天津耀华嘉诚中学数学全等三角形同步单元检测(Word版 含答案)
- 格式:doc
- 大小:878.00 KB
- 文档页数:22
一、选择题1.已知()0,πα∈,2sin cos 1αα+=,则cos 21sin 2αα=-( )A .2425-B .725- C .7- D .17-2.若角α的终边过点(3,4)P -,则cos2=α( )A .2425-B .725C .2425D .725-3.在ABC 中,已知sin 2sin()cos C B C B =+,那么ABC 一定是( )A .等腰三角形B .直角三角形C .等边三角形D .形状无法确定4.已知函数()()2sin ,0,2f x x x x π=∈⎛⎫⎡⎤ ⎪⎢⎥⎣⎦⎝⎭,则()f x 的单调递增区间是( ) A .06,π⎡⎤⎢⎥⎣⎦B .0,4⎡⎤⎢⎥⎣⎦π C .0,3π⎡⎤⎢⎥⎣⎦D .0,2π⎡⎤⎢⎥⎣⎦5.cos45sin15sin 45cos15︒︒-︒︒=( ).A .1B .12-C .2D .126.将函数()f x 的图象向左平移02πϕϕ⎛⎫<<⎪⎝⎭个单位后得到函数()sin 2g x x =的图象,若对满足()()122f x g x -=的1x ,2x ,有12min3x x π-=,则ϕ=( ) A .512π B .3π C .4π D .6π7.设129sin 292a =-,b =22tan161tan 16c =+,则有( ) A .a b c >> B .b c a >>C .c a b >>D .c b a >>8.已知3πin 325s α⎛⎫+= ⎪⎝⎭,0απ<<,则tan α=( ) A .43-B .34-C .34D .439.已知()1sin 2=-f x x x ,则()f x 的图象是( ).A .B .C .D .10.已知将向量13,2a ⎛= ⎝⎭绕起点逆时针旋转4π得到向量b ,则b =( ) A .626244⎛-⎝⎭B .626244⎛⎝⎭C .266244⎛⎫⎪ ⎪⎝⎭D .262644⎛ ⎝⎭11.已知函数()()log 330,1a y x a a =-+>≠的图象恒过点P ,若角α的终边经过点P ,则sin 2α的值等于( )A .2425-B .35C .2425D .3512.已知2cos 432θπ⎛⎫= ⎪⎝⎭-,则sin θ=( ) A .79 B .19C .-19D .-79二、填空题13.设函数22(1)sin(2)()(2)1x x f x x -+-=-+的最大值为M ,最小值为m ,则M m +=_________.14.已知函数sin cos y x x =-,其图象的对称轴中距离y 轴最近的一条对称轴方程为x =________.15.设()sin 2cos2f x a x b x =+,0ab ≠,若()6f x f π⎛⎫≤⎪⎝⎭对任意x ∈R 成立,则下列命题中正确的命题是______.(填序号) ①11012f π⎛⎫=⎪⎝⎭;②7105f f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭;③()f x 不具有奇偶性;④()f x 的单调增区间是()2,63k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z ;⑤可能存在经过点(),a b 的直线与函数的图象不相交. 16.已知函数()22sin cos 23cos f x x x x ωωω=-,且()f x 图象的相邻对称轴之间的距离为π4,则当π0,4x ⎡⎤∈⎢⎥⎣⎦时,()f x 的最小值为______. 17.如下图所示,某农场有一块扇形农田,其半径为100m ,圆心角为3π,现要按图中方法在农田中围出一个面积最大的内接矩形用于种植,则围出的矩形农田的面积为___________2m .18.方程21sin 3sin cos 2x x x =在[0,]4π上的解为___________19.已知函数()cos 2f x x =,若12,x x 满足12|()()|2f x f x -=,则12||x x -的一个取值为________.20.已知50sin 24ππαα⎛⎫⎛⎫∈-= ⎪ ⎪⎝⎭⎝⎭,,tan α=__________. 三、解答题21.已知函数()π322sin cos 6f x x x x ⎛⎫=-- ⎪⎝⎭. (1)求()f x 的单调增区间. (2)当ππ,44x ⎡⎤∈-⎢⎥⎣⎦,求()f x 的值域. 22.已知函数2()2sin 23cos 1f x x x x =++.求: (1)()f x 的最小正周期; (2)()f x 在0,2π⎡⎤⎢⎥⎣⎦上的最值. 23.已知函数2()23cos )f x x x =--. (1)求4f π⎛⎫⎪⎝⎭的值和()f x 的最小正周期;(2)求函数()f x 在区间,63ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值. 24.函数[)()()sin()0,0,0,2f x A x A ωϕωϕπ=+>>∈的图象如图所示:(1)求()f x 的解析式;(2)若[]0,x π∈且6()2f x ≥,求x 的取值范围. 25.已知函数25()23cos()2cos (0)32f x wx wx wx w π=+-+>的图像上相邻的两个最低点的距离为π. (1)求w 的值;(2)求函数()f x 的单调递增区间.26.已知函数2()2sin 23)sin ()2f x x x x x ππ⎛⎫=+-+∈ ⎪⎝⎭R . (1)求()f x 的最小正周期; (2)求()f x 的单调递减区间; (3)求()f x 在区间20,3π⎡⎤⎢⎥⎣⎦上的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】利用22sin cos 1αα+=以及2sin cos 1αα+=解出sin α,cos α的值,再利用二倍角公式化简即可求解. 【详解】因为2sin cos 1αα+=,所以cos 12sin αα=-, 代入22sin cos 1αα+=得()22sin 12sin 1αα+-=, 因为()0,πα∈,所以4sin 5α,所以43cos 12sin 1255αα=-=-⨯=-,所以4324sin 22sin cos 25525ααα⎛⎫==⨯⨯-=- ⎪⎝⎭, 2247cos 212sin 12525αα⎛⎫=-=-⨯=- ⎪⎝⎭cos 211sin 2717252425αα-==--⎛⎫- ⎪⎭-⎝, 故选:D 【点睛】关键点点睛:本题的关键点是熟记同角三角函数基本关系,以及三角函数值在每个象限内的符号,熟记正余弦的二倍角公式,计算仔细.2.D解析:D 【分析】先利用任意角三角函数的定义求sin α和cos α,再利用二倍角的余弦公式计算即可. 【详解】由角α的终边过点(3,4)P -知,4sin 5α,3cos 5α=-,故229167cos 2cos sin 252525ααα=-=-=-. 故选:D.3.A解析:A 【分析】先用诱导公式变形,然后再由两角和的正弦公式展开,再由两角差的正弦公式化简后可得. 【详解】∵在ABC 中,已知sin 2sin()cos C B C B =+,∴sin sin()2sin cos C A B A B =+=,∴sin cos cos sin 2sin cos A B A B A B +=,in 0()s A B -=, 又,(0,)A B π∈,∴0A B -=,A B =,三角形为等腰三角形.故选:A .4.A解析:A 【分析】根据三角恒等变换公式化简()f x ,结合x 的范围,可得选项. 【详解】因为()()2sin ,0,2f x x xx π=+∈⎛⎫⎡⎤ ⎪⎢⎥⎣⎦⎝⎭,所以 ()()222sin sin cos +3cos f x x xx x x x +==222cos +12cos 2+22sin 2+26x x x x x π⎛⎫=+=+=+ ⎪⎝⎭,因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以72+,666x πππ∈⎡⎤⎢⎥⎣⎦,所以由2+662x πππ≤≤,解得06x π≤≤, 所以()f x 的单调递增区间是06,π⎡⎤⎢⎥⎣⎦,故选:A.5.B解析:B 【分析】根据两角差的正弦公式,准确运算,即可求解. 【详解】由()1cos 45sin15sin 45cos15sin 1545sin 302︒︒-︒︒=︒-︒=-︒=-. 故选:B.6.D解析:D 【分析】利用三角函数的最值,取自变量1x 、2x 的特值,然后判断选项即可. 【详解】因为函数()sin 2g x x =的周期为π,由题意可得:()()sin 2x f x ϕ=-⎡⎤⎣⎦, 若()()122f x g x -=,两个函数的最大值与最小值的差等于2,有12min3x x π-=,所以不妨取24x π=,则1712x π=,即()()sin 2x f x ϕ=-⎡⎤⎣⎦在1712x π=取得最小值, 所以77121s 12in 2f ϕππ⎛⎫=-=- ⎪⎡⎤⎛⎫⎪⎢⎝⎥⎭⎣⎦⎭⎝,此时5+,6k k Z πϕπ=∈,又02πϕ<<,所以此时不符合题意, 取24x π=,则112x π=-,即()()sin 2x f x ϕ=-⎡⎤⎣⎦在112x π=-取得最小值, 所以12sin 21ϕπ⎡⎤⎛⎫-=- ⎪⎢⎥⎝⎭⎣⎦-,此时,6k k Z πϕπ=-∈,当0k =时,6π=ϕ满足题意,故选:D . 【点睛】本题考查三角函数的图象的平移,三角函数性质之最值,关键在于取出2x ,得出1x ,再利用正弦函数取得最小值的点,求得ϕ的值,属于中档题.7.B解析:B 【分析】由两角差的正弦公式,余弦和正正弦的二倍角公式化简,,a b c ,然后由正弦函数的单调性得出结论. 【详解】129si sin(6029)si 3n 2912n a =︒-︒=︒=-, b =sin 33==︒,2222sin162tan16cos162sin16sin 161tan 161c cos16sin 32os 16c ===︒︒︒︒=︒︒︒++,显然sin31sin32sin33︒<︒<︒,所以a c b <<. 故选:B . 【点睛】关键点点睛:本题考查三角函数值的比较大小,解题方法是首先化简各函数,应用三角函数恒等变换公式化简函数,注意转化为同一个三角函数,并且把角转化到三角函数的同一单调区间上,然后由三角函数的单调性得大小关系.8.A解析:A 【分析】根据诱导公式,可得cos α的值,根据同角三角函数的关系,结合α的范围,可求得sin α的值,即可求得答案. 【详解】因为3πin 325s α⎛⎫+=⎪⎝⎭,所以3cos 5α=-,所以4sin5α===±,又0πα<<,所以α为第二象限角,所以4sin5α所以sintans43coααα==-.故选:A.9.B解析:B【分析】先判断函数的奇偶性,然后计算特殊点的函数值确定选项.【详解】()()1sin2f x x x f x-=-+=-,()f x∴为奇函数,∴图象关于原点对称,故排除A,D;当π2x=时,ππ1024f⎛⎫=-<⎪⎝⎭,故排除C.故选:B.【点睛】根据函数解析式选择函数图象问题的一般可从以下几点入手:(1)判断函数的定义域;(2)判断原函数的奇偶性,根据图象的对称性排除某些选项;(3)代入特殊点求函数值,排除某些选项.10.C解析:C【分析】先求出a与x轴正方向的夹角为3πθ=,即可得b与x轴正方向的夹角为73412πππα=+=,再利用向量坐标的定义即可求解.【详解】设a的起点是坐标原点,a与x轴正方向的夹角为θ,1a=由13,2a⎛=⎝⎭可得2tan12θ==3πθ=,设b 与x 轴正方向的夹角为α,则73412πππα=+=且1b =因为7sinsin sin cos cos sin 124343434y πππππππ⎛⎫==+=⨯+⨯=⎪⎝⎭,7coscos cos cos sin sin 124343434x πππππππ⎛⎫==+=⨯-⨯=⎪⎝⎭,故2,44b ⎛⎫-= ⎪ ⎪⎝⎭, 故选:C.11.C解析:C 【分析】由已知求出点P 的坐标,再利用三角函数的定义求出sin ,cos αα的值,进而可得到sin 2α的值 【详解】解:因为函数()()log 330,1a y x a a =-+>≠的图象恒过(4,3), 所以点P 的坐标为(4,3) 因为角α的终边经过点P , 所以34sin ,cos 55αα====, 所以3424sin 22sin cos 25525ααα==⨯⨯=, 故选:C12.C解析:C 【分析】根据题中条件,由诱导公式,以及二倍角公式,即可求出结果. 【详解】因为2cos 432θπ⎛⎫= ⎪⎝⎭-, 所以241sin cos 2cos 12124299ππθθθ⎛⎫⎛⎫=-=--=⨯-=- ⎪ ⎪⎝⎭⎝⎭.故选:C二、填空题13.2【分析】可考虑向左平移2个单位对函数解析式进行化简根据左右平移值域不变求解【详解】令则定义域为R 且故是奇函数故其最大值与最小值的和为零所以函数的最大值与最小值的和为2故在函数中解析:2 【分析】可考虑向左平移2个单位对函数解析式进行化简,根据左右平移值域不变求解. 【详解】22(1)sin(2)()(2)1x x f x x -+-=-+222(1)sin 2sin (2)111x x x xf x x x +++∴+==+++,令22sin ()1x xg x x +=+,则定义域为R ,且()()g x g x -=-,故()g x 是奇函数,故其最大值与最小值的和为零, 所以函数(2)y f x =+的最大值与最小值的和为2, 故在函数()f x 中,2M m +=.14.【分析】函数令求解【详解】已知函数令解得所以其图象的对称轴中距离轴最近的一条对称轴方程为故答案为: 解析:4π-【分析】函数4y x π⎛⎫=- ⎪⎝⎭,令42x k πππ-=+求解.【详解】已知函数sin cos 4y x x x π⎛⎫=-=- ⎪⎝⎭,令,42x k k Z πππ-=+∈,解得 3,4x k k Z ππ=+∈, 所以其图象的对称轴中距离y 轴最近的一条对称轴方程为x =4π-. 故答案为:4π-15.①③【分析】由题可知直线与函数的图象的一条对称轴可求得可化简函数的解析式为计算出的值可判断①的正误;计算可判断②的正误;利用特殊值法可判断③的正误;取利用正弦函数的单调性可判断④的正误;假设命题⑤正解析:①③ 【分析】 由题可知,直线6x π=与函数()f x 的图象的一条对称轴,可求得3ab ,可化简函数()f x 的解析式为()2sin 26f x b x π⎛⎫=+ ⎪⎝⎭.