活塞式压缩机性能测定.
- 格式:doc
- 大小:212.50 KB
- 文档页数:7
天津市高等教育自学考试模具设计与制造专业热工基础与应用综合实验报告(一)压气机性能实验主考院校:专业名称:专业代码:学生姓名:准考证号:一、活塞式压气机概述1.活塞式压气机结构及工作原理(1)活塞式压气机结构压气机在现代工业以及现代人的生活中被越来越多的广泛应用,不论是汽车上的涡轮增压系统还是航空航天发动机中的涡喷应用,随着技术的不断革新,其结构、性能也在不断的优化、提高。
本实验旨在通过对简单形式的压气机,进行结构、工作原理以及性能的实验,以达到验证并深刻理解、掌握热工学课程中所学得的知识并应用于实际生产实践中。
本次实验所用压气机为“活塞式压气机”,现就其结构及特点作简要说明。
活塞式压气机是通用的机械设备之一,是一种将机械能转化为气体势能的机械。
图1.1 活塞式压气机机构简图图1-2 三维仿真示意图(2)活塞式压气机工作原理:电机通过皮带带动曲柄转动,由连杆推动活塞作往复移动,压缩汽缸内的空气达到需要的压力。
曲柄旋转一周,活塞往复移动一次,压气机的工作过程分为吸气、压缩、排气三步。
具体为:在气缸内作往复运动的活塞向右移动时,气缸内活塞左腔的压力低于大气压力pa ,吸气阀开启,外界空气吸入缸内,这个过程称为压缩过程。
当缸内压力高于输出空气管道内压力p后,排气阀打开。
压缩空气送至输气管内,这个过程称为排气过程。
这种结构的压缩机在排气过程结束时总有剩余容积存在。
在下一次吸气时,剩余容积内的压缩空气会膨胀,从而减少了吸人的空气量,降低了效率,增加了压缩功。
且由于剩余容积的存在,当压缩比增大时,温度急剧升高。
特别的是,单级活塞式空压机,常用于需要 0 . 3 — 0 . 7MPa 压力范围的系统。
压力超过 0 . 6MPa ,各项性能指标将急剧下降。
故当输出压力较高时,应采取分级压缩。
分级压缩可降低排气温度,节省压缩功,提高容积效率,增加压缩气体排气量。
活塞式空压机有多种结构形式。
按气缸的配置方式分有立式、卧式、角度式、对称平衡式和对置式几种。
制冷压缩机性能实验一、实验目的1、了解压缩机性能测定的原理及方法;2、了解蒸气压缩式制冷的循环流程及各组成设备;3、测定蒸气压缩式制冷循环的性能;4、理解与认识回热循环;5、比较单级蒸气压缩制冷机在实际循环中有回热与无回热性能上的差异;6、熟悉实验装置的有关仪器、仪表,掌握其操作方法。
二、实验原理1、单级蒸气压缩制冷机的理论循环图1显示了压力一比焓图上单级蒸气压缩制冷机的理论循环。
压缩机吸入的是以点1表示的饱和蒸气,1- 2表示制冷剂在压缩机中的等熵压缩过程;2-3表示制冷剂在冷凝器中的等压放热过程,在冷却过程2 2中制冷剂与环境介质有温差,放出过热热量,在冷凝过程2 3中制冷剂与环境介质无温差,放出比潜热,在冷却和冷凝过程中制冷剂的压力保持不变,且等于冷凝温度T K下的饱和蒸气压力P K ; ( 3 3)是液态再冷却放出的热量;3 -4表示节流过程,制冷剂在节流过程中压力和温度都降低,且焓值保持不变,进入两相区;4- 1表示制冷剂在蒸发器中的蒸发过程,制冷剂在温度T o、饱和压力P o保持不变的情况下蒸发,而被冷却物体或载冷剂的温度得以降低。
I .1 L I心"㈡二声已图1为了使膨胀阀前液态制冷剂的温度降得更低(即增加再冷度) ,以便进一步减少节流损失,同时又能保证压缩机吸入具有一定过热度的蒸气,可以采用蒸气回热循环。
图3示为来自蒸发器的低温气态制冷剂1,在进入压缩机前先经过一个热交换器一一回热器。
