桥梁抗风设计课件
- 格式:pptx
- 大小:929.70 KB
- 文档页数:31
土木工程中的桥梁抗风设计技术桥梁作为连接两地交通的重要通道,在土木工程中占据着举足轻重的地位。
然而,在桥梁的设计和建设过程中,抗风是一个不可忽视的重要因素。
本文将介绍土木工程中的桥梁抗风设计技术,重点分析桥梁的抗风设计原则、设计方法和常用技术。
一、桥梁抗风设计原则在土木工程中,桥梁抗风设计的原则是保证桥梁在遭受风力作用时能够保持结构的稳定和安全。
具体而言,桥梁抗风设计需要考虑以下几个方面:1. 桥梁的形状设计:合理的桥梁形状设计可以减小桥梁受风的面积,降低风力对桥梁的影响。
例如,在大跨度桥梁的设计中,采用空腹箱梁或曲线形状的桥面板可以减小风阻力,提高桥梁的抗风性能。
2. 桥墩和支座的布置:桥墩和支座的布置对桥梁的抗风性能有着重要影响。
合理的桥墩布置可以增加桥梁的稳定性,减小风力对桥梁的作用力。
同时,在桥梁的设计中还需要考虑桥墩的高度和断面形状,以减小斜向风对桥梁的冲击力。
3. 桥面横向刚度的设计:桥面横向刚度对桥梁的抗风性能起着至关重要的作用。
适当增加桥面的横向刚度可以提高桥梁的自振周期,减小动力响应,增加桥梁的抗风能力。
二、桥梁抗风设计方法基于桥梁抗风设计原则,桥梁的抗风设计方法也日趋成熟。
常用的桥梁抗风设计方法包括静力分析和动力分析两种。
1. 静力分析:静力分析是桥梁抗风设计中较为简单和常用的分析方法。
它通过对桥梁结构所受风力的静力平衡分析,确定桥梁在不同风速下的受力状态,进而判断桥梁是否满足设计要求。
静力分析方法在桥梁设计初期用于快速评估桥梁的抗风能力具有一定的优势。
2. 动力分析:动力分析是桥梁抗风设计中较为精确和全面的分析方法。
它通过考虑风力的频谱特性,结合桥梁结构的固有振动特性,综合计算桥梁的响应和变形情况。
动力分析方法可以更加准确地评估桥梁的抗风性能,并对桥梁的关键部位进行优化设计。
三、常用的桥梁抗风技术为了提高桥梁的抗风性能,土木工程师们还开发了许多创新的桥梁抗风技术。
下面介绍两种常用的技术:1. 风洞试验技术:风洞试验是桥梁抗风设计中常用的实验方法,通过模拟真实风场的风洞试验,获取桥梁结构在不同风速下的受力和变形情况。
桥梁及结构风振理论及其控制——之第十三讲桥梁抗风设计主讲教师:葛耀君博士.教授1、设计风速定义2、气动参数识别3、动力特性分析4、静风性能检验5、风振性能检验6、抗风性能改善7、抗风设计发展¾1.设计风速定义1.1平均风速()()()()果桥位专门风速仪纪录结计分析气象站历年风速纪录统桥梁和建筑结构不同全国基本风压图方法用三种方法确定参考风速,目前主要采—参考风速离地高度—地表粗糙度指数— 3 2 )( 1 R R R R d U z z z U z U αα⎟⎟⎠⎞⎜⎜⎝⎛=1.2 阵风风速()()z U G z U d v g = 1.70.IV III 1.38;II I : .,G v 类和类和南》《公路桥梁抗风设计指风洞试验确定可按有关规范或风环境阵风因子— 1.3 紊流强度u w w w u v v v u u I 5.0I UI I 88.0I UI UI =σ==σ=σ=按—按—的数值可按规范确定特征高度—1.4 脉动风谱()()()())( 416 :)(501200 :22*3/52*谱垂直方向谱水平来流Panofsky f f u n nS Simiu f f u n nS w u +=+= 1.5 相关函数()21~7 exp , :=Δ⎟⎟⎠⎞⎜⎜⎝⎛Δ−=Δλλλγ衰减系数,—空间相对位置坐标—特征频率—空间相关性r f U r f r f d¾2. 气动参数识别2.1 断面流迹显示2.2 Stroughl 数识别识别方法物理风洞试验方法数值风洞试验方法(CFD 方法)等压线、等速线、表面粒子(1) 烟雾照相(2) 数值模拟(1) 尾流涡脱卓越频率测量(2) CFD 数值模拟计算UfB S t =2.3 静力系数识别αραραρd dC F BU C d dC F B U C d dC F B U C M M M D D D L L L , : , : , :2221221221⋅=⋅=⋅=升力矩系数阻力系数升力系数(1) 节段模型测力试验(2) CFD 数值模拟计算三分力系数也可表示成体轴系数座标,Mz y C C ,C 和2.4 气动导数识别()()()6 5, 4, 3, 2, ,1 :6 5, 4, 3, 2, ,1 :6 5, 4, 3, 2, ,1 :===i A i P i H *i*i*i升力矩方向阻力方向升力方向(1) 节段模型测振试验(2) CFD 数值模拟计算大多数情况下气动导数值()4 321 **,, , i A H ii =和¾3. 