计算出1112f π⎛⎫⎪⎝⎭的值,可判断①的正误;计算710f π⎛⎫⎪⎝⎭、5f π⎛⎫⎪⎝⎭,可判断②的正误;利用特殊值法可判断③的正误;取0b >,利用正弦函数的单调性可判断④的正误;假设命题⑤正确,求出直线的方程,结合函数()f x 的最值可判断⑤的正误.【详解】 由题可知,直线6x π=与函数()f x 的图象的一条对称轴,可得162f b π⎛⎫=+= ⎪⎝⎭,整理可得2230a b -+=,即()20a -=,a ∴=.()sin 2cos 22sin 26f x x b x b x π⎛⎫∴=+=+ ⎪⎝⎭.对于命题①,11112sin 2012126f b πππ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭,①正确; 对于命题②,7747172sin 22sin 2sin 101063030f b b b ππππππ⎛⎫⎛⎫⎛⎫=⨯+==+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭17172sin 2sin 3030b b ππ=-=,172sin 22sin 55630f b b ππππ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭,所以,7105f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,②不正确; 对于命题③,2sin 66f b b ππ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭,2sin 262f b b ππ⎛⎫== ⎪⎝⎭,则66f f ππ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭且66f f ππ⎛⎫⎛⎫-≠- ⎪ ⎪⎝⎭⎝⎭,所以,函数()f x 不具有奇偶性,③正确; 对于命题④,当()2,63x k k k ππππ⎡⎤∈++∈⎢⎥⎣⎦Z 时,则()3222262k x k k Z πππππ+≤+≤+∈,当0b >时,函数()f x 在区间()2,63k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z 上单调递减,④错误; 对于命题⑤,假设经过点(),a b 的直线与函数()f x 的图象不相交,则该直线与x 轴平行,此时该直线的方程为y b =,则2b b >,由于0b ≠,矛盾,⑤错误.故答案为:①③. 【点睛】关键点点睛:本题考查正弦型函数()()sin f x A x =+ωϕ的单调性、奇偶性、三角函数值的计算,解题的关键就是从()6f x f π⎛⎫≤⎪⎝⎭分析得出直线6x π=与函数()f x 的图象的一条对称轴,进而借助辅助角公式化简得出a 、b 的倍数关系.16.【分析】先将函数化简整理根据相邻对称轴之间距离求出周期确定再根据正弦函数的性质结合给定区间即可求出最值【详解】因为由题意知的最小正周期为所以即所以当时所以因此所以函数的最小值为故答案为:解析:-【分析】先将函数化简整理,根据相邻对称轴之间距离求出周期,确定2ω=,再根据正弦函数的性质,结合给定区间,即可求出最值. 【详解】因为()21cos 22sin cos sin 22xf x x x x x ωωωωω+=-=- πsin 222sin 23x x x ωωω⎛⎫=-=-- ⎪⎝⎭由题意知()f x 的最小正周期为ππ242⨯=,所以2ππ22ω=,即2ω=,所以()π2sin 43f x x ⎛⎫=-⎪⎝⎭当π0,4x ⎡⎤∈⎢⎥⎣⎦时,ππ2π4,333x ⎡⎤-∈-⎢⎥⎣⎦,所以π2sin 423x ⎛⎫⎡⎤-∈ ⎪⎣⎦⎝⎭,因此()π2sin 423f x x ⎛⎫⎡=-- ⎪⎣⎝⎭,所以函数()f x 的最小值为-.故答案为:-17.【分析】设利用直角三角形的边角关系和正弦定理分别求出矩形各边的边长表示出矩形的面积为借助于三角函数辅助角公式求出最大值即可【详解】解:如图:做的角平分线交于设则在中由正弦定理可知:则所以矩形农田的面 解析:()1000023-【分析】设EOA θ∠=,利用直角三角形的边角关系和正弦定理分别求出矩形各边的边长,表示出矩形的面积为()2sin 302sin S R R θθ=-⋅,借助于三角函数辅助角公式求出最大值即可. 【详解】解:如图:做AOB ∠的角平分线交BE 于D ,设EOA θ∠=,则()22sin 30DE R θ=-,150OFE ∠=,在OFE △中,由正弦定理可知:sin sin150EF Rθ= ,则2sin EF R θ= 所以矩形农田的面积为:()22sin 302sin 4sin sin(30)S R R R θθθθ=-⋅=- 22132sin 2cos 232R R θθ⎛⎫=+- ⎪ ⎪⎝⎭()222sin 2603R R θ=+-当()sin 2601θ+=时,即15θ=时,S 有最大值为()223R-又100R =,所以面积的最大值为()1000023-. 故答案为:()1000023-.【点睛】本题考查在扇形中求矩形面积的最值,属于中档题. 思路点睛:(1)在扇形中求矩形的面积,关键是设出合适的变量,一般情况下是以角度为变量; (2)合理的把长和宽放在三角形中,利用角度表示矩形的长和宽; (3)对三角函数合理变形,从而求出面积.18.【分析】由二倍角公式和两角差的正弦公式化简变形后由正弦函数性质得出结论【详解】由得得∴又∴故答案为:【点睛】方法点睛:本题考查求解三角方程解题方法:(1)利用三角函数的恒等变换公式化方程为的形式然后解析:12π 【分析】 由二倍角公式和两角差的正弦公式化简变形后由正弦函数性质得出结论. 【详解】由21sin cos 2x x x =得1cos 212222x x -+=,得sin 206x π⎛⎫-= ⎪⎝⎭,∴26x k ππ-=,,212k x k Z ππ=+∈, 又0,4x π⎡⎤∈⎢⎥⎣⎦,∴12x π=. 故答案为:12π.【点睛】方法点睛:本题考查求解三角方程,解题方法:(1)利用三角函数的恒等变换公式化方程为sin()x k ωϕ+=的形式,然后由正弦函数的定义得出结论.(2)用换元法,如设sin x t =,先求得方程()0f t =的解0t ,然后再解方程0sin x t =.19.(答案不唯一)【分析】根据的值域为可知若满足则必有的值分别为再根据三角函数的性质分析即可【详解】因为的值域为故若满足则必有的值分别为故的最小值当且仅当为相邻的两个最值点取得此时为的半个周期即故答案为解析:π2(答案不唯一) 【分析】根据()cos2f x x =的值域为[]1,1-可知若12,x x 满足()()122f x f x -=则必有()()12,f x f x 的值分别为±1,再根据三角函数的性质分析即可.【详解】因为()cos2f x x =的值域为[]1,1-,故若12,x x 满足()()122f x f x -=则必有()()12,f x f x 的值分别为±1,故12x x -的最小值当且仅当12,x x 为()cos2f x x =相邻的两个最值点取得.此时12x x -为()cos2f x x =的半个周期,即12222ππ⨯=. 故答案为:2π【点睛】关键点点睛:相邻的两个最值点的横坐标的距离为半个周期是解题的突破点.20.3【分析】由平方关系求出用两角和的正弦公式求得再得然后可得【详解】∵∴∴∴故答案为:3【点睛】关键点点睛:本题考查平方关系两角和的正弦公式三角函数求值问题需确定已知角和未知角的关系以确定先用的公式象解析:3 【分析】由平方关系求出cos 4πα⎛⎫-⎪⎝⎭,用两角和的正弦公式求得sin α,再得cos α,然后可得tan α.【详解】 ∵0,2πα⎛⎫∈ ⎪⎝⎭,∴,444πππα⎛⎫-∈- ⎪⎝⎭,cos 4πα⎛⎫-==⎪⎝⎭, ∴sin sin sin cos cos sin 444444525220ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=-+=-+-=+=⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,∴cos 10α==, sin tan 3cos ααα==. 故答案为:3. 【点睛】 关键点点睛:本题考查平方关系,两角和的正弦公式.三角函数求值问题,需确定已知角和未知角的关系,以确定先用的公式.象本题观察得到44ππαα⎛⎫=-+ ⎪⎝⎭,需要用用两角和的正弦(余弦)公式求值,因此先用平方关系求得cos 4πα⎛⎫- ⎪⎝⎭,这就要确定4πα-的范围.以确定余弦值的正负.三、解答题21.(1)π5ππ,π1212k k ⎡⎤-++⎢⎥⎣⎦()k ∈Z ;(2)11,2⎡⎤-⎢⎥⎣⎦.【分析】(1)由恒等变换得()πsin 23f x x ⎛⎫=- ⎪⎝⎭,进而根据πππ2π22π232k x k -+≤-≤+解得()f x 的增区间为π5ππ,π1212k k ⎡⎤-++⎢⎥⎣⎦()k ∈Z ;(2)由ππ,44x ⎡⎤∈-⎢⎥⎣⎦得5πππ2636x -≤-≤,进而得π11sin 232x ⎛⎫-≤-≤ ⎪⎝⎭,即()f x 的值域为11,2⎡⎤-⎢⎥⎣⎦.【详解】 解:(1)()11π2cos 2sin 2sin 2cos 2sin 222223f x x x x x x x ⎫⎛⎫=--=-=-⎪ ⎪⎪⎝⎭⎭, ∵πππ2π22π232k x k -+≤-≤+,()k ∈Z , ∴π5πππ1212k x k -+≤≤+,()k ∈Z , ∴()f x 的增区间为π5ππ,π1212k k ⎡⎤-++⎢⎥⎣⎦()k ∈Z .(2)∵ππ44x -≤≤, ∴5πππ2636x -≤-≤, ∴π11sin 232x ⎛⎫-≤-≤ ⎪⎝⎭, ∴()f x 的值域为11,2⎡⎤-⎢⎥⎣⎦.【点睛】本题解题的关键是根据三角恒等变换得()πsin 23f x x ⎛⎫=- ⎪⎝⎭,进而根据整体换元的思想求函数的单调区间与值域,考查运算求解能力,是中档题. 22.(1)π;(2)最小值为1,最大值为4. 【分析】(1)由二倍角降幂,由两角差的正弦公式化函数为一个角的一个三角函数形式,然后结合正弦函数性质可求得最小正周期; (2)求出26x π-的范围,然后由正弦函数性质得最值.【详解】(1)因为2()2sin cos 1f x x x x =++1cos2cos 1x x x =-++2cos 22x x =-+2sin 226x π⎛⎫=-+ ⎪⎝⎭,所以()f x 的最小正周期22T ππ==. (2)因为02x π≤≤,所以52666x πππ-≤-≤. 所以1sin 2126x π⎛⎫-≤-≤ ⎪⎝⎭. 所以()2sin 22[1,4]6f x x π⎛⎫=-+∈ ⎪⎝⎭.即()f x 的最小值为1,最大值为4. 【点睛】方法点睛:本题考查两角差的正弦公式,二倍角公式,考查正弦函数的性质.此类问题的解题方法是:利用二倍角公式降幂,利用诱导公式、两角和与差的正弦(余弦)公式展开与合并,最终把函数化为()sin()f x A x m ωϕ=++形式,然后结合正弦函数性质求解.23.(1π;(2)最小值1-;最大值2. 【分析】(1)由二倍角公式,两角和的正弦公式化函数为一个角的一个三角函数形式,结合正弦函数性质求得周期; (2)求得26x π+的范围后,由正弦函数性质得最值.【详解】(1)因为2()2cos )f x x x =--()2223sin cos cos x x x x =-+-()22212sin212sin 2x x x x =-+=-cos 222sin 26x x x π⎛⎫==+ ⎪⎝⎭所以22sin 22sin 4463f ππππ⎛⎫⎛⎫=⋅+==⎪ ⎪⎝⎭⎝⎭所以()f x 的周期为22||2T πππω===. (2)当,63x ππ⎡⎤∈-⎢⎥⎣⎦时,252,,2,33666x x πππππ⎡⎤⎡⎤∈-+∈-⎢⎥⎢⎥⎣⎦⎣⎦所以当6x π=-时,函数取得最小值16f π⎛⎫-=- ⎪⎝⎭.当6x π=时,函数取得最大值26f π⎛⎫=⎪⎝⎭. 【点睛】关键点点睛:本题考查求三角函数的周期,最值.解题方法是利用二倍角公式,诱导公式,两角和与差的正弦(或余弦)公式化函数为一个角的一个三角函数形式,然后结合正弦函数性质求解.24.(1)()23f x x π⎛⎫=+ ⎪⎝⎭;(2){}0,6ππ⎡⎤⋃⎢⎥⎣⎦.【分析】(1)由图可得:A =724123T πππω=-=可求ω的值,再令2(21)3k πϕπ⨯+=+()k Z ∈结合[)0,2ϕπ∈可求ϕ的值,进而可求()f x 的解析式;(223x π⎛⎫+≥ ⎪⎝⎭,可得sin 23x π⎛⎫+≥ ⎪⎝⎭,所以结合正弦函数的图象和[]0,x π∈即可求解.【详解】(1)由题意知:A =741234T πππ=-=, 所以2T ππω==即=2ω,所以2(21)3k πϕπ⨯+=+,02ϕπ≤<,所以=3πϕ,所以()23f x x π⎛⎫=+ ⎪⎝⎭,(2232x π⎛⎫+≥ ⎪⎝⎭,即sin 232x π⎛⎫+≥ ⎪⎝⎭, 所以()2222333k x k k Z πππππ+≤+≤+∈, 令0k =可得22333x πππ≤+≤,解得06x π≤≤,令1k =可得2222333x πππππ+≤+≤+,解得:76x ππ≤≤, 因为[]0,x π∈,所以06x π≤≤或x π=,即{}0,6x ππ⎡⎤∈⋃⎢⎥⎣⎦ 【点睛】关键点点睛:利用五点法求函数解析式,关键是3x π=是下降零点,所以2(21)3k πϕπ⨯+=+,结合[)0,2ϕπ∈即可求ϕ23x π⎛⎫+≥ ⎪⎝⎭()2222333k x k k Z πππππ+≤+≤+∈对k 取值,再与[]0,x π∈求交集即可. 25.(1)1;(2)()36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,.【分析】本题考查三角函数的图像和性质、三角恒等变换,根据三角恒等变换公式()f x 化简函数解析式,根据图像和性质求单调递增区间. 【详解】(1)5()(cos cossin sin )(1cos 2)332f x wx wx wx wx ππ=--++23sin 23sin cos 222wx wx wx =--+1cos 2323cos 222wx wx wx -=-⨯-+12cos 22wx wx =+ sin(2)6wx π=+又因为()f x 图象上相邻的两个最低点间的距离为π,0w >, 所以22w,解得1w =.