在回热器中低温蒸气与来自冷凝器的饱和液体3进行热交换,低温蒸气1定压过热到状态1',而温度较高的液体3被定压再冷却到状态3',回热循环1'—2' —3—3—4' —1 —1'中, 3—3'为液体的再冷却过程,过热后的蒸气温度称为过热温度,过热温度与蒸发温度之差称为过热度。
根据稳定流动连续定理,流经回热器的液态制冷剂和气态制冷剂的质量流量相等。
一、目得要求1.了解往复活塞式压缩机得结构特点;2.了解温度、压差等参数得测定方法,计算机数据采集与处理;3.掌握压缩机排气量得测定原理及方法;4.掌握压缩机示功图得测试原理、测量方法与测量过程;5.了解脉冲计数法测量转速得方法;6.掌握测试过程中,计算机得使用与测量。
单作用压缩机工作原理图二、实验仪器、设备、工具与材料往复活塞式压缩机性能测定实验验装置简图1-消音器2-喷嘴3-压力传感器4-温度传感器5-减压箱6-调节阀7-压力表8-安全阀9-稳压罐10-单向阀11-温度传感器12-压力传感器13-温度传感器14-吸入阀15-控制柜16-计算机17-接近开关18-冷却水排空阀19-进水阀20-排水管注:图中虚线为信号传输线三、实验原理与设计要求活塞式压缩机原理示意简图1.活塞压缩机排气量得测定实验得实验原理用喷嘴法测量活塞式压缩机得排气量就是目前广泛采用得一种方法。
它就是利用流体流经排气管道得喷嘴时,在喷嘴出口处形成局部收缩,从而使流速增加,经压力降低,并在喷嘴得前后产生压力差,流体得流量越大,在喷嘴前后产生得压力差就越大,两者具有一定得关系。
因此测出喷嘴前后得压力差值,就可以间接地测量气体得流量。
排气量得计算公式如下:式中:q V:压缩机得排气量,m3/min,C:喷嘴系数,根据喷嘴前后得压力差,喷嘴前气体得绝对温度,在喷嘴系数表中查取,见本实验教材;D:喷嘴直径,D=19、05mm:H:喷嘴前后得压力差,mmH20;p0:吸入气体得绝对压力,Pa;T0:压缩机吸入气体得绝对温度,K;T1:压缩机排出气体得绝对温度,K。
通过测量装置,计算机采集吸入气体温度T0、排出气体温度T1、喷嘴压差H,并由计算机已存储得喷嘴系数表,计算出喷嘴系数,用上述公式计算出排气量q V。
2.传感器得布置与安装排气量得测试需要测量出喷嘴前后得压力差、环境温度、排气温度三个参数,因此需要安装测量这三个参数得传感器。
它们得布置如图1-2所示。
往复活塞式压缩机性能测定实验在工业生产和家庭生活中,活塞式压缩机扮演着非常重要的角色。
它们被广泛应用于制冷、空调、压缩空气等领域,为我们提供了舒适的环境和高效能的工作条件。
然而,为了确保这些压缩机工作的稳定性和性能的可靠性,进行性能测定实验是必不可少的。
为了了解往复活塞式压缩机的性能特点和工作参数,我们需要进行一系列的实验来验证其性能。
首先,我们可以进行压缩比和容积比实验。
在这个实验中,通过测量进气口和排气口的压力,我们可以计算出活塞在压缩过程中所做的功。
同时,我们还可以测量压缩过程中的温度变化,以评估压缩机的换热性能。
除了压缩比和容积比实验,我们还可以进行能力试验和效能试验。
能力试验是指通过测量压缩机的输出功率和输入功率来评估其工作能力。
输入功率可以通过测量压缩机的电流和电压来计算得出,输出功率可以通过测量压缩机输出的功率来得到。
效能试验则是通过测量压缩机的排气温度和容积流量来评估其能量转化效率。
在所有这些实验中,测量的准确性是非常重要的。
为了保证结果的准确性,我们应该选择合适的测量仪器,并根据实验原理和步骤进行操作。
同时,我们还需要预先做好实验条件的控制,如保持恒定的气体质量和温度等。
只有在严格的实验条件下进行实验,才能得到准确可靠的结果。
除了以上的实验,我们还可以对活塞式压缩机进行噪音测试和振动测试。
噪音测试可以通过测量压缩机产生的噪音级来评估其声音水平。
