较接近,对于中小跨径的自锚式悬索桥,弹性理论完全可以进行设计计算和分析。
(2)系统地研究了三塔自锚式矢跨比、桥塔塔高差异、桥面纵坡、加劲梁刚度、主塔刚度、主缆刚度、吊索刚度等结构参数变化对三塔自锚式悬索桥静力及动力特性的影响规律。
主梁的跨中挠度和弯矩均与主塔刚度、主缆和吊索的弹性模量成反比;与桥塔塔高差异、桥面纵坡成正比;增大加劲梁的抗弯惯性矩能有效减少主梁的跨中挠度,但同时也使主梁跨中的弯矩大大增加。
(3)基于有限元原理,建立了螺州大桥的动力计算模型,给出了螺洲大桥的前10阶频率和相应的振型。
从结果来看,该桥的自振周期较长体现了悬索桥的柔性结构的特性。
与同一跨径和结构参数的地锚式悬索桥相比混凝土自锚式悬索桥的自振周期长很多,说明自锚式体系要比同样结构参数的地锚式体系的刚度要小一些。
关键词:自锚式悬索桥;三塔;有限元;力学性能;AbstractThe three-tower self-anchored suspension bridge is a kind of new structural style. With no large anchor and its lower cost ,three-tower self-anchored suspension bridge is now catching more attention by its elegant shape. It has become a competitive design scheme in middle and small-span bridge .Base on the documents at home and abroad,regarding Luozhou three-tower self-anchored suspension bridge as project example ,the static force performance and dynamic behavior of three-tower self-anchored suspension bridge are systematically investigated in this paper .According to Louzhou three-tower self-anchored bridge’s structure characteristic,we use midas/civil finite element program,a space finite element calculated model was established. We anslysed its static、dynamical characteristic and compared various control parameter.The main conclusion covers the follwing aspects:(1) Based on Luozhou Bridge ,the static force performace of the three-tower slef-anchored suspension birdge is analyzed.The difference of between the three-tower eathe-anchored suspension bridge is revealed in this paper.Bending momnet and deflection at the span midpoint of the three-tower self-anchored are greater than those of the three-tower eathe-anchored suspension bridge.The reason is that the great axial pressure in the main beam of self-anchored decreases its stiffness.The result calculated with elastic theory is similar to the result calculated with finite elenment model.Elastic theory is applicable to middle-,and small-span self-anchored.(2) the influnece of different rise-span ratio,the tower's altitude,the stiffening girder’s gradient,the stiffness of the stiffening girder and main cable to the static force preformace and dynamic behaviior of three-tower self-anchored suspension bridge are systematically investigated .Bending moment and deflection at the span midpoint are inversely proportional to rise-span ratio and the stiffness of the cable,are proportional to the difference of tower’saltitude and the stiffening girder’s gradient.Enhancing the inertia moment of stiffening grider will decrease the deflection at the span midpoint;however,it will increase the bending moment of the span midpoint at the same time.