(2)据(1)求解知,()sin(2)6f x x π=+令222()262k x k k Z πππππ-+≤+≤+∈,所以()36k x k k Z ππππ-+≤≤+∈,所以所求的单调递增区间是()36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,.【点睛】思路点睛:三角恒等变换综合应用的解题思路:(1)利用降幂、升幂公式将()f x 化为sin cos a x b x 的形式;(2)构造())f x x x +;(3)和差公式逆用,得())f x x ϕ=+ (其中ϕ为辅助角,tan b aϕ=);(4)利用())f x x ϕ=+研究三角函数的性质; (5)反思回顾,查看关键点、易错点和答题规范. 26.(1)最小正周期为π;(2)单调递减区间为5,36k k ππππ⎡⎤++⎢⎥⎣⎦,k ∈Z ;(3)[0,3].【分析】(1)逆用二倍角公式化简整理可得()2sin 216f x x π⎛⎫=-+ ⎪⎝⎭,再利用2T ωπ=即可求得()f x 的最小正周期;(2)令26z x π=-,利用函数2sin 1y z =+的图像与性质,列出不等式,即可求得()f x 的单调递减区间;(3)由20,3x π⎡⎤∈⎢⎥⎣⎦,可得72,666x πππ⎡⎤-∈-⎢⎥⎣⎦,结合正弦函数的图像与性质,即可求得()f x 的取值范围.【详解】 (1)由已知可得()1cos 2cos f x x x x =-+2cos 21x x =-+2sin 216x π⎛⎫=-+ ⎪⎝⎭.所以()f x 的最小正周期为22T ππ==. (2)令26z x π=-,函数2sin 1y z =+的单调递减区间是32,222k k ππππ⎡⎤++⎢⎥⎣⎦,k ∈Z .所以3222262k x k πππππ+≤-≤+,k ∈Z 得536k x k ππππ+≤≤+,k ∈Z . 所以()f x 的单调递减区间为5,36k k ππππ⎡⎤++⎢⎥⎣⎦,k ∈Z .(3)因为20,3x π⎡⎤∈⎢⎥⎣⎦,所以72,666x πππ⎡⎤-∈-⎢⎥⎣⎦, 所以1sin 2,162x π⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦, 所以()[0,3]f x ∈,即()f x 在区间20,3π⎡⎤⎢⎥⎣⎦上的取值范围是[0,3]. 【点睛】本题考查二倍角公式的逆用,辅助角公式的应用,正弦型函数的单调区间、周期和值域问题,综合性较强,考查计算化简,数形结合的能力,考查整体性的思想,属基础题.。
一、选择题1.如图,在ABC 和AEF 中,EAC BAF ∠=∠,EA BA =,添加下面的条件:①EAF BAC ∠=∠;②E B ∠=∠;③AF AC =;④EF BC =,其中可以得到ABC AEF ≌△△的有( )个.A .1B .2C .3D .42.如图,在△ABC 中,AB=5,AC=3,AD 是BC 边上的中线,AD 的取值范围是( )A .1<AD <6B .1<AD <4C .2<AD <8 D .2<AD <4 3.如图,AB AC =,AD AE =,55A ︒∠=,35C ︒∠=,则DOE ∠的度数是( )A .105︒B .115︒C .125︒D .130︒4.如图,∠ACB=90°,AC=BC ,AD ⊥CE ,BE ⊥CE ,垂足分别是点D 、E ,AD=3,BE=1,则DE 的长是( )A .1.5B .2C .22D .10 5.如图,已知△ABC 的周长是20,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于,且OD=2,△ABC 的面积是( )A .20B .24C .32D .406.如图,在ABC 中,B C ∠=∠,E 、D 、 F 分别是AB 、BC 、AC 上的点,且BE CD =,BD CF =,若 104A ∠=︒,则EDF ∠的度数为( )A .24°B .32°C .38°D .52°7.如图,AD 平分∠BAC ,AB=AC ,连接BD ,CD 并延长,分别交AC ,AB 于点F ,E ,则图中全等三角形共有( )A .2对B .3对C .4对D .5对 8.如图,在△ABC 中,点E 和F 分别是AC ,BC 上一点,EF ∥AB ,∠BCA 的平分线交AB 于点D ,∠MAC 是△ABC 的外角,若∠MAC =α,∠EFC =β,∠ADC =γ,则α、β、γ三者间的数量关系是( )A .β=α+γB .β=2γ﹣αC .β=α+2γD .β=2α﹣2γ 9.如图,点C ,D 在线段AB 上,AC DB =,AE //BF ,添加以下哪一个条件仍不能判定△AED ≌△BFC ( )A .ED CF =B .AE BF =C .E F ∠=∠D .ED //CF10.根据下列条件,能画出唯一ABC 的是( )A .3AB =,4BC =,7CA =B .4AC =,6BC =,60A ∠=︒ C .45A ∠=︒,60B ∠=︒,75C ∠=︒D .5AB =,4BC =,90C ∠=︒ 11.如图,在Rt ABC 和Rt ADE △中,90,,ACB AED AB AD AC AE ∠=∠===,则下列说法不正确的是( )A .BC DE =B .BAE DAC ∠=∠ C .OC OE =D .EAC ABC ∠=∠二、填空题12.如图,已知四边形,90,3,4,5,ABCD B AB BC AC ︒∠====180BAD CAD ︒∠+∠=,180BCD ACD ︒∠+∠=,则四边形ABCD 的面积是_________.13.如图,已知//AD BC ,点E 为CD 上一点,AE ,BE 分别平分DAB ∠,CBA ∠.若3cm AE =,4cm BE =,则四边形ABCD 的面积是________.14.如图,在△ABC 中,∠C =90°,AD 是∠BAC 的角平分线,若BC =8cm ,BD =5cm ,AB=10cm,则S △ABD =______.15.已知点(2,1)P m m -,当m =____时,点P 在二、四象限的角平分线上. 16.如图,在ABC 中,点D 是BC 上的一点,已知30DAC ∠=︒,75DAB ∠=︒,CE 平分ACB ∠交AB 于点E ,连接DE ,则DEC ∠=________度.17.如图,点D ,E 分别在线段AB ,AC 上,CD 与BE 相交于点P ,已知AD =AE .若△ABE ≌△ACD ,则可添加的条件为_____.18.如图,AD 为∠CAF 的角平分线,BD=CD ,∠DBC=∠DCB ,∠DCA=∠ABD ,过D 作DE ⊥AC 于E ,DF ⊥AB 交BA 的延长线于F ,则下列结论:①△CDE ≌△BDF ;②CE=AB+AE ;③∠DAF=∠CBD .其中正确的结论有_____.(填序号)19.如图,在Rt ABC 中,90C ∠=︒,AD AC =,DE AB ⊥,交BC 于点E .若26B ∠=︒,则AEC ∠=______︒.20.如图,△ABC 的外角∠MBC 和∠NCB 的平分线BP 、CP 相交于点P ,PE ⊥BC 于E 且PE =3cm ,若△ABC 的周长为14cm ,S △BPC =7.5,则△ABC 的面积为______cm 2.21.如图,已知点(44)A -,,一个以A 为顶点的45︒角绕点A 旋转,角的两边分别交x 轴正半轴,y 轴负半轴于E 、F ,连接EF .当△AEF 直角三角形时,点E 的坐标是________.三、解答题22.如图,在平面直角坐标系中,AC CD =,已知()3,0A ,()0,3B ,()0,5C ,点D 在第一象限内,90DCA ∠=︒,AB 的延长线与DC 的延长线交于点M ,AC 与BD 交于点N .(1)OBA ∠的度数为________.(2)求点D 的坐标.(3)求证:AM DN =.23.将Rt ABC △的直角顶点C 置于直线l 上,AC BC =,分别过点 A 、B 作直线l 的垂线,垂足分别为点D 、E ,连接AE .若3BE =, 5DE =.求ACE △的面积.24.OAB 和ODE 均为等腰三角形,且AOB DOE β∠=∠=,OA OB =,OD OE =,连接AD 、BE ,它们所在的直线交于点F .(1)观察发现:如图1,当60β︒=时,线段AD 与BE 的数量关系是______,AFB ∠的度数是______;(2)探究证明:如图2,当90β︒=时,线段AD 与BE 的数量关系是______,AFB ∠的度数是______,根据图2证明你的猜想;(3)拓展推广:当β为任意角时,线段AD 与BE 的数量关系是______,AFB ∠的度数是______.(用含β的式子表示)25.已知:AB BD ⊥,ED BD ⊥,AC CE =,BC DE =.(1)试猜想线段AC 与CE 的位置关系,并证明你的结论.(2)若将CD 沿CB 方向平移至图2情形,其余条件不变,结论12AC C E ⊥还成立吗?请说明理由.(3)若将CD 沿CB 方向平移至图3情形,其余条件不变,结论12AC C E ⊥还成立吗?请说明理由.一、选择题1.如图,在ABC 中,8AB AC ==厘米,6BC =厘米,点D 为AB 的中点.如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上,由C 点向A 点运动,为了使BPD CPQ △≌△,点Q 的运动速度应为( )A .1厘米/秒B .2厘米/秒C .3厘米/秒D .4厘米/秒 2.如图,在ABC 和DEF 中,,B DEF AB DE ∠=∠=,添加下列一个条件后,仍然不能证明ABC DEF ≌,这个条件是( )A .A D ∠=∠B .BC EF = C .ACB F ∠=∠D .AC DF = 3.如图,OP 平分AOB ∠,PC OA ⊥于点C ,PD OB ⊥于点D ,延长CP ,DP 交OB , OA 于点E ,F ,下列结论错误的是( )A .PC PD =B .OC OD = C .CPO DPO ∠=∠ D .PC PE =4.如图,AD 平分BAC ∠交BC 于点D ,DE AB ⊥于点E ,DF AC ⊥于点F ,若ABC S 12=,DF 2=,AC 3=,则AB 的长是 ( )A .2B .4C .7D .95.如图,BD 是四边形ABCD 的对角线, AD//BC ,AB AD <,分别过点A ,C 作AE BD ⊥,CF BD ⊥,垂足分别为点E ,F ,若BE DF =,则图中全等的三角形有( )A .1对B .2对C .3对D .4对6.如图,给出下列四组条件:①AB=DE ,BC=EF ,AC=DF ;②AB=DE ,∠B=∠E ,BC=EF ;③∠B=∠E ,BC=EF ,∠C=∠F ;④AB=DE ,AC=DF ,∠B=∠E .其中,能使△ABC ≌△DEF 的条件共有( )A .1组B .2组C .3组D .4组7.下列各命题中,假命题是( )A .有两边及其中一边上的中线对应相等的两个三角形全等B .有两边及第三边上高对应相等的两个三角形全等C .有两角及其中一角的平分线对应相等的两三角形全等D .有两边及第三边上的中线对应相等的两三角形全等8.如图,OB 平分∠MON ,A 为OB 的中点,AE ⊥ON ,EA=3,D 为OM 上的一个动点,C 是DA 延长线与BC 的交点,BC //OM ,则CD 的最小值是( )A.6 B.8 C.10 D.129.如图,AB=AC,点D、E分别是AB、AC上一点,AD=AE,BE、CD相交于点M.若∠BAC =70°,∠C=30°,则∠BMD的大小为( )A.50°B.65°C.70°D.80°10.如图,在△ABC中,点E和F分别是AC,BC上一点,EF∥AB,∠BCA的平分线交AB 于点D,∠MAC是△ABC的外角,若∠MAC=α,∠EFC=β,∠ADC=γ,则α、β、γ三者间的数量关系是()A.β=α+γB.β=2γ﹣αC.β=α+2γD.β=2α﹣2γ11.如图,要判定△ABD≌△ACD,已知AB=AC,若再增加下列条件中的一个,仍不能说明全等,则这个条件是()A .CD ⊥AD ,BD ⊥ADB .CD =BDC .∠1=∠2D .∠CAD =∠B AD二、填空题12.如图,四边形ABCD 中,AC BC =,90ACB ADC ∠=∠=︒,10CD =,则BCD ∆的面积为______.13.如图,∠ABC=∠DCB ,要使△ABC ≌△DCB ,还需要补充一个条件:___.(一个即可)14.如图,在Rt ABC △中,90C ∠=︒,AD 平分BAC ∠交BC 于点D .若3BC =,且:5:4BD DC =,5AB =,则ABD △的面积是______.15.如图,在Rt △ABC 中,∠C =90°,D 为BC 上一点,连接AD ,过D 点作DE ⊥AB ,且DE =DC .若AB =5,AC =3,则EB =____.16.如图,点D 在BC 上,DE ⊥AB 于点E ,DF ⊥BC 交AC 于点F ,BD =CF ,BE =CD .若∠AFD =145°,则∠EDF =_____.17.如图,AC//BD ,OA ,OB 分别平分BAC ∠和ABD ∠,OE AB ⊥,垂足为E ,如果OE 5=,那么AC 与BD 的距离是________18.如图,在ABC 中,C 90∠=,A ∠、B ∠的平分线交于O ,OD AB ⊥于D .若AC 3=,BC 4=,AB 5=,则AD =________.19.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带第____块去,这利用了三角形全等中的____原理.20.如图,在△ABC 中,AD 是∠BAC 的平分线,AB =8 cm ,AC =6 cm ,S △ABD ∶S △ACD =________.21.如图所示,己知ABC ∆的周长是22,,OB OC 分别平分ABC ∠和ACB OD BC D ∠⊥,于,且3OD =,则ABC ∆的面积是__________.三、解答题22.如图,点D 在边AC 上,BC 与DE 交于点P ,AB DB =,C E ∠=∠,CDE ABD ∠=∠.(1)求证:ABC DBE ≌;(2)已知162ABE ∠=︒,30DBC ∠=︒,求CDE ∠的度数.23.已知:MON α∠=,点P 是MON ∠平分线上一点,点A 在射线OM 上,作180APB α∠=︒-,交直线ON 于点B ,作PC ON ⊥于点C .(1)观察猜想:如图1,当90MON ∠=︒时,PA 和PB 的数量关系是______.