振动测试则可以通过测量压缩机产生的振动强度来评估其振动情况。
这些测试可以帮助我们评估压缩机在工作过程中的稳定性和可靠性。
总之,进行往复活塞式压缩机性能测定实验对于确保压缩机工作的稳定性和性能的可靠性非常重要。
通过这些实验,我们可以深入了解活塞式压缩机的工作原理和性能特点,为产品的研发和应用提供依据。
同时,通过实验结果的分析和比较,我们可以进一步改进压缩机的设计和制造工艺,提高其效能和可靠性。
压缩机检测方法和参数—压缩机性能测试一、前言制冷压缩机是制冷装置中最主要的设备,是制冷系统的动力装置和主机,相当于制冷机的心脏。
它使制冷剂在系统的管路中循环,把来自蒸发器的低温低压制冷剂蒸汽压缩成高温高压的制冷剂蒸汽再排入冷凝器。
压缩机的作用可总结为:1)从蒸发器中吸出蒸汽,以保证蒸发汽内一定的蒸发压力。
2)提高压力(压缩)以创造在较高温度下冷凝的条件。
3) 输送制冷剂,使制冷剂完成制冷循环。
压缩机性能的好坏直接影响到整机的制冷效果。
而且,压缩机与制冷系统的匹配是否合理,不但涉及到整个装置的成本,而且对使用寿命和能耗均有影响,所以对压缩机的性能及有关参数的测试是非常有必要的。
对 压缩机性能的测试主要是测定压缩机运行时相关温度、压力、液位、转速、功率、振动、噪声、制冷剂流量、制冷量,其中制冷剂流量、制冷量及规定工况下的制冷 量是测试的重点。
压缩机测试完后,需要对测试数据参照国家标准进行判断分析,以找出压缩机结构设计中问题,或者判断该压缩机是否运行良好。
本文将先对压缩机的测试原理、方法和相关规定做一个简单介绍,然后对测试过程进行描述,并对测试后数据进行分析、评价。
以此对压缩机检测与分析的全过程进行描述和分析,不到之处,请大家批评指正。
二、压缩机测试的相关规定为保证测试的统一性和结果的可靠性,国家规定了压缩机测试的相关标准,而该标准也即国际标准ISO 917-1974 中的《制冷压缩机的试验标准》。
2.1 一般规定2.1.1 排除试验系统内的不凝性气体.确认没有制冷剂的泄漏.2.1.2 系统内应有足够的符合有关标准规定的制冷剂.压缩机内保持正常运转用润滑油量.2.1.3 循环的制冷剂液体内含油量应不超过2%(以质量计).2.1.4 压缩机吸、排气口的压力一温度在同一部位测量,该测点应在吸、排气截止阀外(不带阀的封闭压缩机为距机壳体)0.3m的直管段处。
2.1.5 排气管道上应设置有效的油分离器.2.1.6试验系统装置的周围不应有异常的空气流动。
实验五压缩机指示图、排气量、轴功率测试与计算机控制一、实验目的及要求1 学会使用计算机测试装置测绘压缩机指示图,懂得使用机械式弹簧指示器测绘压缩机指示图。
2 学会应用所录取的指示图分析压缩机运行工况的方法,从而加深对压缩机工作原理和性能的理解,并计算出压缩机的主要性能参数。
3 了解计算机测控系统和相关仪器仪表的的基本原理和使用方法。
4 了解压缩机及其装置的基本结构及作用、正确的运行程序和注意事项。
二、实验原理1.指示图及其形式活塞式压缩机的指示图是反映压缩机在一个工作循环中活塞在不同位置时气缸内气体压力变化的曲线,亦称气体力图。
根据录取的指示图可对压缩机的工作过程作一系列的分析计算。
例如,根据指示图面积可计算出气缸内平均指示压力、指示功率及气阀功率损失;根据吸入线长度可计算出容积系数λv;根据最高压力和最低压力可计算出气缸内的实际压力比;根据气体压力和活塞面积,可计算出产生的作用力,并以此作为动力计算及强度校核的依据;根据指示图还可分析压缩机的故障。
例如,根据指示图的形状可以分析判断气阀、活塞环、填料函等的泄漏情况;进排气过程的压力损失情况;压缩机膨胀的热交换情况等,从而根据这些分析对压缩机进行故障诊断。