动力特性分析3.1 结构计算模型(1) 按施工阶段划分(缆索承重桥梁)(a) 桥塔自立状态(b) 主要拼梁状态(c) 全桥成桥状态(2) 按主梁离散划分(a) 单梁式(b) 双梁式(c) 三梁式3.2 结构振型描述(1) 按对称性划分—对称和反对称(2) 按特征值划分—一阶、二阶、…(3) 按振动特性划分—侧向弯曲、竖向弯曲、扭转3.3 基本振型分析(1) 同类桥梁固有频率比较(2) 扭弯频率比(3) 对称或反对称振型出现次序(4) 扭转振型耦合特征¾4. 静风性能验算4.1 静风稳定性—扭转发散扭转发散临界风速(1) 二维计算模型(2) 三维计算模型 4.2 静风强度荷载最不利组合问题(1) 平均风荷载(2) 脉动风荷载 4.2 静风刚度(1) 侧向静风位移(2) 竖向静风位移(3) 扭转静风位移(较小)¾5. 风振性能检验5.1 风振稳定性5.2 风振强度(1) 驰振临界风速(2) 扭转颤振临界风速—变号(3) 耦合颤振临界风速—竖弯和扭转耦合*2A (4) 涡激共振锁定风速(1) 抖振引起的强迫力荷载(2) 涡振引起的自激力荷载荷载最不利组合5.3 风振刚度(1) 抖振位移(a) 统计分析方法(b) 节段模型试验法(c) 全桥模型试验法(2) 涡振位移(a) 理论模型计算法(b) 节段模型试验法(c) 全桥模型试验法¾6. 抗风性能改善6.1 桥梁抗风性能(1) 主梁风振失稳(驰振、颤振)绝对避免(2) 主梁涡激振动尽量避免(3) 主梁抖振一般不作控制(4) 拉索风振或雨振尽量避免6.2 主梁性能改善措施(1) 结构措施—刚度、质量、约束(2) 外形措施—导流、开槽、分流(中央稳定性),裙板等(3) 阻尼措施—TMD、主动、半主动等6.3 拉索性能改善措施(1) 表面处理—刻痕、螺旋线等(2) 内置阻尼器—锚箱内(3) 外置阻尼器—离索端一定距离(4) 稳定索系—交叉索等¾7. 抗风设计发展(1) 概率性评价和可靠性分析(2) 等效风荷载问题(3) 基于结构性能(舒适度)的抗风设计(4) 风振疲劳问题(5) 斜拉桥拉索振动控制(6) 考虑周边地形影响的风振问题下周同一时间再见!。
钢筋混凝土桥梁结构抗风设计钢筋混凝土桥梁是现代交通建设中最为常见且重要的结构形式之一。
在桥梁建设中,抗风设计是一个至关重要的环节。
本文将就钢筋混凝土桥梁结构的抗风设计进行探讨。
一、引言抗风设计是确保钢筋混凝土桥梁结构在恶劣气象条件下能够安全运行的关键要素之一。
随着桥梁设计理念不断创新与进步,抗风设计也变得越来越重要。
二、风荷载的计算方法钢筋混凝土桥梁结构的抗风设计首先需要计算风荷载。
目前,常用的风荷载计算方法有理论计算法、风洞模型试验法和数值模拟法。
1. 理论计算法理论计算法是通过计算结构在风场中的受力情况来确定风荷载。
这种方法依赖于风荷载规范的相关理论,通常适用于规模较小的桥梁。
2. 风洞模型试验法风洞模型试验法是通过在风洞中对桥梁模型进行模拟试验,以获取风对桥梁结构的荷载参数。
这种方法适用于规模较大、形状复杂的桥梁。
3. 数值模拟法数值模拟法基于计算流体力学原理,通过建立桥梁结构的数值模型,并应用CFD软件进行模拟计算,来获取风荷载。
这种方法适用于各种桥梁结构。
三、桥梁结构的风荷载分析在抗风设计中,需要对桥梁结构的风荷载进行分析。
这包括对风速、风压分布以及风荷载的大小进行研究。
1. 风速与风压分布风速与风压分布是指在桥梁周围空域内的风力特征。
一般来说,离地面越高,风速越大,风压越大。
这种分布规律对于桥梁结构的抗风设计非常重要。
2. 风荷载大小的确定风荷载的大小取决于多个因素,包括桥梁结构的特性、地理位置、风场条件等。
通过对这些因素进行考量和计算,可以确定桥梁结构所承受的最大风荷载。
四、抗风设计措施为了确保钢筋混凝土桥梁结构能够在恶劣气象条件下安全运行,需要采取一系列的抗风设计措施。
1. 结构形式设计在钢筋混凝土桥梁的结构形式设计中,应尽可能选择流线型的断面形状,减小风的阻力。
同时,合理设置桥面、桥墩等结构,以增加桥梁结构的稳定性。
2. 材料选择与构造设计在桥梁的材料选择和构造设计中,要考虑到材料的抗风性能。