(2)探究证明:如图2,当60MON ∠=︒时,(1)中的结论还成立吗?若成立,请写出证明过程;若不成立,请直接写出PA ,PB 之间另外的数量关系.(3)拓展延伸:如图3,当60MON ∠=︒,点B 在射线ON 的反向延长线上时,请直接写出线段OC ,OA 及BC 之间的数量关系:______.24.如图,在△ABD 中,∠ABD =90°,AB=BD ,点E 在线段BD 上,延长AB 使BC=BE ,连接AE 、CE 、CD ,点M 在线段AE 上,点N 在线段CD 上,BM ⊥BN ,易证△ABE ≌△DBC ;仔细观察,请逐一找出图中其他的全等三角形,并说明理由.25.已知:直线EF 分别与直线AB ,CD 相交于点G ,H ,并且180AGE DHE ∠+∠=︒(1)如图1,求证://AB CD ;(2)如图2,点M 在直线AB ,CD 之间,连接GM ,HM ,求证:M AGM CHM ∠=∠+∠;(3)如图3,在(2)的条件下,射线GH 是BGM ∠的平分线,在MH 的延长线上取点N ,连接GN ,若N AGM ∠=∠,12M N FGN ∠=∠+∠,求MHG ∠的度数.一、选择题1.如图,在ABC 中,8AB AC ==厘米,6BC =厘米,点D 为AB 的中点.如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上,由C 点向A 点运动,为了使BPD CPQ △≌△,点Q 的运动速度应为( )A .1厘米/秒B .2厘米/秒C .3厘米/秒D .4厘米/秒 2.下列命题的逆命题是真命题的是( ).A .3的平方根是3B .5是无理数C .1的立方根是1D .全等三角形的周长相等3.如图,在ABC 和DEF 中,,B DEF AB DE ∠=∠=,添加下列一个条件后,仍然不能证明ABC DEF ≌,这个条件是( )A .A D ∠=∠B .BC EF = C .ACB F ∠=∠D .AC DF = 4.如图,已知ABC DCB ∠=∠,添加一个条件使ABC DCB △△≌,下列添加的条件不能使ABC DCB △△≌的是( )A .A D ∠=∠B .AB DC = C .AC DB =D .ACB DBC ∠=∠ 5.如图所示,已知AB ∥CD ,BAC ∠与ACD ∠的平分线交于点O ,OE AC ⊥于点E ,且3OE cm =,则点O 到AB ,CD 的距离之和是( )A .3cmB .6cmC .9cmD .12cm 6.如图,AB ⊥CD ,且AB =CD .E 、F 是AD 上两点,CE ⊥AD ,BF ⊥AD .若CE =a ,BF =b ,EF =c ,则AD 的长为( )A .a +cB .b +cC .a +b -cD .a -b +c7.下列判断正确的个数是( )①三角形的三条高都在三角形的内部,并且相交于一点;②两边及一角对应相等的两个三角形全等;③两角及一边对应相等的两个三角形全等;④到三角形的三边所在的直线距离相等的点有三个;⑤两边及第三边上的高对应相等的两个三角形全等.A .4B .3C .2D .18.下列说法不正确的是( )A .三边分别相等的两个三角形全等B .有两边及一角对应相等的两个三角形全等C .有两角及一边对应相等的两个三角形全等D .斜边和一条直角边分别相等的两个直角三角形全等9.如图,AB BC ⊥,CD BC ⊥,AC BD =,则能证明ABC DCB ≅的判定法是( )A .SASB .AASC .SSSD .HL10.如图,C 是∠AOB 的平分线上一点,添加下列条件不能判定△AOC ≌△BOC 的是( )A .OA =OB B .AC =BC C .∠A =∠BD .∠1=∠2 11.已知,如图,OC 是∠AOB 内部的一条射线,P 是射线OC 上任意点,PD ⊥OA ,PE ⊥OB ,下列条件中:①∠AOC =∠BOC ,②PD =PE ,③OD =OE ,④∠DPO =∠EPO ,能判定OC 是∠AOB 的角平分线的有( )A .1个B .2个C .3个D .4个二、填空题12.如图,在Rt ABC △中,90C ∠=︒,AD 平分BAC ∠交BC 于点D .若3BC =,且:5:4BD DC =,5AB =,则ABD △的面积是______.13.如图,点D 、E 分别在线段AB 、AC 上,BE 与CD 相交于点O .若AB AC =,AD AE =,60A ∠=︒,80ADC ∠=︒,则B 的度数为______.14.如图,已知//AD BC ,点E 为CD 上一点,AE ,BE 分别平分DAB ∠,CBA ∠.若3cm AE =,4cm BE =,则四边形ABCD 的面积是________.15.如图,△ABC ≌△DEF ,由图中提供的信息,可得∠D =__________°.16.如图,在△ABC 中,∠C =90°,AD 是∠BAC 的角平分线,若BC =8cm ,BD =5cm ,AB=10cm,则S △ABD =______.17.如图,ABC 的三边AB 、BC 、CA 长分别是10、15、20,三条角平分线交于O 点,则::ABO BCO CAO S S S 等于__________.18.如图,在Rt △ABC 中,∠C =90°,D 、E 分别为边BC 、AB 上的点,且AE =AC ,DE ⊥AB .若∠ADC =61°,则∠B 的度数为_____.19.如图,在ABC 中,60BAC ∠=︒,BAC ∠的平分线AD 与边BC 的垂直平分线MD 相交于点D ,DE AB ⊥交AB 的延长线于点E ,DF AC ⊥于点F ,现有下列结论:①120EDF ∠=︒;②DM 平分EDF ∠;③DE DF AD +=;④2AB AC AE +>;其中正确的有________(请将正确结论的序号填写在横线上).20.如图,ABC ∆的两条高AD 、CE 交于点H ,已知6EH EB ==,8AE =,则ACH ∆的面积为______.21.如图,在△ABC 和△DBC 中,∠ACB=∠DBC=90°,E 是BC 的中点,DE ⊥AB ,垂足为F ,AB=DE .若BD=8cm ,则AC 的长为_________.三、解答题22.已知:MON α∠=,点P 是MON ∠平分线上一点,点A 在射线OM 上,作180APB α∠=︒-,交直线ON 于点B ,作PC ON ⊥于点C .(1)观察猜想:如图1,当90MON ∠=︒时,PA 和PB 的数量关系是______.(2)探究证明:如图2,当60MON ∠=︒时,(1)中的结论还成立吗?若成立,请写出证明过程;若不成立,请直接写出PA ,PB 之间另外的数量关系.(3)拓展延伸:如图3,当60MON ∠=︒,点B 在射线ON 的反向延长线上时,请直接写出线段OC ,OA 及BC 之间的数量关系:______.23.如图,BC ⊥AD 于C ,EF ⊥AD 于F ,AB ∥DE ,分别交BC 于B ,交EF 于E ,且BC =EF .求证:AF =CD .24.我们知道,“对称补缺”的思想是解决与轴对称图形有关的问题时的一种重要的添加辅助线的策略.请参考这种思想,解决本题:如图,在△ABC 中,AC =BC ,∠ACB =90°,D 是AC 上一点,AE ⊥BD 交BD 的延长线于E ,且BD 是∠ABC 的角平分线.求证:AE =12BD .25.如图,点D,E分别在AB和AC上,DE//BC,点F是AD上一点,FE的延长线交BC延长线BH于点G.(1)若∠DBE=40°,∠EBC=35°,求∠BDE的度数;(2)求证:∠EGH>∠ADE;(3)若点E是AC和FG的中点,△AFE与△CEG全等吗?请说明理由.。
天津耀华滨海学校数学全等三角形达标检测卷(Word 版 含解析)一、八年级数学轴对称三角形填空题(难)1.在Rt △ABC 中,∠ABC=90°,AB=3,BC=4,点E ,F 分别在边AB ,AC 上,将△AEF 沿直线EF 翻折,点A 落在点P 处,且点P 在直线BC 上.则线段CP 长的取值范围是____.【答案】15CP ≤≤【解析】【分析】根据点E 、F 在边AB 、AC 上,可知当点E 与点B 重合时,CP 有最小值,当点F 与点C 重合时CP 有最大值,根据分析画出符合条件的图形即可得.【详解】如图,当点E 与点B 重合时,CP 的值最小,此时BP=AB=3,所以PC=BC-BP=4-3=1,如图,当点F 与点C 重合时,CP 的值最大,此时CP=AC ,Rt △ABC 中,∠ABC=90°,AB=3,BC=4,根据勾股定理可得AC=5,所以CP 的最大值为5, 所以线段CP 长的取值范围是1≤CP≤5,故答案为1≤CP≤5.【点睛】本题考查了折叠问题,能根据点E 、F 分别在线段AB 、AC 上,点P 在直线BC 上确定出点E 、F 位于什么位置时PC 有最大(小)值是解题的关键.2.如图,ABC ∆中,90BAC ∠=︒,AD BC ⊥,ABC ∠的平分线BE 交AD 于点F ,AG 平分DAC ∠.给出下列结论:①BAD C ∠=∠;②EBC C ∠=∠;③AE AF =;④//FG AC ;⑤EF FG =.其中正确的结论是______.【答案】①③④【解析】【分析】①根据等角的余角相等即可得到结果,故①正确;②如果∠EBC=∠C ,则∠C=12∠ABC ,由于∠BAC=90°,那么∠C=30°,但∠C 不一定等于30°,故②错误;③由BE 、AG 分别是∠ABC 、∠DAC 的平分线,得到∠ABF=∠EBD .由于∠AFE=∠BAD+∠FBA ,∠AEB=∠C+∠EBD ,得到∠AFE=∠AEB ,可得③正确;④连接EG ,先证明△ABN ≌△GBN ,得到AN=GN ,证出△ANE ≌△GNF ,得∠NAE=∠NGF ,进而得到GF ∥AE ,故④正确;⑤由AE=AF ,AE=FG ,而△AEF 不一定是等边三角形,得到EF 不一定等于AE ,于是EF 不一定等于FG ,故⑤错误.【详解】∵∠BAC=90°,AD ⊥BC ,∴∠C+∠ABC=90°,∠C+∠DAC=90°,∠ABC+∠BAD=90°,∴∠ABC=∠DAC ,∠BAD=∠C ,故①正确;若∠EBC=∠C ,则∠C=12∠ABC , ∵∠BAC=90°,那么∠C=30°,但∠C 不一定等于30°,故②错误;∵BE 、AG 分别是∠ABC 、∠DAC 的平分线,∴∠ABF=∠EBD ,∵∠AFE=∠BAD+∠ABF ,∠AEB=∠C+∠EBD ,又∵∠BAD=∠C ,∴∠AFE=∠AEF ,∴AF=AE,故③正确;∵AG是∠DAC的平分线,AF=AE,∴AN⊥BE,FN=EN,在△ABN与△GBN中,∵90ABN GBNBN BNANB GNB∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴△ABN≌△GBN(ASA),∴AN=GN,又∵FN=EN,∠ANE=∠GNF,∴△ANE≌△GNF(SAS),∴∠NAE=∠NGF,∴GF∥AE,即GF∥AC,故④正确;∵AE=AF,AE=FG,而△AEF不一定是等边三角形,∴EF不一定等于AE,∴EF不一定等于FG,故⑤错误.故答案为:①③④.【点睛】本题主要考查等腰三角形的判定和性质定理,全等三角形的判定和性质定理,直角三角形的性质定理,掌握掌握上述定理,是解题的关键.3.如图,已知正六边形 ABCDEF 的边长是 5,点 P 是 AD 上的一动点,则 PE+PF 的最小值是_____.【答案】10【解析】利用正多边形的性质,可得点B关于AD对称的点为点E,连接BE交AD于P点,那么有PB=PF,PE+PF=BE最小,根据正六边形的性质可知三角形APB是等边三角形,因此可知BE 的长为10,即PE+PF的最小值为10.故答案为10.4.如图,A,B,C三点在同一直线上,分别以AB,BC(AB>BC)为边,在直线AC的同侧作等边ΔABD和等边ΔBCE,连接AE交BD于点M,连接CD交BE于点N,连接MN. 以下结论:①AE=DC,②MN//AB,③BD⊥AE,④∠DPM=60°,⑤ΔBMN是等边三角形.其中正确的是__________(把所有正确的序号都填上).【答案】①②④⑤【解析】【分析】①由三角形ABD与三角形BCE都为等边三角形,利用等边三角形的性质得到两条边对应相等,两个角相等都为60°,利用SAS即可得到三角形ABE与三角形DBC全等即可得结论;②由①中三角形ABE与三角形DBC全等,利用全等三角形的对应角相等得到一对角相等,再由∠ABD=∠EBC=60°,利用平角的定义得到∠MBE=∠NBC=60°,再由EB=CB,利用ASA 可得出三角形EMB与三角形CNB全等,利用全等三角形的对应边相等得到MB=NB,再由∠MBE=60°,利用有一个角为60°的等腰三角形为等边三角形可得出三角形BMN为等边三角形;可得∠BMN=60°,进行可得∠BMN=∠ABD,故MN//AB,从而可判断②,⑤正确;③无法证明PM=PN,因此不能得到BD⊥AE;④由①得∠EAB=∠CDB,根据三角形内角和和外角的性质可证得结论.【详解】①∵等边△ABD和等边△BCE,∴AB=DB,BE=BC,∠ABD=∠EBC=60°,∴∠ABE=∠DBC=120°,在△ABE和△DBC中,∵AB DB ABE DBC BE BC ⎪∠⎪⎩∠⎧⎨===,∴△ABE ≌△DBC (SAS ),∴AE=DC ,故①正确;∵△ABE ≌△DBC ,∴∠AEB=∠DCB ,又∠ABD=∠EBC=60°,∴∠MBE=180°-60°-60°=60°,即∠MBE=∠NBC=60°,在△MBE 和△NBC 中,∵AEB DCB EB CB MBE NBC ∠∠∠⎧⎪⎪⎩∠⎨===,∴△MBE ≌△NBC (ASA ),∴BM=BN ,∠MBE=60°,则△BMN 为等边三角形,故⑤正确;∵△BMN 为等边三角形,∴∠BMN=60°,∵∠ABD=60°,∴∠BMN=∠ABD ,∴MN//AB ,故②正确;③无法证明PM=PN ,因此不能得到BD ⊥AE ;④由①得∠EAB=∠CDB ,∠APC+∠PAC+∠PCA=180°,∴∠PAC+∠PCA=∠PDB+∠PCB=∠DBA=60°,∵∠DPM =∠PAC+∠PCA∴∠DPM =60°,故④正确,故答案为:①②④⑤.【点睛】此题考查了等边三角形的判定与性质,以及全等三角形的判定与性质,熟练掌握判定与性质是解本题的关键.5.如图,在Rt ABC △中,AC BC =,D 是线段AB 上一个动点,把ACD 沿直线CD 折叠,点A 落在同一平面内的A '处,当A D '平行于Rt ABC △的直角边时,ADC ∠的大小为________.【答案】112.5︒或67.5︒【解析】【分析】当A D '平行于Rt ABC △的直角边时,有两种情况,一是当A D BC '时,二是当A D AC '时,两种情况根据折叠的性质及等腰三角形的性质进行角度的计算即可.