由此可见,压缩机指示图的测试是研究压缩机性能与运行工况的一种基本方法。
在录取指示图时,纵坐标表示压力p,横坐标根据测量方式的不同可分为用气体容积、活塞行程s、曲柄转角α或时间t来表示,所以指示图曲线有以下几种形式:1)p-v图(压力-容积图),它反映气缸内压力与气体容积间的关系2)p-s 图(压力-行程图),它反映气缸内压力与活塞行程间的关系3)p-α图(压力-转角图),它反映气缸内压力与曲柄转角间的关系4)p-t 图(压力-时间图),它反映气缸内压力与一个循环周期内不同时刻间的关系1)2)3)4)的本质是一样的,在一定条件下可以相互转换。
由于转角α=ωt,可以确定时间与转角的关系;根据活塞式压缩机动力学,知道活塞的位移x与转角α之间存在着一定的关系x=f(α);而气体容积v=x·F,式中F为活塞面积。
实验报告课程名称:____过程机械 _________指导老师:吴彩娟 _____成绩:__________________ 实验名称:___活塞压缩机性能测试 实验类型:近机械类实验___同组学生姓名:_李乔_________ 一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得一、实验目的和要求1. 通过实验对普通压缩机几个主要部件的一般结构及运转维护基本知识有初步了解。
2. 通过测绘示功图和一些数据的测量及整理,联想课堂中有关压缩机的实际工作循环、功率、效率及生产能力等知识,对压缩机基本性能有进一步体会。
3. 通过实验中测出并绘制示功图、计算图面积、测转速等,初步掌握各种传感器、变频器及转速表等的用法。
4. 通过实验中压缩机各信号的观测,对微机采集和处理信号有初步的认识。
二、实验内容和原理1. P -- V 示功图的测绘及压缩机循环指示功的计算示功图的测绘是由计算机及其测量系统完成的。
压缩机一侧专用齿轮由飞轮带动,并与飞轮同步转动,齿轮上均布 72个齿,齿轮旁装有传感器 1,当齿轮运转时,传感器 1会产生一系列脉冲信号。
为测量活塞的止点位臵,在齿轮侧面贴有一金属块,装有相应脉冲传感器 2,当该金属块经过传感器2时,产生脉冲信号,此时活塞恰好处于外止点位臵,即曲柄转角0=α。
此后曲柄每转过o5,传感器 1都会出现一个脉冲信号,只要测量该脉冲信号,就可知道曲柄的瞬态位臵,由此可根据下式测量计算出活塞的瞬态位臵x :x r l =-+--(cos )(sin )11122αλαr/l计算机在测得传感器1产生的某一脉冲信号后,应同步去读取压力传感器数值,然后等待下一个脉冲信号。
重复 72次,可得一系列相对应的x 和P 值,将这些点按一定比例绘制成曲线图,横坐标为活塞行程x (cm ),纵坐标为压力P (105Pa ),这就是 P -- V 示功图。
活塞式空气压缩机性能测试实验指导书一、实验目的通过实验了解活塞式空气压缩机排气量的测定方法和示工图的物理意义。
二、测量系统1、WS0.4/6型空压机2、储气罐3、缓冲器4、喷嘴5、U形管6、温度计7、GOS-622B型双轨迹示波器8、YD-15型动态电阻应变仪9、1151差压变送器9、JWC温度传感器上图为空气压缩机的流程图。
1-喷嘴 2-压差计 3-低压箱 4-导板 5-隔板 6-调压阀(微调)7-调压阀 8-储气罐 9-排液阀 10-水银温度计 11-安全阀 12-压力表①-测压点②-保温层③-测温点 d-喷嘴直径 D-低压箱直径 D>4d图14 空气压缩机设备图(1)活塞式压缩机排气管气流,呈脉动特性,且属于非稳定流动状态,为了消除或减少气流脉动的影响,在空气压缩机的排气管道上,必须安装一个容器足够大的缓冲器,测量时,一般利用与压缩机成套的储气罐作为缓冲器。