(3)Based on Finite Element Method,the dynamic computation model of Louzhou Bridge is set up. The first 10 frequencies and corresponding vibration modes of Louzhou Bridge are given. According to the result,the natural period of vibration of this bridge is long.This proves the suppleness of suspension bridge.The natural period of vibration of the three-tower self-anchored suspension bridge is less the that of the earth-anchored suspension birdge with the same span and structure parameters.This indicates that the stiffness of three-tower self-anchored suspension bridge is less than that of earth-anchored suspension brige with the same span and structure parameters.Key words: suspension bridge; three towers;finite element method;mechanical properties目录摘要....................................................................................................................................... I ABSTRACT ....................................................................................................................... II 第一章绪论. (1)1.1 概述 (1)1.2 自锚式悬索桥计算理论 (3)1.2.1弹性理论 (3)1.2.2挠度理论 (4)1.2.3非线性有限元理论 (5)1.3 选题背景及意义 (6)1.4 本文的研究内容 (6)第二章三塔自锚式悬索桥体系选择 (8)2.1 概述 (8)2.2 螺洲大桥项目概况 (8)2.3 桥型选择 (8)2.3.1方案设计控制条件 (9)2.3.2桥型方案设计 (9)2.3.3方案比选 (12)2.4 本章小结 (13)第三章成桥状态设计 (15)3.1 概述 (15)3.2 主缆在竖向荷载下的计算 (15)3.3 基于MIDAS/CIVIL 2006的成桥状态分析 (16)3.3.1主缆线形粗略分析——节线法 (16)3.3.2自锚式悬索桥精确平衡状态分析 (17)3.3.4成桥状态初始内力分析 (19)3.4 本章小结 (22)第四章结构静力性能分析 (23)4.1 桥梁有限元模型 (23)4.1.1 螺州大桥设计技术指标 (23)4.1.2螺洲大桥基本参数 (23)4.1.3螺洲大桥有限元模型 (24)4.2 结构静力性能分析 (26)4.3 本章小结 (35)第五章结构动力特性分析 (37)5.1 动力模型的建立 (37)5.1.1 加劲梁的质量数据 (37)5.1.2 模态分析方法 (39)5.2 螺洲大桥动力特性分析 (39)5.3 三塔自锚式悬索桥与三塔地锚式悬索桥动力特性比较 (46)5.3.1 三塔地锚式悬索桥动力分析模型 (46)5.3.2 三塔地锚式悬索桥动力分析结构 (47)5.4 本章小结 (48)第六章结构参数及控制因素变化对三塔自锚式悬索桥影响的分析 (49)6.1 模型及分析采用的荷载工况 (49)6.2 非线性对三塔悬索桥的影响 (50)6.3 结构参数与控制因素的影响 (51)6.3.1 吊索(杆)初始索力变化对结构受力的影响 (51)6.3.2 矢跨比变化对结构受力的影响 (52)6.3.3 中、边塔不等高对结构特性的影响 (54)6.3.4 桥面纵坡对结构的影响 (57)6.4 刚度对受力特性的影响 (58)6.4.1 主缆的弹性模量对结构的影响 (59)6.4.2 吊索弹性模量对结构的影响 (60)6.4.3 加劲梁的竖向抗弯刚度对结构的影响 (62)6.4.4 加劲梁抗扭刚度对结构的影响 (64)6.4.5 桥塔刚度变化对结构的影响 (65)6.5 支座设置方式及加劲梁的形式对结构的影响 (67)6.6 主跨跨中设置中央支撑对结构的影响 (68)6.7 本章小结 (69)第七章结束语 (71)7.1 本文工作总结 (71)7.2 进一步设想 (72)致谢 (73)参考文献 (74)第一章绪论1.1概述悬索桥结构具有受力性能好、跨越能力大、轻巧美观、抗震能力强、结构形式多样及对地形适应能力好等特点,在许多跨越大江大河、高山峡谷、海湾港口等交通障碍物时,往往作为首选的桥型。