【详解】如图1,当点D 在线段AB 上,且A D BC '时,45A DB B '∠=∠=︒,45180ADC A DC '∴∠+∠-=︒︒,解得112.5A DC ADC '∠=∠=︒.图1如图2,当A D AC '时,45A DB A '∠=∠=︒,45180ADC A DC '∴∠+∠+=︒︒,解得67.5A DC ADC '∠=∠=︒.图2【点睛】本题考查了翻折变换的性质,等腰直角三角形的性质,掌握折叠的性质是解题关键.6.如图,在直角坐标系中,点()8,8B -,点()2,0C -,若动点P 从坐标原点出发,沿y 轴正方向匀速运动,运动速度为1/cm s ,设点P 运动时间为t 秒,当BCP ∆是以BC 为腰的等腰三角形时,直接写出t 的所有值__________________.【答案】2秒或46秒或14秒【解析】【分析】分两种情况:PC 为腰或BP 为腰.分别作出符合条件的图形,计算出OP 的长度,即可求出t 的值.【详解】 解:如图所示,过点B 作BD ⊥x 轴于点D ,作BE ⊥y 轴于点E ,分别以点B 和点C 为圆心,以BC 长为半径画弧交y 轴正半轴于点F ,点H 和点G∵点B (-8,8),点C (-2,0),∴DC=6cm ,BD=8cm ,由勾股定理得:BC=10cm∴在直角三角形COG 中,OC=2cm ,CG=BC=10cm ,∴2210246(cm)-=,当点P 运动到点F 或点H 时,BE=8cm ,BH=BF=10cm ,∴EF=EH=6cm∴OP=OF=8-6=2(cm )或OP=OH=8+6=14(cm ),故答案为:2秒,6秒或14秒.【点睛】本题综合考查了勾股定理和等腰三角形在平面直角坐标系中的应用,通过作图找出要求的点的位置,利用勾股定理来求解是本题的关键.7.如图,在等腰直角三角形ABC 中,90ACB ∠=︒,4AC BC ==,D 为BC 中点,E 为AC 边上一动点,连接DE ,以DE 为边并在DE 的右侧作等边DEF ∆,连接BF ,则BF的最小值为______.【答案】3【解析】【分析】由60°联想旋转全等,转换动长为定点到定线的长,构建等边三角形BDG,利用△BDF≌△GDE,转换BF=GE,然后即可求得其最小值.【详解】以BD为边作等边三角形BDG,连接GE,如图所示:∵等边三角形BDG,等边三角形DEF∴∠BDG=∠EDF=60°,BD=GD=BG,DE=DF=EF∴∠BDG+∠GFD=∠EDF+∠GFD,即∠BDF=∠GDE∴△BDF≌△GDE(SAS)∴BF=GE当GE⊥AC时,GE有最小值,如图所示GE′,作DH⊥GE′∴BF=GE=CD+12DG=2+1=3故答案为:3.【点睛】此题主要考查等边三角形的性质以及全等三角形的判定与性质,解题关键是由60°联想旋转全等,转换动长为定点到定线的长.8.如图,在△ABC中,AB=AC,点D、E在BC的延长线上,G是AC上一点,且CG=CD,F是GD上一点,且DF=DE.若∠A=100°,则∠E的大小为_____度.【答案】10【解析】【分析】由DF=DE,CG=CD可得∠E=∠DFE,∠CDG=∠CGD,再由三角形的外角的意义可得∠GDC=∠E+∠DFE=2∠E,∠ACB=∠CDG+∠CGD=2∠CD G,进而可得∠ACB=4∠E,最后代入数据即可解答.【详解】解:∵DF=DE,CG=CD,∴∠E=∠DFE,∠CDG=∠CGD,∵GDC=∠E+∠DFE,∠ACB=∠CDG+∠CGD,∴GDC=2∠E,∠ACB=2∠CDG,∴∠ACB=4∠E,∵△ABC中,AB=AC,∠A=100°,∴∠ACB=40°,∴∠E=40°÷4=10°.故答案为10.【点睛】本题考查等腰三角形的性质以及三角形外角的定义,解题的关键是灵活运用等腰三角形的性质和三角形的外角的定义确定各角之间的关系.9.如图,在△ABC中,AB=BC=8,AO=BO,点M是射线CO上的一个动点,∠AOC=60°,则当△ABM为直角三角形时,AM的长为______.【答案】7或34【解析】【分析】分三种情况讨论:①当M在AB下方且∠AMB=90°时,②当M在AB上方且∠AMB=90°时,③当∠ABM=90°时,分别根据含30°直角三角形的性质、直角三角形斜边的中线的性质或勾股定理,进行计算求解即可.【详解】如图1,当∠AMB=90°时,∵O是AB的中点,AB=8,∴OM=OB=4,又∵∠AOC=∠BOM=60°,∴△BOM是等边三角形,∴BM=BO=4,∴Rt△ABM中,AM=22-=43;AB BM如图2,当∠AMB=90°时,∵O是AB的中点,AB=8,∴OM=OA=4,又∵∠AOC=60°,∴△AOM是等边三角形,∴AM=AO=4;如图3,当∠ABM=90°时,∵∠BOM=∠AOC=60°,∴∠BMO=30°,∴MO=2BO=2×4=8,∴Rt△BOM中,BM=22MO OB-=43,∴Rt△ABM中,AM=22+=47.AB BM综上所述,当△ABM为直角三角形时,AM的长为43或47或4.故答案为43或47或4.10.如图,△ABC 中, AB=11 , AC= 5 ,∠ BAC 的平分线 AD 与边 BC 的垂直平分线 CD 相交于点 D ,过点 D 分别作 DE⊥AB ,DF⊥AC ,垂足分别为 E 、F ,则 BE 的长为_____.【答案】3【解析】【分析】连接CD,BD,由∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,根据角平分线的性质与线段垂直平分线的性质,易得CD=BD,DF=DE,继而可得AF=AE,易证得Rt△CDF≌Rt△BDE,则可得BE=CF,继而求得答案.【详解】如图,连接CD,BD,∵AD是∠BAC的平分线,DE⊥AB,DF⊥AC,∴DF=DE,∠F=∠DEB=90°,∠ADF=∠ADE,∴AE=AF,∵DG是BC的垂直平分线,∴CD=BD,在Rt△CDF和Rt△BDE中,CD BDDF DE⎧⎨⎩==,∴Rt△CDF≌Rt△BDE(HL),∴BE=CF,∴AB=AE+BE=AF+BE=AC+CF+BE=AC+2BE,∵AB=11,AC=5,∴BE=12(11-5)=3.故答案为:3.【点睛】此题考查了线段垂直平分线的性质、角平分线的性质以及全等三角形的判定与性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.二、八年级数学轴对称三角形选择题(难)11.在平面直角坐标系中,等腰△ABC的顶点A、B的坐标分别为(0,0)、(2,2),若顶点C落在坐标轴上,则符合条件的点C有()个.A.5 B.6 C.7 D.8【答案】D【解析】【分析】要使△ABC是等腰三角形,可分三种情况(①若AC=AB,②若BC=BA,③若CA=CB)讨论,通过画图就可解决问题.【详解】①若AC=AB,则以点A为圆心,AB为半径画圆,与坐标轴有4个交点;②若BC=BA,则以点B为圆心,BA为半径画圆,与坐标轴有2个交点(A点除外);③若CA=CB,则点C在AB的垂直平分线上.∵A(0,0),B(2,2),∴AB的垂直平分线与坐标轴有2个交点.综上所述:符合条件的点C的个数有8个.故选D.【点睛】本题考查了等腰三角形的判定、垂直平分线的性质的逆定理等知识,还考查了动手操作的能力,运用分类讨论的思想是解决本题的关键.12.如图,在△ABC中,∠B=32°,将△ABC沿直线m翻折,点B落在点D的位置,则∠1-∠2的度数是()A .32°B .64°C .65°D .70°【答案】B【解析】【分析】 此题涉及的知识点是三角形的翻折问题,根据翻折后的图形相等关系,利用三角形全等的性质得到角的关系,然后利用等量代换思想就可以得到答案【详解】如图,在△ABC 中,∠B=32°,将△ABC 沿直线m 翻折,点B 落在点D 的位置∠B=∠D=32° ∠BEH=∠DEH∠1=180︒-∠BEH -∠DEH=180︒-2∠DEH∠2=180︒-∠D -∠DEH -∠EHF=180︒-∠B -∠DEH -(∠B+∠BEH)=180︒-∠B -∠DEH -(∠B+∠DEH)=180︒-32°-∠DEH -32°-∠DEH=180︒-64°-2∠DEH∴∠1-∠2=180︒-2∠DEH -(180︒-64°-2∠DEH)=180︒-2∠DEH -180︒+64°+2∠DEH=64°故选B【点睛】此题重点考察学生对图形翻折问题的实际应用能力,等量代换是解本题的关键13.如图,60AOB ∠=,OC 平分AOB ∠,如果射线OA 上的点E 满足OCE ∆是等腰三角形,那么OEC ∠的度数不可能为( )A .120°B .75°C .60°D .30°【答案】C【解析】【分析】 分别以每个点为顶角的顶点,根据等腰三角形的定义确定∠OEC 是度数即可得到答案.【详解】∵60AOB ∠=,OC 平分AOB ∠,∠AOC=30︒,当OC=CE 时,∠OEC=∠AOC=30︒,当OE=CE 时,∠OEC=180OCE COE ∠∠︒--=120︒,当OC=OE 时,∠OEC=12(180COE ∠︒- )=75︒, ∴∠OEC 的度数不能是60°,故选:C.【点睛】此题考查等腰三角形的定义,角平分线的定义,根据题意正确画出符合题意的图形是解题的关键.14.如图,在ABC ∆中,120BAC ︒∠=,点,E F 分别是ABC ∆的边AB 、AC 的中点,边BC 分别与DE 、DF 相交于点,H G ,且,DE AB DF AC ⊥⊥,连接AD 、AG 、AH ,现在下列四个结论:①60EDF ︒∠=,②AD 平分GAH ∠,③B ADF ∠=∠,④GD GH =.则其中正确的结论有( ).A .1个B .2个C .3个D .4个【答案】A【解析】【分析】利用,DE AB DF AC ⊥⊥及四边形的内角和即可得到①正确;;根据三角形内角和与线段的垂直平分线性质得到∠BAH+∠GAC=60︒,无条件证明∠GAD=∠HAD,故②错误;由等量代换得B ADF ∠≠∠,故③错误;利用三角形的内角和与对顶角相等得到GD GH ≠,故④错误.【详解】∵,DE AB DF AC ⊥⊥,∴∠DEA=∠DFA=90︒,∵120BAC ︒∠=,∴∠EDF=360︒-∠DEA-∠DFA-∠BAC=60︒,故①正确;∵120BAC ︒∠=,∴∠B+∠C=60︒,∵点,E F 分别是ABC ∆的边AB 、AC 的中点,,DE AB DF AC ⊥⊥,∴BH=AH ,AG=CG ,∴∠BAH=∠B ,∠GAC=∠C ,∴∠BAH+∠GAC=60︒,∵无条件证明∠GAD=∠HAD,∴AD 不一定平分GAH ∠,故②错误;∵∠ADF+∠DAF=90︒,∠B=∠BAH,90BAH DAF ∠+∠≠,∴B ADF ∠≠∠,故③错误;∵90B BHE ∠+∠=,30B ∠≠ ,∴ 60BHE ∠≠,∴60DHG ∠≠,∴DHG HDG ∠≠∠,∴GD GH ≠,故④错误,故选:A.【点睛】此题考查线段的垂直平分线的性质,利用三角形的内角和,四边形的内角和求角度,利用对顶角相等,等角对等边推导边的关系.15.如图,在锐角△ABC 中,AC =10,S △ABC =25,∠BAC 的平分线交 BC 于点 D ,点 M ,N 分别是 AD 和 AB 上的动点,则 BM +MN 的最小值是( )A.4 B.245C.5 D.6【答案】C【解析】试题解析:如图,∵AD是∠BAC的平分线,∴点B关于AD的对称点B′在AC上,过点B′作B′N⊥AB于N交AD于M,由轴对称确定最短路线问题,点M即为使BM+MN最小的点,B′N=BM+MN,过点B作BE⊥AC于E,∵AC=10,S△ABC=25,∴12×10•BE=25,解得BE=5,∵AD是∠BAC的平分线,B′与B关于AD对称,∴AB=AB′,∴△ABB′是等腰三角形,∴B′N=BE=5,即BM+MN的最小值是5.故选C.16.如图,在△ABC中,BC的垂直平分线分别交AC,BC于点D,E,若△ABC的周长为24,CE=4,则△ABD的周长为()A.16 B.18 C.20 D.24【答案】A【解析】【分析】根据线段的垂直平分线的性质和三角形的周长公式进行解答即可.【详解】解:∵DE 是BC 的垂直平分线,∴DB=DC ,BC=2CE=8又∵AABC 的周长为24,∴AB+BC+AC=24∴AB+AC=24-BC=24-8=16∴△ABD 的周长=AD+BD+AB=AD+CD+AB=AB+AC=16,故答案为A【点睛】本题考查的是线段的垂直平分线的性质,理解并应用线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17.如图,在Rt △ABC 中,∠ACB =90°,∠A =30°,在直线AC 上取一点P ,使得△PAB 为等腰三角形,则符合条件的点P 共有( )A .6个B .5个C .4个D .3个【答案】C【解析】【分析】根据等腰三角形的判定定理即可得到结论.【详解】解:根据题意,∵△PAB 为等腰三角形,∴可分为:PA=PB ,PA=AB ,PB=AB 三种情况,如图所示:∴符合条件的点P 共有4个;故选择:C.【点睛】本题考查了等腰三角形的判定来解决实际问题,其关键是根据等腰三角形的判定定理解答.18.如图,Rt ABC ∆中,90ACB ∠=,3AC =,4BC =,5AB =,将边AC 沿CE 翻折,使点A 落在AB 上的点D 处;再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点B ′处,两条折痕与斜边AB 分别交于点E 、F ,则线段EF 的长为( )A .52B .125C .4D .53【答案】B【解析】【分析】先利用折叠的性质证明出△ECF 是一个等腰直角三角形,因此EF=CE ,然后再根据文中条件综合得出S △ABC =12AC∙BC=12AB∙CE ,求出CE 进而得出答案即可. 【详解】根据折叠性质可知:CD=AC=3,BC=B C '=4,∠ACE=∠DCE ,∠BCF=∠B 'CF ,CE ⊥AB , ∴∠DCE+∠B 'CF=∠ACE+∠BCF ,∵∠ACB=90°,∴∠ECF=45°,又∵CE ⊥AB ,∴△ECF 是等腰直角三角形,∴EF=CE , 又∵S △ABC =12AC∙BC=12AB∙CE , ∴AC∙BC=AB∙CE , ∵3AC =,4BC =,5AB =,∴125CE =, ∴EF 125=. 所以答案为B 选项.【点睛】本题主要考查了直角三角形与等腰三角形性质的综合运用,熟练掌握相关概念是解题关键.19.如图,已知正方形ABCD ,顶点A (1,3)、B (1,1)、C (3,1).