在储气罐后面安装压力调解阀,喷嘴节流装置和U型管压差计等,这样就可以进行压缩机排气量的测量,压力调解阀用以调节储气罐内的空气压力的大小。
(2)喷嘴节流装置、低压箱:由于储气罐后安装压力调节阀,致使调节阀后的气流出现涡旋,为了稳定气流,压力调节阀后安装低压箱,在低压箱内安装#字形隔板。
低压箱的尺寸要求如下:内径D 1≥4D(D 为喷嘴直径)且不得小于60cm ,长度L ≥40D ,如果总长度为上述推荐值的2-3倍,低压箱内可以不安装#字形隔板,在低压箱右侧端面4D 处的截面上,安装温度计和U 型管液柱式差压计,用来测量喷嘴前和喷嘴后的温度和压差值。
喷嘴直径9.52mm 。
喷嘴说明如图:图15 是测量小排气量的喷嘴 图16是测量大排气量的喷嘴 三、测量原理和方法测量空气压缩机的排气量,视被测压缩机的大小应使机器运转1.5-2小时以上,待参数稳定后方可进行。
记录不少于三套数据,每次间隔15分钟左右,记录以下数据:喷嘴前后的压差值H(mm 水柱) 喷嘴前后的温度t 1(℃)测量地点的大气压P 0 1.013×105 Pa 压缩机的第一级吸气温度t 0(℃) 压缩机的实际转速n (转/分) 根据上述五个数据计算排气量 绝对温度 喷嘴前 T 1=t 1+273(K ) 压缩机吸气 T 0=t 0+273 (K) 喷嘴系数根据喷嘴前的温度t 1和喷嘴前后的差压值(水柱mm ),由附录图1查出喷嘴线性,再由附录表1查出喷嘴系数 C 0=0.996计算排气量Q :Q = MIN M T P P P T CD BX /1026.1129311126*∆⨯- Tx1为室温T1为喷嘴前的气体温度。
压缩机效果评价标准
压缩机效果的评价标准主要包括以下几项:
1. 压缩效率:指压缩机在特定工况下的压缩效率,可以通过实验测定或计算得出。
压缩效率越高,说明压缩机的性能越好。
2. 能耗:压缩机的能耗是评价其性能的重要指标之一。
能耗越低,说明压缩机的效率越高,性能越好。
3. 噪音:压缩机的噪音也是评价其性能的重要指标之一。
噪音越低,说明压缩机的性能越好,对环境的污染越小。
4. 可靠性:压缩机的工作环境恶劣,因此可靠性是非常重要的评价标准之一。
需要选择具有高可靠性的压缩机,以保证生产线的稳定性和安全性。
5. 维护性:压缩机的维护性也是评价其性能的重要指标之一。
维护性越好,说明压缩机的可靠性越高,同时也降低了维护成本。
6. 寿命:压缩机的寿命也是评价其性能的重要指标之一。
寿命越长,说明压缩机的性能越好,同时也减少了更换压缩机的成本和麻烦。
综上所述,以上标准可以帮助您全面评价压缩机的性能,选择适合自己需求的压缩机。
“过程流体机械”实验教学大纲Process Fluid Machinery课程中文名称:过程流体机械课程英文名称:Process Fluid Machinery课程编码:ENPO3620实验学时:10学分:0适用专业:过程装备与控制工程先修课程:工程热力学,传热学,流体力学开课学院:化学工程与技术学院开课学期:第6学期教材及实验指导书:[1] 崔天生. 压缩机实验指导书. 西安交通大学讲义[2] 化机实验室. 化工机械实验指导书. 西安交通大学讲义,1994一、实验课程简介过程流体机械课程实验教学内容涉及活塞压缩机、风机、水泵三个方面,包括5个必修实验,共10学时;另开设4个选修实验,供有余力和有兴趣的学生拓展能力,或进行科研训练。
即:1. 活塞压缩机拆装实验,2学时。
2. 活塞压缩机性能测试及指示图录取实验,2学时。
3. 活塞压缩阀片运动规律测试实验,2学时。
4. 水泵性能测试实验,2学时5. 风机性能测试实验,2学时。