大跨度缆索承重桥的抗风性能与控制措施探讨建筑工程行业中,大跨度缆索承重桥是一类构筑物,其特点在于具备较高的承重能力和出色的适应性。
然而,在风力环境下,大跨度缆索承重桥面临着较大的挑战,其抗风性能的研究和实施措施的确定显得尤为重要。
本文将探讨大跨度缆索承重桥的抗风性能以及可行的控制措施,以便提供指导和参考。
首先,大跨度缆索承重桥的抗风性能。
由于缆索承重桥的结构特点,其自身的风荷载响应存在一定的困难。
因此,为了确保桥梁的风荷载响应能力,需要从以下几个方面进行考虑和研究。
其一,对大跨度缆索承重桥的风荷载进行准确的评估是关键。
通过对桥梁在不同风速下的风荷载进行测算和分析,可以为后续的分析和控制措施的制定提供基础。
这涉及到风压力分布、风速梯度、地形阻挡以及周边环境等因素。
建立合适的风洞试验模型以及数值模拟方法,能够更好地揭示大跨度缆索承重桥的风荷载特性。
其二,针对大跨度缆索承重桥的抗风控制措施需要精确而全面。
常用的控制措施包括桥梁结构的设计和优化、支座设计、缆索预应力调整、风致振动控制等。
其中,关键的控制策略是通过设计和优化结构以提高桥梁的自身稳定性,减小风荷载对桥梁的影响。
选用合适的材料以及结构形态,增加桥梁的刚度和稳定性,从而提高其抗风性能。
其三,为了保证大跨度缆索承重桥的长期稳定,需进行全面的监测和检修措施。
通过对桥梁的定期巡检以及振动检测等手段,可以及时发现桥梁结构存在的问题,并采取相应的维护和修复措施。
此外,将新的监测技术应用于桥梁的抗风性能评估和动力响应分析也是一个不错的选择。
总结起来,大跨度缆索承重桥的抗风性能与控制措施是一个复杂而重要的研究课题。
通过合理的风荷载评估、控制措施设计和全面的监测检修,可以提高大跨度缆索承重桥的抗风能力,确保桥梁的安全稳定运行。
然而,在实际工程中,还需考虑与风荷载相对应的温度影响、综合应力耦合效应等因素,以进一步完善抗风设计和控制措施。
作为建筑工程行业的教授和专家,我希望通过本文的探讨,能够让读者对大跨度缆索承重桥的抗风性能有更深入的了解,并理解可行的控制措施。
大跨径悬索桥施工及成桥阶段抗风措施研究作者:庞凌飞来源:《大经贸》 2019年第7期庞凌飞【摘要】在海拔较高的险峻山区跨越地形或在河网海滨地区连接两岸时,常选择设计和建造大跨径悬索桥,因其本身柔度大,大跨径悬索桥的抗风稳定性成为要重点注意的问题。
本文主要从大跨径悬索桥施工和成桥两个阶段讨论桥梁的抗风性能。
【关键词】大跨径悬索桥施工阶段成桥阶段抗风研究0 引言随着交通量的增长,在江河沿海及高山峡谷地区修筑跨越地形的桥梁的需求日益增加。
作为大跨径,施工工期较短的悬索桥成为常见选择。
但因其柔度大,且多修筑于风场条件复杂的山区或河网地区,抗风问题成为悬索桥工程实践中讨论的重点。
而在施工阶段和程桥阶段,其本身的动力响应特性也有区别,本文着眼于此,查阅了现阶段已有的相关研究资料,作出讨论及总结。
1 施工阶段的风振特点及抗风措施1.1 施工阶段风振特点悬索桥作为一种柔性的大跨度结构,对其抗风性能的考虑一直是工程建设中的重点。
而在施工阶段,其本身未形成完整的结构,整体稳定性能相比成桥阶段较低。
尤其在主梁架设时,结构刚度及风稳定性往往更低。
根据现阶段已有研究,本节主要对施工阶段主梁假设对悬索桥抗风性能的影响抗风性能作讨论,对它们在主梁拼装阶段的风稳性进行综合评价,得出以下结论。
(1)在主梁假设的最初阶段,由于组合在吊揽上的梁段少,其本身不足以产生较大的气动力,缆索系统对其约束效应明显,因此对整体结构的气动性影响较小。
此时段内,桥梁整体的风稳性较好。
(2)当主梁假设率约在整体的百分之十到百分之二十之间时,梁段已经产生了足够的气动力,而缆索系统对其约束力较小,梁体自身刚度不足,已假设梁段对整体风稳性影响较大,由此造成整体抗风性能较弱。
此阶段即整个施工过程中颤振风速最低阶段。
(3)当主梁拼装率达到约百分之四十后,整体抗风性趋于稳定。
但在百分之六十到百分之八十之间时,又有一次较小回落,是由于此时期结构整体抗扭刚度有所减小。
刍议大跨径悬索桥抗风问题及风振措施摘要:随着现代桥梁技术的不断提升,大跨径悬索桥的应用越来越多,跨径记录也被不断打破。
悬索桥相对于其他结构形式的桥梁而言,其更容易受到风力的影响,尤其是对于大跨径悬索桥而言,风力作用下引起的各种振动对于桥梁的稳定性会造成极大的影响。
因此,如何提升抗风问题成为了大跨径悬索桥在设计时的重点问题。
文章对悬索桥进行了详细的风振分析,并在此基础上对如何提升大跨径悬索桥抗风能力展开了讨论。
关键词:悬索桥,风振,桥梁稳定性前言在所有桥梁结构中,悬索桥的跨越能力是最突出的,在跨江、跨海、跨山谷等方面有重要的应用。
这种桥梁结构主要依赖于缆索支撑体系,因此其非线性特性非常明显。