规定“把正方形ABCD 先沿x 轴翻折,再向左平移1个单位”为一次变换,如此这样,连续经过2014次变换后,正方形ABCD 的对角线交点M 的坐标变为( )A.(-2012,2)B.(-2012,-2)C.(-2013,-2)D.(-2013,2)【答案】A【解析】试题分析:首先由正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1),然后根据题意求得第1次、2次、3次变换后的对角线交点M的对应点的坐标,即可得规律:第n次变换后的点M的对应点的为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2),继而求得把正方形ABCD连续经过2014次这样的变换得到正方形ABCD的对角线交点M的坐标.试题解析:∵正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).∴对角线交点M的坐标为(2,2),根据题意得:第1次变换后的点M的对应点的坐标为(2-1,-2),即(1,-2),第2次变换后的点M的对应点的坐标为:(2-2,2),即(0,2),第3次变换后的点M的对应点的坐标为(2-3,-2),即(-1,-2),第n次变换后的点M的对应点的为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2),∴连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为(-2012,2).故选A.考点:1.翻折变换(折叠问题);2.正方形的性质;3.坐标与图形变化-平移.20.如图,O是正三角形ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④S四边形AOBO′=6+33;⑤S△AOC+S△AOB=6+934.其中正确的结论是()A.①②③⑤B.①③④C.②③④⑤D.①②⑤【答案】A【解析】试题解析:由题意可知,∠1+∠2=∠3+∠2=60°,∴∠1=∠3,又∵OB=O′B,AB=BC,∴△BO′A≌△BOC,又∵∠OBO′=60°,∴△BO′A可以由△BOC绕点B逆时针旋转60°得到,故结论①正确;如图①,连接OO′,∵OB=O′B,且∠OBO′=60°,∴△OBO′是等边三角形,∴OO′=OB=4.故结论②正确;∵△BO′A≌△BOC,∴O′A=5.在△AOO′中,三边长为3,4,5,这是一组勾股数,∴△AOO′是直角三角形,∠AOO′=90°,∴∠AOB=∠AOO′+∠BOO′=90°+60°=150°,故结论③正确;S四边形AOBO′=S△AOO′+S△OBO′=12×3×4+3×42=6+43,故结论④错误;如图②所示,将△AOB绕点A逆时针旋转60°,使得AB与AC重合,点O旋转至O″点.易知△AOO″是边长为3的等边三角形,△COO″是边长为3、4、5的直角三角形,则S△AOC+S△AOB=S四边形AOCO″=S△COO″+S△AOO″=123293,故结论⑤正确.综上所述,正确的结论为:①②③⑤.故选A.。
《全等三角形》单元测试题姓名 班级 得分一、填空题(4×10=40分)1、在△ABC 中,AC>BC>AB ,且△ABC ≌△DEF ,则在△DEF 中,______>______>_______(填边)。
2、已知:△ABC ≌△A ′B ′C ′,∠A=∠A ′,∠B=∠B ′,∠C=70°,AB=15cm ,则∠C ′=_________,A ′B ′=__________。
3、如图1,△ABD ≌△BAC ,若AD=BC ,则∠BAD 的对应角是________。
4、如图2,在△ABC 和△FED ,AD=FC ,AB=FE ,当添加条件__________时,就可得到△ABC ≌△FED 。
(只需填写一个你认为正确的条件)5、如图3,在△ABC 中,AB=AC ,AD ⊥BC 于D 点,E 、F 分别为DB 、DC 的中点,则图中共有全等三角形________对。
6、如图4,BE ,CD 是△ABC 的高,且BD =EC ,判定△BCD ≌△CBE 的依据是 .7、如图5,△ABC 中,∠C=90°,CD ⊥AB 于点D ,AE 是∠BAC 的平分线,点E 到AB 的距离等于3cm ,则CF= cm.8、如图6,在△ABC 中,AD =DE ,AB =BE ,∠A =80°,则∠CED =_____.9、P 是∠AOB 平分线上一点,CD ⊥OP 于F ,并分别交OA 、OB 于CD ,则CD_____P 点到∠AOB 两边距离之和。
(填“>”,“<”或“=”)10、AD 是△ABC 的边BC 上的中线,AB =12,AC =8,则中线AD 的取值范围是二、选择题:(每小题5分,共30分)11、下列命题中:⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等, 其中真命题的个数有( )A 、3个B 、2个C 、1个D 、0个12、如图7,已知点E 在△ABC 的外部,点D 在BC 边上,AD ECB图4ABDE 图1 图2 图3图5图6DE 交AC 于F ,若∠1=∠2=∠3,AC=AE ,则有( ) A 、△ABD ≌△AFD B 、△AFE ≌△ADCC 、△AEF ≌△DFCD 、△ABC ≌△ADE13、下列条件中,不能判定△ABC ≌△A ′B ′C ′的是( ) A 、AB=A ′B ′,∠A=∠A ′,AC=A ′C ′B 、AB=A ′B ′,∠A=∠A ′,∠B=∠B ′C 、AB=A ′B ′,∠A=∠A ′,∠C=∠C ′D 、∠A=∠A ′,∠B=∠B ′,∠C=∠C ′14、如图8所示,90E F ∠=∠=,B C ∠=∠,AE AF =,结论:①EM FN =;②CD DN =;③FAN EAM ∠=∠;④ACN ABM △≌△.其中正确的有( )A .1个B .2个C .3个D .4个15、全等三角形又叫做合同三角形,平面内的合同三角形分为真正合同三角形与镜面合同三角形,假设△ABC 和△A 1B 1C 1是全等(合同)三角形,点A 与点A 1对应,点B 与点B 1对应,点C 与点C 1对应,当沿周界A →B →C →A ,及A 1→B 1→A 1环绕时,若运动方向相同,则称它们是真正合同三角形(如图9),若运动方向相反,则称它们是镜面合同三角形(如图10),两个真正合同三角形都可以在平面内通过平移或旋转使它们重合,两个镜面合同三角形要重合,则必须将其中一个翻转180°(如图11),下列各组合同三角形中,是镜面合同三角形的是( )16、如图12,在△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于D , 若BC=64,且BD :CD=9:7,则点D 到AB 边的距离为( ) A 、18 B 、32 C 、28 D 、24三、解答下列各题:(17-18题各8分,19-2280分)17、如图13,点A 、B 、C 、D AB=DC ,AE//DF ,AE=DF ,求证:EC=FB18、如图14,AE 是∠BAC 的平分线,AB=AC 。
天津英华国际学校数学全等三角形单元试卷(word版含答案)一、八年级数学轴对称三角形填空题(难)1.△ABC与△DEF是两个全等的等腰直角三角形,∠BAC=∠D=90°,AB=AC=6.现将△DEF与△ABC按如图所示的方式叠放在一起,使△ABC保持不动,△DEF运动,且满足点E在边BC上运动(不与B,C重合),边DE始终经过点A,EF与AC交于点M.在△DEF 运动过程中,若△AEM能构成等腰三角形,则BE的长为______.【答案】363【解析】【分析】分若AE=AM 则∠AME=∠AEM=45°;若AE=EM;若MA=ME 则∠MAE=∠AEM=45°三种情况讨论解答即可;【详解】解:①若AE=AM 则∠AME=∠AEM=45°∵∠C=45°∴∠AME=∠C又∵∠AME>∠C∴这种情况不成立;②若AE=EM∵∠B=∠AEM=45°∴∠BAE+∠AEB=135°,∠MEC+∠AEB=135°∴∠BAE=∠MEC在△ABE和△ECM中,BBAE CENAE EIIC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△ECM(AAS),∴CE=AB6,∵AC=BC2AB=3∴BE=23﹣6;③若MA=ME 则∠MAE=∠AEM=45°∵∠BAC=90°,∴∠BAE=45°∴AE平分∠BAC∵AB=AC,∴BE=12BC=3.故答案为23﹣6或3.【点睛】本题考查了等腰三角形的判定,掌握分类讨论的数学思想是解答本题的关键.2.如图,已知△ABC和△ADE都是正三角形,连接CE、BD、AF,BF=4,CF=7,求AF的长_________ .【答案】3【解析】【分析】过点A作AF⊥CE交于I,AG⊥BD交于J,证明CAE≅BAD,再证明CAI≅BAJ,求出°7830∠=∠=,然后求出12IF FJ AF==,,通过设FJ x=求出x,即可求出AF的长.【详解】解:过点A作AF⊥CE交于I,AG⊥BD交于J在CAE 和BAD 中AC AB CAE BADAE AD =⎧⎪∠=∠⎨⎪=⎩∴CAE ≅BAD∴ICA ABJ ∠=∠ ∴BFE CAB ∠=∠(8字形)∴°120CFD ∠= 在CAI 和BAJ 中°90ICA ABJ CAI BJA CA BA ∠=∠⎧⎪∠=∠=⎨⎪=⎩∴CAI ≅BAJ,AI AJ CI BJ ==∴°60CFA AFJ ∠=∠=∴°30FAI FAE ∠=∠= 在RtAIF 和RtAJF 中°30FAI FAE ∠=∠=∴12IF FJ AF ==设FJ x = 7,4CF BF ==则47x x +=-32x ∴=2AF FJ =AF ∴=3【点睛】此题主要考查了通过做辅助线证明三角形全等,得出相关的边相等,学会合理添加辅助线求解是解决本题的重点.3.如图,在01A BA △中,20B ∠=︒,01A B A B =,在1A B 上取点C ,延长01A A 到2A ,使得121A A AC =;在2A C 上取一点D ,延长12A A 到3A ,使得232A A A D =;…,按此做法进行下去,第n 个等腰三角形的底角n A ∠的度数为__________.【答案】11()802n -︒⋅.【解析】【分析】先根据等腰三角形的性质求出∠BA 1 A 0的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠CA 2A 1,∠DA 3A 2及∠EA 4A 3的度数,找出规律即可得出第n 个等腰三角形的底角∠A n 的度数.【详解】解:∵在△A 0BA 1中,∠B=20°,A 0B=A 1B , ∴∠BA 1 A 0= 1801802022B ︒︒︒-∠-= =80°, ∵A 1A 2=A 1C ,∠BA 1 A 0是△A 1A 2C 的外角,∴∠CA 2A 1= 108022BA A ︒∠= =40°; 同理可得,∠DA 3A 2=20°,∠EA 4A 3=10°,∴第n 个等腰三角形的底角∠A n = 11()802n -︒⋅.【点睛】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠CA2A1,∠DA3A2及∠EA4A3的度数,找出规律是解答此题的关键.4.如图,点P是AOB∠内任意一点,OP=5 cm,点M和点N分别是射线OA和射线OB上的动点,PN PM MN++的最小值是5 cm,则AOB∠的度数是__________.【答案】30°【解析】试题解析:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:∵点P关于OA的对称点为D,关于OB的对称点为C,∴PM=DM,OP=OD,∠DOA=∠POA;∵点P关于OB的对称点为C,∴PN=CN,OP=OC,∠COB=∠POB,∴OC=OP=OD,∠AOB=12∠COD,∵PN+PM+MN的最小值是5cm,∴PM+PN+MN=5,∴DM+CN+MN=5,即CD=5=OP,∴OC=OD=CD,即△OCD是等边三角形,∴∠COD=60°,∴∠AOB=30°.5.如图,△ABC中,AB=8,AC=6,∠ABC与∠ACB的平分线交于点F,过点F作DE∥BC,分别交AB、AC于点D、E,则△ADE的周长为_____.【答案】14.【解析】【分析】先根据角平分线的定义及平行线的性质得BD=DF,CE=EF,则△ADE的周长=AB+AC=14.【详解】∵BF平分∠ABC,∴∠DBF=∠CBF,∵DE∥BC,∴∠CBF=∠DFB,∴∠DBF=∠DFB,∴BD=DF,同理FE=EC,∴△AED的周长=AD+AE+ED=AB+AC=8+6=14.故答案为:14.【点睛】此题考查角平分线的性质,平行线的性质,等腰三角形的等角对等边的性质.6.如图,在△ABC中,AB=AC,∠BAC=120°,D为BC上一点,DA⊥AC,AD=24 cm,则BC 的长________cm.【答案】72【解析】【分析】按照等腰三角形的性质、角的和差以及含30°直角三角形的性质进行解答即可.【详解】解:∵AB=AC,∠BAC=120°∴∠B=∠C=30°∵DA ⊥AC ,AD=24 cm∴DC=2AD=48cm ,∵∠BAC=120°,DA ⊥AC∴∠BAD=∠BAC-90°=30°∴∠B=∠BAD∴BD=AD=24cm∴BC=BD+DC=72cm故答案为72.【点睛】本题考查了腰三角形的性质、角的和差以及含30°直角三角形的性质,其中灵活运用含30°直角三角形的性质是解答本题的关键.7.如图,在ABC ∆和DBC ∆中,40A ∠=,2AB AC ==,140BDC ∠=,BD CD =,以点D 为顶点作70MDN ∠=,两边分别交,AB AC 于点,M N ,连接MN ,则AMN ∆的周长为_______.【答案】4【解析】【分析】延长AB 至F ,使BF =CN ,连接DF ,通过证明△BDF ≌△CDN ,及△DMN ≌△DMF ,从而得出MN =MF ,△AMN 的周长等于AB +AC 的长.【详解】延长AB 至F ,使BF =CN ,连接DF .∵BD =CD ,且∠BDC =140°,∴∠BCD =∠DBC =20°.∵∠A =40°,AB =AC =2,∴∠ABC =∠ACB =70°,∴∠DBA =∠DCA =90°.在Rt△BDF和Rt△CND中,∵BF=CN,∠DBA=∠DCA,DB=DC,∴△BDF≌△CDN,∴∠BDF=∠CDN,DF=DN.∵∠MDN=70°,∴∠BDM+∠CDN=70°,∴∠BDM+∠BDF=70°,∴∠FDM=70°=∠MDN.