二、实验课性质、目的和任务性质:课程内实验目的:1. 培养学生在压缩机、风机、水泵等过程流体机械,即动设备方面的实验、研究基本技能,学习实验中的基本操作方法,了解此类设备的一般情况和特性。
2. 培养学生运用所学到的理论知识分析实验现象和初步解决实际问题的能力,从而巩固和拓展所学的理论知识,增强对书本知识的掌握效果和运用能力。
3. 培养学生严肃认真和实事求是的科学作风及科学态度。
任务:了解有关实验装置的构成及特点,了解有关测试仪器、仪表设备的功能和使用;记录有关的实验数据和曲线,完成数据和曲线的处理,写出实验报告。
三、实验课教学基本要求1. 实验前应认真阅读实验指导书,根据实验内容和要求,复习教科书中的有关章节或参考有关资料,预计所得的结果和有关曲线形态。
同时提出实验过程中应当注意和可能发生的问题,防止事故发生。
预习合格者方可参加实验。
2. 实验时以小组为单位进行,每组由5~8人组成,推选小组长一人,负责组织实验的进行以及人员分工。
关于用第二制冷剂量热器法进行制冷压缩机的性能测试钱大馨一. 概述制冷压缩机性能试验要测试的参数是:在一定工况下的压缩机质量流量和压缩机的功耗,以及由此派生出的能效比EER(制冷)或性能系数COP(制热)。
但通常不用压缩机的质量流量来表示压缩机的性能,而是用压缩机的制冷量来表示。
制冷量的定义为:“由试验直接测得的流经压缩机的制冷剂的质量流量,乘以压缩机吸气口的制冷剂气体比焓与排气压力对应的膨胀阀前制冷剂液体比焓的差之值。
”即:()11f g h h G Q −•=式中:Q :制冷量G :试验直接测得的流经压缩机的制冷剂质量流量h g1:规定工况下压缩机吸入的制冷剂气体比焓h fl :规定工况下压缩机排气压力对应的膨胀阀前制冷剂液体比焓 上述的比焓差是根据理论工况来计算的,因此计算得到的制冷量是与“由试验直接测得的流经压缩机的制冷剂的制冷流量”成正比的,但使用制冷量来表达,就与压缩机的使用条件联系起来了,比较直观。
这里有两个问题需要讨论:1.“排气压力对应的膨胀阀前制冷剂液体比焓”的制冷剂液体的温度没有规定,而是留给具体的压缩机标准或压缩机生产厂家去规定。
房间空调压缩机将标准工况下的这个温度规定为46.1℃。
2.“试验直接测得的流经压缩机的制冷剂的制冷流量”,如果试验工况偏离了理论上规定的工况,但偏差不大,则可以也需要作相应的修正。
修正公式如下:ff V V Q Qg 0110••= 式中:Q 0:规定工况下的制冷量V 1:压缩机吸气口制冷剂气体实际比容V g1:规定工况下压缩机吸入的制冷剂气体比容f :试验频率f 0:规定的工作频率二.制冷压缩机的试验工况以下工况唯一地确定了压缩机的性能,即确定了在该工况下的压缩机质量流量,除此以外,试验装置上其它参数对压缩机的性能均不产生影响,因而也无助于对压缩机性能的研究。
1.排气压力Pd ,为冷凝温度所对应的饱和压力。
在试验过程中,每一测量值与规定值之间的最大允许偏差应小于±1%,与平均值的最大允许偏差应小于0.5%。
活塞式压缩机性能测定实验指导书V3.0北京化工大学活塞式压缩机性能测定实验一、实验目的1.活塞式压缩机性能曲线测试压力比—排气量曲线(ε— Q )压力比—轴功率曲线(ε— Ne )压力比—效率曲线(ε—η)2.活塞式压缩机闭式示功图3.实验数据、实验曲线的显示存储和打印。
二、实验设备1.实验装置如图1所示。