正是由于这种特性,因此其在风力荷载的作用下动力响应问题也相较于其他结构桥梁更加明显。
在早期的悬索桥设计中,由于对风载作用的考虑不够全面,因此设计出来的桥梁安全性存在明显的缺陷,引发了众多安全事故,造成了极大的经济损失和人员伤亡。
因此,当前悬索桥设计时尤其是大跨径悬索桥设计的过程中,相关人员非常重视桥梁的抗风问题。
文章以悬索桥风振类型出发,对桥梁自身的结构特征风载响应特征进行了归纳,并在此基础上提出了若干风振减弱措施,强化大跨径悬索桥的抗风设计方法和内容。
1.悬索桥风振分析从结构上来看,悬索桥是一种柔性结构,在风力荷载的情况下,其受力情况和振动方式具有多变性。
在经过了长期的实验探究后,人们对这种柔性结构的振动现象有了较深刻的认识。
并根据各种振动的特性制定了具有针对性的控制措施,具体如下:1.1 抖振抖振的本质是一种结构性强迫振动,其引起的原因是脉动风。
这种振动引起的原因可以概括为两种:(1)风本身的不规则性使得气流的方向和速度较为紊乱,这种紊乱的气流直接作用在桥梁结构上,引起的强迫性振动。
(2)在桥梁周围存在山体、建筑等,气流流经这些遮挡物时产生了紊乱的气流,这些气流简介作用在桥梁结构上,引起强迫性振动。
从振动的幅度上来看,由于抖振的起因是紊乱的气流,其方向是多变的,不会有明显的方向性,因此引起的桥梁振动幅度较小,一般不会直接给桥梁造成非常严重的结构性破坏,但是可能使得桥梁的部分结构变形,影响桥梁上通行人员的舒适度。
大跨径悬索桥施工及成桥阶段抗风措施研究近年来,随着我国经济的快速发展,大跨径悬索桥的建设逐渐增多,同时也增加了悬索桥建设中所面临的风险。
风是悬索桥施工及成桥阶段的主要风险因素之一,会对悬索桥的结构安全和施工进度产生极大影响。
因此,在大跨径悬索桥的施工及成桥阶段,必须采取相应措施预防和应对风险,确保悬索桥建设的顺利进行。
1、预测和监测风速在施工现场设置气象站,对风速进行实时监测,并根据气象预报来预测风力,确保在风力达到一定等级时采取相应措施,以保障施工安全。
2、加强钢丝绳固定钢丝绳是悬索桥的主要承载组件,其固定紧固牢固与否直接关系到悬索桥的结构安全。
在施工阶段,应加强钢丝绳的固定,采用双向拉力固定方式,避免钢丝绳因风力而松脱,从而保证悬索桥的结构稳定性。
3、加强施工安全监管钢丝绳的预应力施工是悬索桥施工的关键步骤,在预应力施工过程中,应加强安全措施,对钢丝绳的工作状态进行实时监测,确保钢丝绳的预应力施工过程安全可控。
4、钢缆拦挡绳的设置在施工现场设置一定数量的钢缆拦挡绳,以防止悬索索的“翻飞”现象,这样可以减轻大跨径悬索桥施工中的风险,避免步步惊心的情况。
5、加强插车操作插车作业是悬索桥施工过程中比较危险的环节之一,因此,在插车作业中,应加强对风力的监测和预测,并根据风力等级对施工人员进行安全教育,以降低插车作业风险。
同时,还应有专门的人员对插车进程进行监管,确保插车操作的安全进行。
针对大跨径悬索桥成桥阶段风险较高的情况,应加强气象预报和监测,对风速进行实时监测,确保在风力达到一定等级时采取相应措施,以避免悬索桥受到损坏和影响成桥时间。
3、加强悬索索的防折断措施在成桥阶段,悬索索会处于临界状态,非常易于发生断裂现象,因此必须采取防折断措施。
在成桥阶段,可采用加装悬索索挡板的方式进行防折断,避免风力将悬索索挡板吹动而影响成桥时间和安全性。
4、定期巡查和维修在大跨径悬索桥的成桥阶段,仍然需要进行定期巡查和维修工作,发现问题及时处理,以确保悬索桥长期稳定性和安全性。
大跨径悬索桥施工及成桥阶段抗风措施研究大跨径悬索桥是一种大型跨海、河、峡等水体的大型跨度桥梁,在其施工及成桥阶段,受风力影响较大。
在悬索桥的设计与施工中,需要考虑并采取相应的抗风措施,以确保大跨径悬索桥的安全性和稳定性。
本文将重点探讨大跨径悬索桥施工及成桥阶段的抗风措施研究。
一、大跨径悬索桥施工阶段的抗风措施研究1. 风险评估在大跨度悬索桥的施工前,需要进行全面的风险评估,包括对施工场地的风力状况进行详细的分析和评估,以确定施工中可能面临的风险,为制定合理的抗风措施提供依据。
2. 施工工艺调整针对大跨度悬索桥施工的特点,可以采取一些工艺调整措施,以减小风对施工造成的影响。
在施工现场悬挑钢梁时,可选择在风力较小的时间段进行,或者采取加固、增加支撑等措施,以确保施工的稳定性。
3. 安全防护设施在施工现场设置必要的安全防护设施,比如加固施工平台、加装抗风设施等,避免风力对施工人员和设备的影响,确保施工作业的安全进行。
二、大跨径悬索桥成桥阶段的抗风措施研究1. 成桥工艺优化针对大跨径悬索桥的成桥阶段,可以针对不同的成桥工艺优化抗风措施。
在主梁吊装过程中,可以选择在风力较小的时间段进行,精心安排吊装作业,减小风力对吊装过程的影响。
2. 风力监测系统在成桥阶段建立完善的风力监测系统,实时监测风力变化的情况,及时发现风力变化并做出相应的调整,以确保成桥作业的安全性。
3. 抗风设施设置在大跨径悬索桥成桥阶段,可设置一些抗风设施,比如加固支撑、增加加固材料使用量等,以应对可能出现的大风天气,确保成桥作业的持续进行。
三、大跨度悬索桥抗风措施研究的例子例1:香港青马大桥大跨度悬索桥施工阶段的抗风措施青马大桥是香港的一座重要桥梁,其大跨度悬索桥的施工阶段,面临着严峻的风力挑战。
为此,工程团队采取了一系列抗风措施,包括在施工前进行全面的风险评估、优化施工工艺、采用专业的风力监测系统、设置安全防护设施等措施,最终顺利完成了青马大桥的悬索桥部分的施工阶段。