∵DF=DN,∠FDM=∠MDN,DM=DM,∴△DMN≌△DMF,∴MN=MF,∴△AMN的周长是:AM+AN+MN=AM+MB+BF+AN=AB+AC=4.故答案为:4.【点睛】本题主要利用等腰三角形的性质来证明三角形全等,构造全等三角形是解答本题的关键.8.如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,若OA2=4,则△A n B n A n+1的边长为_____.【答案】2n.【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A 1B 1∥A 2B 2∥A 3B 3,以及A 2B 2=2B 1A 2,得出A 3B 3=4B 1A 2=8,A 4B 4=8B 1A 2=16,A 5B 5=16B 1A 2…进而得出答案.【详解】解:∵△A 1B 1A 2是等边三角形,∴A 1B 1=A 2B 1,∵∠MON =30°,∵OA 2=4,∴OA 1=A 1B 1=2,∴A 2B 1=2,∵△A 2B 2A 3、△A 3B 3A 4是等边三角形,∴A 1B 1∥A 2B 2∥A 3B 3,B 1A 2∥B 2A 3,∴A 2B 2=2B 1A 2,B 3A 3=2B 2A 3,∴A 3B 3=4B 1A 2=8,A 4B 4=8B 1A 2=16,A 5B 5=16B 1A 2=32,以此类推△A n B n A n +1的边长为 2n .故答案为:2n .【点睛】本题主要考查等边三角形的性质及含30°角的直角三角形的性质,由条件得到OA 5=2OA 4=4OA 3=8OA 2=16OA 1是解题的关键.9.如图,ABC ∆中,AB AC =,点D 是ABC ∆内部一点,DB DC =,点E 是边AB 上一点,若CD 平分ACE ∠,100AEC =∠,则BDC ∠=______°【答案】80【解析】【分析】根据角平分线得到∠ACE=2∠ACD ,再根据角的和差关系得到∠ECB =∠ACB -2∠ACD ,然后利用外角定理得到∠ABC+∠ECB=100°,代换化简得出∠ACB -∠ACD=50°,即∠DCB=50°,从而求出∠BDC即可.【详解】∵CD平分∠ACE,∴∠ACE=2∠ACD=2∠ECD,∴∠ECB=∠ACB-∠ACE=∠ACB-2∠ACD,∵∠AEC=100°,∴∠ABC+∠ECB=100°,∴∠ABC+∠ACB-2∠ACD=100°,∵AB=AC,∴∠ABC=∠ACB,∴2∠ACB-2∠ACD=100°,∴∠ACB-∠ACD=50°,即∠DCB=50°,∵DB=DC,∴∠DBC=∠DCB,∴∠BDC=180°-2∠DCB=180°-2×50°=80°.【点睛】本题考查了角平分线,三角形内角和,外角定理,及等边对等角的性质等知识,熟练掌握基本知识,找出角与角之间的关系是解题的关键.10.如图,△ABC中,AC=DC=3,BD垂直∠BAC的角平分线于D,E为AC的中点,则图中两个阴影部分面积之差的最大值为________.【答案】9 2【解析】【分析】首先证明两个阴影部分面积之差=S△ADC,当CD⊥AC时,△ACD的面积最大.【详解】延长BD交AC于点H.设AD交BE于点O.∵AD⊥BH,∴∠ADB=∠ADH=90°,∴∠ABD+∠BAD=90°,∠H+∠HAD=90°,∵∠BAD=∠HAD,∴∠ABD=∠H,∴AB=AH,∵AD⊥BH,∴BD=DH,∵DC=CA,∴∠CDA=∠CAD,∵∠CAD+∠H=90°,∠CDA+∠CDH=90°,∴∠CDH=∠H,∴CD=CH=AC,∵AE=EC,∴S△ABE=14S△ABH,S△CDH=14S△ABH,∵S△OBD−S△AOE=S△ADB−S△ABE=S△ADH−S△CDH=S△ACD,∵AC=CD=3,∴当DC⊥AC时,△ACD的面积最大,最大面积为12×3×3=92.故填:92.【点睛】本题考查等腰三角形的判定和性质,三角形中线的性质等知识,解题的关键是学会用转化的思想思考问题.二、八年级数学轴对称三角形选择题(难)11.如图,在△ABC中,∠B=32°,将△ABC沿直线m翻折,点B落在点D的位置,则∠1-∠2的度数是()A.32°B.64°C.65°D.70°【答案】B【解析】【分析】此题涉及的知识点是三角形的翻折问题,根据翻折后的图形相等关系,利用三角形全等的性质得到角的关系,然后利用等量代换思想就可以得到答案【详解】如图,在△ABC中,∠B=32°,将△ABC沿直线m翻折,点B落在点D的位置∠B=∠D=32° ∠BEH=∠DEH∠1=180︒-∠BEH-∠DEH=180︒-2∠DEH∠2=180︒-∠D-∠DEH-∠EHF=180︒-∠B-∠DEH-(∠B+∠BEH)=180︒-∠B-∠DEH-(∠B+∠DEH)=180︒-32°-∠DEH-32°-∠DEH=180︒-64°-2∠DEH∴∠1-∠2=180︒-2∠DEH-(180︒-64°-2∠DEH)=180︒-2∠DEH-180︒+64°+2∠DEH=64°故选B【点睛】此题重点考察学生对图形翻折问题的实际应用能力,等量代换是解本题的关键12.如图,已知△ABC中,AB=AC,AD=AE,∠BAE=30°,则∠DEC等于()A .7.5°B .10°C .15°D .18°【答案】C【解析】 根据等腰三角形性质求出∠C=∠B,根据三角形的外角性质求出∠B=∠C=∠AED+α﹣30°,根据AE=AD ,可得∠AED=∠ADE=∠C+α,得出等式∠AED=∠AED+α﹣30°+α,求出α=15°,即得到∠DEC=α=15°,故选C.点睛:本题考查了等腰三角形的性质,三角形的内角和定理,三角形的外角性质等知识点的应用,主要考查学生运用定理进行推理的能力,本题有一点难度,但题型不错.13.如图,已知AD 为ABC ∆的高线,AD BC =,以AB 为底边作等腰Rt ABE ∆,连接ED ,EC ,延长CE 交AD 于F 点,下列结论:①DAE CBE ∠=∠;②CE DE ⊥;③BD AF =;④AED ∆为等腰三角形;⑤BDE ACE S S ∆∆=,其中正确的有( )A .①③B .①②④C .①③④D .①②③⑤【答案】D【解析】【分析】 ①根据等腰直角三角形的性质即可证明∠CBE =∠DAE ,再得到△ADE ≌△BCE ;②根据①结论可得∠AEC =∠DEB ,即可求得∠AED =∠BEG ,即可解题;③证明△AEF ≌△BED 即可;④根据△AEF ≌△BED 得到DE=EF, 又DE ⊥CF ,故可判断;⑤易证△FDC 是等腰直角三角形,则CE =EF ,S △AEF =S △ACE ,由△AEF ≌△BED ,可知S △BDE =S △ACE ,所以S △BDE =S △ACE .【详解】①∵AD 为△ABC 的高线,∴CBE +∠ABE +∠BAD =90°,∴∠ABE =∠BAE =∠BAD +∠DAE =45°,AE =BE ,∴∠CBE +∠BAD =45°,∴∠DAE =∠CBE ,故①正确;在△DAE 和△CBE 中,AE BE DAE CBE AD BC ⎧⎪∠∠⎨⎪⎩===,∴△ADE ≌△BCE (SAS );②∵△ADE ≌△BCE ,∴∠EDA =∠ECB ,∵∠ADE +∠EDC =90°,∴∠EDC +∠ECB =90°,∴∠DEC =90°,∴CE ⊥DE ;故②正确;③∵∠BDE =∠ADB +∠ADE ,∠AFE =∠ADC +∠ECD ,∴∠BDE =∠AFE ,∵∠BED +∠BEF =∠AEF +∠BEF =90°,∴∠BED =∠AEF ,在△AEF 和△BED 中,BDE AFE BED AEF AE BE ∠∠⎧⎪∠∠⎨⎪⎩===,∴△AEF ≌△BED (AAS ),∴BD =AF故③正确;∵△AEF ≌△BED∴DE=EF, 又DE ⊥CF ,∴△DEF 为等腰直角三角形,故④错误;④∵AD =BC ,BD =AF ,∴CD =DF ,∵AD ⊥BC ,∵DE⊥CE,∴EF=CE,∴S△AEF=S△ACE,∵△AEF≌△BED,∴S△AEF=S△BED,∴S△BDE=S△ACE.故④正确;故选:D.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△BFE≌△CDE是解题的关键.14.在平面直角坐标系中,等腰△ABC的顶点A、B的坐标分别为(1,0)、(2,3),若顶点C 落在坐标轴上,则符合条件的点C有( )个.A.9 B.7 C.8 D.6【答案】C【解析】【分析】要使△ABC是等腰三角形,可分三种情况(①若CA=CB,②若BC=BA,③若AC=AB)讨论,通过画图就可解决问题.【详解】①若CA=CB,则点C在AB的垂直平分线上.∵A(1,0),B(2,3),∴AB的垂直平分线与坐标轴有2个交点C1,C2.②若BC=BA,则以点B为圆心,BA为半径画圆,与坐标轴有3个交点(A点除外)C3,C4,C5;③若AC=AB,则以点A为圆心,AB为半径画圆,与坐标轴有4个交点C6,C7,C8,C9.而C8(0,-3)与A、B在同一直线上,不能构成三角形,故此时满足条件的点有3个.综上所述:符合条件的点C的个数有8个.故选C.【点睛】本题考查了等腰三角形的判定、垂直平分线的性质的逆定理等知识,还考查了动手操作的能力,运用分类讨论的思想是解答本题的关键.15.如图,在Rt△ABC中,AC=BC,∠ACB=90°,D为AB的中点,E为线段AD上一点,过E点的线段FG交CD的延长线于G点,交AC于F点,且EG=AE,分别延长CE,BG交于点H,若EH平分∠AEG,HD平分∠CHG则下列说法:①∠GDH=45°;②GD=ED;③EF=2DM;④CG=2DE+AE,正确的是()A.①②③B.①②④C.②③④D.①②③④【答案】B【解析】【分析】首先证明△AEC≌△GEC(SAS),推出CA=CG,∠A=∠CGE=45°,推出DE=DG,故②正确;再证明△EDC≌△GDB,推出∠CED=∠BGD,ED=GD,由三角形外角的性质得出∠HDG=∠HDE,进而得出∠GDH=∠EDH=45°,即可判断①正确;通过证明△EDC和△EMD是等腰直角三角形,得到ED2MD,再通过证明△EFC≌△EDC,得到EF=ED,从而可判断③错误;由CG=CD+DG,CD=AD,ED=GD,变形即可判断④正确.【详解】∵AC=BC,∠ACB=90°,AD=DB,∴CD⊥AB,CD=AD=DB,∠A=∠CBD=45°.∵EH平分∠AEG,∴∠AEH=∠GEH.∵∠AEH+∠AEC=180°,∠GEH+∠CEG=180°,∴∠AEC=∠CEG.∵AE=GE,EC=EC,∴△AEC≌△GEC(SAS),∴CA=CG,∠A=∠CGE=45°.∵∠EDG=90°,∴∠DEG=∠DGE=45°,∴DE=DG,∠AEF=∠DEG=∠A=45°,故②正确;∵DE=DG,∠CDE=∠BDG=90°,DC=DB,∴△EDC≌△GDB(SAS),∴∠CED=∠BGD,ED=GD.∵HD平分∠CHG,∴∠GHD=∠EHD.∵∠CED=∠EHD+∠HDE,∠BGD=∠GHD+∠HDG,∴∠HDG=∠HDE.∵∠EDG=∠ADC=90°,∴∠GDH=∠EDH=45°,故①正确;∵∠EDC=90°,ED=GD,∴△EDC是等腰直角三角形,∴∠DEG=45°.∵∠GDH=45°,∴∠EDH=45°,∴△EMD是等腰直角三角形,∴ED MD.∵∠AEF=∠DEG=∠A=45°,∴∠AFE=∠CFG=90°.∵∠EDC=90°,∴∠EFC=∠EDC=90°.∵EH平分∠AEG,∴∠AEH=∠GEH.∵∠FEC=∠GEH,∠DEC=∠AEH,∴∠FEC=∠DEC.∵EC=EC,∴△EFC≌△EDC,∴EF=ED,∴EF MD.故③错误;∵CG=CD+DG=AD+ED=AE+ED+ED,∴CG=2DE+AE,故④正确.故选B.【点睛】本题考查了等腰直角三角形的性质和判定,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题.16.如果一个三角形能被一条线段分割成两个等腰三角形,那么称这个三角形为特异三角形.若△ABC是特异三角形,∠A=30°,∠B为钝角,则符合条件的∠B有()个.A.1 B.2 C.3 D.4【答案】B【解析】【分析】【详解】如下图,当30°角为等腰三角形的底角时有两种情况:∠B=135°或90°,当30°角为等腰三角形的顶角时有一种情况:∠B=112.5°,所以符合条件的∠B有三个.又因为∠B为钝角,则符合答案的有两个,故本题应选B.点睛:因为不确定这个等腰三角形的底边,所以应当以点A为一个确定点进行分类讨论:①当以B为顶点时,即以B为圆心,AB长为半径画弧交AC于点D,构成等腰△BAD;②当以点A为顶点时,即以点A为圆心,AB长为半径画弧,交AC于点D,构成等腰△ABD;或作线段AB的垂直平分线交AC于点D构成等腰△DAB.17.如图,在△ABC中,BI,CI分别平分∠ABC,∠ACB,过I点作DE∥BC,交AB于D,交AC于E,给出下列结论:①△DBI是等腰三角形;②△ACI是等腰三角形;③AI平分∠BAC;④△ADE周长等于AB+AC.其中正确的是( )A.①②③B.②③④C.①③④D.①②④【答案】C【解析】【分析】根据角平分线的性质、平行线的性质、等腰三角形的判定与性质分别对各选项分析判断后利用排除法求解.【详解】①∵IB平分∠ABC,∴∠DBI=∠CBI.∵DE∥BC,∴∠DIB=∠CBI,∴∠DBI=∠DIB,∴BD=DI,∴△DBI是等腰三角形.故本选项正确;②∵∠BAC不一定等于∠ACB,∴∠IAC不一定等于∠ICA,∴△ACI不一定是等腰三角形.故本选项错误;③∵三角形角平分线相交于一点,BI,CI分别是∠ABC和∠ACB的平分线,∴AI平分∠BAC.故本选项正确;④∵BD=DI,同理可得EI=EC,∴△ADE的周长=AD+DI+EI+AE=AD+BD+EC+AE=AB+AC.故本选项正确;其中正确的是①③④.故选C.【点睛】本题考查了等腰三角形的判定与性质,熟记三角形的角平分线相交于一点是解题的关键.18.如图所示,在四边ABCD中,∠BAD=120°,∠B=∠D=90°,若在BC和CD上分别找一点M,使得△AMN的周长最小,则此时∠AMN+∠ANM的度数为()A.110°B.120°C.140°D.150°【答案】B【解析】【分析】根据要使△AMN的周长最小,即利用点的对称,让三角形的三边在同一直线上,作出A关于BC和CD的对称点A′,A″,即可得出∠AA′M+∠A″=60°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″)即可得出答案.