2.压缩机性能参数:1)型号:TA-80型一级三缸风冷移动式空气压缩机;2) 气缸直径:D=80毫米×3个3) 活塞行程:S=60毫米=0.5立方米/分(额定工况下)4) 排气量:Q5) 轴功率:Nz<4千瓦(额定工况下)6) 回转速:n=875 rpm=0.8 Mpa(表)7) 额定排气压力:P23.三相交流异步电动机型号:Y112M-2FSY1) 额定功率 4 kW2) 转速 875 rpm3) 额定电压 V=380V4) 额定电流 I=8.2A5) 频率 50Hz6) 电机效率η=0.8827) 功率因数 cosφ=0.88=97%8) 皮带传动效率ηC4.辅助装置1) 控制箱和操作台2) 储罐:容积V=0.17米3;直径D=400毫米长度L=1.7米3) 低压箱及喷嘴喷嘴直径d=9.52 mm4) 导管及调节阀5.主要测量仪器及仪表1)喷嘴流量测量装置2)差压变送器3)压力变送器4)温度变送器5)磁电式齿轮转速传感器图1 空气压缩机性能实验装置简图1.喷嘴 2.差压变送器 3.温度变送器 4.出口调节阀 5.压力变送器6.压力变送器 7.气缸 8.电动机 9.电气控制箱 10.储气罐三、实验步骤1.方法:本实验用调节压缩机储罐出口调节阀来改变压力比ε大小,以得到不同的排气量、功率、效率;根据GB3853-83《一般用容积式空气压缩机性能试验方法》标准规定,采用喷嘴测量压缩机的排气流量,标准喷嘴系数为C。
2.步骤:1) 启动测量装置:启动计算机,运行“压缩机试验”程序,点击“试验”按钮进入试验条件输入画面,输入实验条件。
活塞式压缩机性能测定
一、实验目的
1学习测定活塞式压缩机排气量的基本方法,了解活塞压缩机工作性能及原理;
2 按公式计算活塞式压缩机的排气量,求出公式计算值与实测值的相对误差,并根据所学知识对产生误差原因进行讨论。
3 掌握用计算机测绘示功图的基本知识、并根据示功图分析压缩机的运转情况。
4 了解计算机进行压力、温度采样的基本方法。
二、实验原理
1 排气量的测定
我国多采用喷咀截流法测量压缩机的排气量 , 其测试装置和喷咀均应符合国家标准。
压缩机将吸入气体经压缩升压后,排入储气罐稳压,经调节阀进入低压箱降压整流,再经节流喷咀喷出,喷咀前后形成压差,压差值由压力传感器采集,喷嘴前气体温度由温度传感器采集,压缩机转数由霍尔接近开关得到,其数据在计算机控制界面上均有显示,据公式便可计算出该运转状态下的排气量。
2 示功图的测绘
通过在压缩机气缸盖上安装的压力传感器将气缸内的压力转变为微弱的电压信号,经过
ADAM3016调理模块处理信号之后,通过接线端子板及一根37pin 电缆连接线与PCL -818L 数据采集板相连。
环境温度等其他参数通过相应的传感器及变送器,以相同的连接方式进入数据采集板。
皮带轮附近安装有霍尔接近开关,皮带轮与接近开关在压缩机曲轴每旋转一周开始的时候,产生一个脉冲开关信号,利用它作为开始采样的启动信号。
对应任一压力值的气缸容积可以通过简单的数学计算得到。
数学计算过程如下:
假定活塞压缩机一个工作循环内取样次数为n (可由计算机来设定),则对应的第і个采样点活塞在气缸中的位移s 为
()⎥⎥⎦⎤
⎢⎢⎣
⎡⎪⎪⎭⎫ ⎝⎛α--+α-=2
2sin )L r (11r L cos 1r s
式中
α ─ 曲轴(曲柄)的转角,n
360i ⋅=α(і=0,1,2,…,n )
r ─ 曲轴(曲柄)半径,本实验 r =57mm
L ─ 连杆长度,本实验 L =250mm
气缸内气体容积为 V =A •s (A 为气缸横截面积)
其中2
D 4
A π=
,D 为活塞直径,D=153mm
采用chart 绘图插件,压力值显示在纵坐标上,气缸容积/位移值显示在横坐标上,便
得到了示功图曲线,同时计算机控制界面上还显示指示功率的数值。
整个测试系统结构如图1所示。
图1 数据采集系统结构图
三、实验装置和流程
1 实验装置 详见图
2 2 系统工作流程
系统运行后,主程序等待开始采集的命令(测试系统的计算机操作界面上设置有此按
钮),当接受到这一指令后,扫描818L 数据采集板的数字量输入通道,当检测到信号突变后,转入采样程序,按照要求的采样个数和延迟时间对模拟量输入通道进行采集和A/D 转换,并将所得的结果存入采样数组;转换及存储完毕后,等待指令进行下一次操作。
-3-
图2 实验装置简图
1-消音器
2-喷咀 3-压力传感器 4-温度传感器 5-减压箱
6-调节阀 7-压力表 8-安全阀
9-稳压罐
10-单向阀
11-温度传感器
12-压力传感器
13-温度传感器
14-吸入阀
15-控制柜
16-计算机
17-接近开关
注:图中虚线为信号传输线
四、实验方法与步骤
1. 打开计算机,进入系统操作界面。
2. 压缩机的启动
(1)接通冷却水; (2)检查油箱油线位置;
(3)检查压力表、安全阀、安全调节阀等是否运转正常可靠; (4)检查盘车是否正常;
(5)点击操作界面“数据采样”菜单中“准备工作项”,确认准备工作完成。
3. 调节和测量
(1)将调节阀全开后按动控制柜上的启动按钮(2个绿色按钮同时按下),启动电机; (2)调节调节阀使储气罐内压力稳定在 0.lMPa ;
(3)稳定后用鼠标点击操作界面上的采样按纽,示功图便显示在操作界面上,可将其
保存及打印,同时记录下压缩机的转速、吸入阀附近温度、喷咀前后的压差、喷咀前温度、指示功率(5个参数在操作界面均有显示),前四个参数用于计算压缩机的流量。
4. 重复步骤3中的(2)(3),使稳压罐压力稳定在 0.2MPa, 0.3MPa, 0.4MPa, 0.5MPa, 5. 按动控制柜上的停止按钮(红色),使电机停止运转,关闭冷却水,打开调压阀,将
稳压罐内气体排空。
五、数据处理
1. 计算输气量
1
00
261053.1128T P H
T CD Q -⨯= 其中,C 由表可查的 C=0.980,P 0=101300Pa ,H=5780Pa
To=26.32+273.15=299.47K , T 1=28.56+273.15=301.71K 所以,Q=1.65 m 3
/min 2. 计算排气量
(1) H V T P l V n V 2⋅⋅⋅⋅⋅=λλλλ
其中n=522r/min, 压缩比1
'2P P =ε=(1.013×105+0.5×106
)/101300=5.936
据此查的λT =0.93,λP =0.96,λl =0.96s
V H = F h ·s=0.0021m
3
(24
D F h π=,D =0.153m, S =0.114m)
H
V V 0=α=0.0781 (V 0=1.64×10-4m 3
)
)1(11--=m
V ε
αλ=0.73
V =522×0.96×0.96×0.93×0.73×2×0.0021=1.37m 3
/min (2) 相对误差
100%Q ⨯公式
实测公式-V V =20%
同理,可求得其他各组数据的结果,整理于下表
(3)绘制曲线
示功图
(4)讨论误差产生的原因
误差可能由以下原因造成:a.数据跳动而造成的读数误差
b.仪器仪表本身不太准确
c.调节出口阀时,未能使指针准确指向目标值
六、思考题
1. 结合示功图分析压缩比对排气量的影响?
压缩比越大排气量就越小,这是因为压缩比越大,再吸气量一定的情况下,系统损失的就越大,再加上气体被压缩,故排气量就越小,从示功图可以看出,一个循环过程中都有一个膨胀过程,且压缩比越大膨胀完成时的体积就越大。
2.示功图的用途是什么?
示功图表示压缩机一个循环过程中气缸压力随容积变化的规律,它对人们了解压缩机的性能特点,从而对在压缩机选型和调节时产生很大的帮助作用。