【详解】作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″即为△AMN的周长最小值.∵∠DAB=120°,∴∠AA′M+∠A″=180°-120°=60°,∵∠MA′A=∠MAA′,∠NAD=∠A″,且∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×60°=120°,故选B.【点睛】此题主要考查了平面内最短路线问题求法,以及三角形的外角的性质和垂直平分线的性质等知识的综合应用,根据轴对称的性质,得出M,N的位置是解题的关键.19.如图,在平面直角坐标系中,O为坐标原点,四边形OABC是长方形,点A、C的坐标分别为A(10,0 ),C(0,4),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为()A.(3,4),(2,4)B.(3,4),(2,4),(8,4)C.(2,4),(8,4)D.(3,4),(2,4),(8,4),(2.5,4)【答案】B【解析】试题解析:有两种情况:①以O为圆心,以5为半径画弧交BC于P点,此时OP=OD=5,在Rt△OPC中,OC=4,OP=5,由勾股定理得PC=3,则P的坐标是(3,4);②以D为圆心,以5为半径画弧交BC于P′和P″点,此时DP′=DP″=OD=5,过P′作P′N⊥OA于N,在Rt△OP′N中,设CP′=x,则DN=5-x,P′N=4,OP=5,由勾股定理得:42+(5-x)2=52,x=2,则P′的坐标是(2,4);过P″作P″M⊥OA于M,设BP″=a,则DM=5-a,P″M=4,DP″=5,在Rt△DP″M中,由勾股定理得:(5-a)2+42=52,解得:a=2,∴BP″=2,CP″=10-2=8,即P″的坐标是(8,4);假设0P=PD,则由P点向0D边作垂线,交点为Q则有PQ2十QD2=PD2,∵0P=PD=5=0D,∴此时的△0PD为正三角形,于是PQ=4,QD=120D=2.5,PD=5,代入①式,等式不成立.所以排除此种可能.故选B.20.如图,在平面直角坐标系中,A(1,2),B(3,2),连接AB,点P是x轴上的一个动点,连接AP、BP,当△ABP的周长最小时,对应的点P的坐标和△ABP的最小周长分别为( )A.(1,0),224 B.(3,0),224 C.(2,0), 25D.(2,0),252【答案】D【解析】作A关于x轴的对称点N(1,-2),连接BN与x轴的交点即为点P的位置,此时△ABP的周长最小.设直线BN 的解析式为y kx b =+,∵N (1,-2),B (3,2),∴232k b k b +=-⎧⎨+=⎩ , 解得24k b =⎧⎨=-⎩, ∴24y x =-,当0y =时,240x -=,解得,2x =,∴点P 的坐标为(2,0);∵A (1,2),B (3,2),∴AB //x 轴,∵AN ⊥x 轴,∴AB ⊥x 轴,在Rt △ABC 中,AB =2,AN =4,由勾股定理得,BN 22222425AB AN +=+=∵AP =NP , ∴△ABP 的周长最小值为:AB +BP +AP =AB +BP +PN =AB +BN 5 故选D.点睛:本题考查最短路径问题.利用轴对称作出点P 的位置是解题的关键.。
天津市耀华滨海学校数学三角形填空选择单元练习(Word版含答案)一、八年级数学三角形填空题(难)1.已知如图,BQ平分∠ABP,CQ平分∠ACP,∠BAC=α,∠BPC=β,则∠BQC=_________.(用α,β表示)【答案】12(α+β).【解析】【分析】连接BC,根据角平分线的性质得到∠3=12∠ABP,∠4=12∠ACP,根据三角形的内角和得到∠1+∠2=180°-β,2(∠3+∠4)+(∠1+∠2)=180°-α,求出∠3+∠4=12(β-α),根据三角形的内角和即可得到结论.【详解】解:连接BC,∵BQ平分∠ABP,CQ平分∠ACP,∴∠3=12∠ABP,∠4=12∠ACP,∵∠1+∠2=180°-β,2(∠3+∠4)+(∠1+∠2)=180°-α,∴∠3+∠4=12(β-α),∵∠BQC=180°-(∠1+∠2)-(∠3+∠4)=180°-(180°-β)-12(β-α),即:∠BQC=12(α+β).故答案为:12(α+β).【点睛】本题考查了三角形的内角和,角平分线的定义,连接BC构造三角形是解题的关键.∠=,边AB的垂直平分线交边BC于点D,边AC的垂直平分线2.在ABC中,BACα∠的度数为______.(用含α的代数式表示)交边BC于点E,连结AD,AE,则DAE【答案】2α﹣180°或180°﹣2α【解析】分两种情况进行讨论,先根据线段垂直平分线的性质,得到∠B=∠BAD,∠C=∠CAE,进而得到∠BAD+∠CAE=∠B+∠C=180°-a,再根据角的和差关系进行计算即可.解:有两种情况:①如图所示,当∠BAC⩾90°时,∵DM垂直平分AB,∴DA=DB,∴∠B=∠BAD,同理可得,∠C=∠CAE,∴∠BAD+∠CAE=∠B+∠C=180°−α,∴∠DAE=∠BAC−(∠BAD+∠CAE)=α−(180°−α)=2α−180°;②如图所示,当∠BAC<90°时,∵DM垂直平分AB,∴DA=DB,∴∠B=∠BAD,同理可得,∠C=∠CAE,∴∠BAD+∠CAE=∠B+∠C=180°−α,∴∠DAE=∠BAD+∠CAE−∠BAC=180°−α−α=180°−2α.故答案为2α−180°或180°−2α.点睛:本题主要考查垂直平分线的性质.根据题意准确画出符合题意的两种图形是解题的关键.3.如图,△AEF是直角三角形,∠AEF=900,B为AE上一点,BG⊥AE于点B,GF∥BE,且AD=BD=BF,∠BFG=600,则∠AFG的度数是___________。
一、选择题1.小李同学将10,12,16,22cm cm cm cm 的四根木棒首尾相接,组成一个凸四边形,若凸四边形对角线长为整数,则对角线最长为( )A .25cmB .27cmC .28cmD .31cm 2.一个多边形的外角和是360°,这个多边形是( ) A .四边形B .五边形C .六边形D .不确定 3.下列每组数分别是三根小木棒的长度,不能用它们搭成三角形的是( ) A .1cm ,2cm ,3cmB .2cm ,3cm ,4cmC .3cm ,4cm ,5cmD .5cm ,6cm ,7cm 4.已知两条线段15cm a =,8cm b =,下列线段能和a ,b 首尾相接组成三角形的是( )A .20cmB .7cmC .5cmD .2cm 5.下列命题是真命题的个数为( )①两条直线被第三条直线所截,内错角相等.②三角形的内角和是180°.③在同一平面内平行于同一条直线的两条直线平行.④相等的角是对顶角.⑤两点之间,线段最短.A .2B .3C .4D .5 6.下列长度的三条线段能组成三角形的是( ) A .3,3,4B .7,4,2C .3,4,8D .2,3,5 7.如图,在五边形ABCDE 中,AB ∥CD ,∠A =135°,∠C =60°,∠D =150°,则∠E 的大小为( )A .60°B .65°C .70°D .75° 8.以下列长度的各组线段为边,能组成三角形的是( ) A .2cm ,3cm ,6cmB .3cm ,4cm ,8cmC .5cm ,6cm ,10cmD .5cm ,6cm ,11cm 9.设四边形的内角和等于,a 五边形的外角和等于,b 则a 与b 的关系是( ) A .a b =B .120a b =+C .180b a =+︒D .360b a =+︒ 10.以下列各组线段为边,能组成三角形的是( ) A .1,2,3 B .2,3,4 C .2,5,8 D .6,3,3 11.如图,在ABC 中,70B ∠=,D 为BC 上的一点,若ADC x ∠=,则x 的度数可能为( )A .30°B .60°C .70°D .80° 12.做一个三角形的木架,以下四组木棒中,符合条件的是( )A .3cm,2cm,1cmB .3cm,4cm,5cmC .6cm,6cm,12cmD .5cm,12cm,6cm 二、填空题13.如图是一块正多边形的碎瓷片,经测得30ACB ∠=︒,则这个正多边形的边数是_________.14.多边形每一个内角都等于108°,多边形一个顶点可引的对角线的条数是________条. 15.一个三角形的三条高的长都是整数,若其中两条高的长分别为4和12,则第三条高的长为_____.16.如图,在一个四边形ABCD 中,AE 平分∠BAD ,DE 平分∠ADC ,且∠ABC=80°,∠BCD=70°,则∠AED=_________.17.已知等腰三角形的一边长等于11cm ,一边长等于5cm ,它的周长为______. 18.如图,已知∠A =47°,∠B =38°,∠C =25°,则∠BDC 的度数是______.19.一块含45°角的直角三角板如图放置,其中,直线//a b ,185∠=︒,则2∠=______度.20.已知//AB CD ,点P 是平面内一点,若30,20BPD PBA ∠=︒∠=︒,则CDP ∠=___________度.三、解答题21.如图,在ABC ∆中,48,A CE ∠=︒是ACB ∠的平分线, B C D 、、在同一直线上,,40.BEC BFD D ∠=∠∠=︒(1)求BCE ∠的度数;(2)求B 的度数.22.如图①,ABC 中,BD 平分ABC ∠,且与ABC 的外角ACE ∠的角平分线交于点D .(1)若75ABC ∠=︒,45ACB ∠=︒,求D ∠的度数;(2)若把A ∠截去,得到四边形MNCB ,如图②,猜想D ∠、M ∠、N ∠的关系,并说明理由.23.如图1,已知线段AB 、CD 相交于点O ,连接AC 、BD ,则我们把形如这样的图形称为“8字型”.(1)在图1中,请直接写出∠A 、∠B 、∠C 、∠D 之间的数量关系: ;(2)如图2,若∠CAB 和∠BDC 的平分线AP 和DP 相交于点P ,且与CD 、AB 分别相交于点M 、N .①以线段AC 为边的“8字型”有 个,以点O 为交点的“8字型”有 个; ②若∠B =100°,∠C =120°,求∠P 的度数;③若角平分线中角的关系改为“∠CAP =13∠CAB ,∠CDP =13∠CDB”,请直接写出∠P 与∠B 、∠C 之间存在的数量关系.24.从7根长度都是1的牙签中选取部分或者全部来摆放三角形(牙签不可以折断),你能摆放出多少种形状不同的三角形(两个全等三角形视为一种三角形)?并请你一一写出每种三角形的三边长.25.如图,在ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,60BAC ∠=︒,70C ∠=︒.求EAD ∠和∠BOE 的度数.26.如图,PB 和PC 是ABC 的两条外角平分线.求证:1902BPC BAC ∠=︒-∠.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据三角形的三边的关系确定对角线的长度范围即可选择.【详解】如图,设10AB cm =,12BC cm =,16CD cm =,22AD cm =.根据三角形三边关系可知①101222AC AB BC cm <+=+=,162238AC AD CD cm <+=+=,故22AC cm <.②102232BD AB AD cm <+=+=,121628BD BC CD cm <+=+=,故28BD cm <.∵凸四边形对角线长为整数,∴对角线最长为27cm .故选:B .【点睛】本题考查三角形的三边关系.熟知三角形两边之和大于第三边是解答本题的关键. 2.D解析:D【分析】根据多边形的外角和等于360°判定即可.【详解】∵多边形的外角和等于360°,∴这个多边形的边数不能确定.故选:D .【点睛】本题考查了多边形的外角和定理,注意利用多边形的外角和与边数无关,任何多边形的外角和都是360°是解题的关键.3.A解析:A根据三角形的三边关系,两边之和大于第三边,即两短边的和大于最长的边,即可作出判断.【详解】解:A、1+2=3,故以这三根木棒不能构成三角形,符合题意;B、2+3>4,故以这三根木棒能构成三角形,不符合题意;C、3+4>5,故以这三根木棒可以构成三角形,不符合题意;D、5+6>7,故以这三根木棒能构成三角形,不符合题意.故选:A.【点睛】本题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边,判断能否组成三角形的方法是看两个较小的和是否大于第三边.4.A解析:A【分析】根据三角形任意两边的和大于第三边,进行分析判断.【详解】A、15+8=23>20,能组成三角形,符合题意;B、7+8=15,不能组成三角形,不合题意;C、5+8=13<15,不能组成三角形,不合题意;D、2+8=10<15,不能组成三角形,不合题意.故选:A.【点睛】本题主要考查了三角形的三边关系,要注意三角形形成的条件:任意两边之和大于第三边,三角形的两边差小于第三边.但通常不需一一验证,其简便方法是将较短两边之和与较长边比较.5.B解析:B【分析】首先判断所给命题的真假,再选出正确的选项.【详解】解:∵两条直线被第三条直线所截,两直线平行,内错角相等,∴①错误;∵三角形的内角和是180°,∴②正确;∵在同一平面内平行于同一条直线的两条直线平行,∴③正确;∵相等的角可以是对顶角,也可以是内错角、同位角等等,∴④错误;∵连接两点的所有连线中,线段最短,∴⑤正确;∴真命题为②③⑤,故选B .本题考查命题的真假判断,根据所学知识判断一个命题条件成立的情况下,结论是否一定成立来判断命题是真命题还是假命题是解题关键.6.A解析:A【分析】看哪个选项中两条较小的边的和大于最大的边即可.【详解】解:A、3+3>4,能构成三角形,故此选项正确;B、4+2<7,不能构成三角形,故此选项错误;C、3+4<8,不能构成三角形,故此选项错误;D、2+3=5,不能构成三角形,故此选项错误.故选:A.【点睛】此题主要考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.7.D解析:D【分析】先根据多边形的内角和公式求出五边形的内角和,根据AB∥CD得到∠B+∠C=180°,即可求出∠E的大小.【详解】解:由五边形的内角和公式得(5-2)×180°=540°,∵AB∥CD,∴∠B+∠C=180°,∴∠E=540°-∠A-∠B-∠C-∠D=540°-135°-180°-150°=75°.故选:D【点睛】本题考查了多边形的内角和公式,平行线的性质,熟练掌握多边形的内角和公式是解题关键.8.C解析:C【分析】根据三角形三边关系解答.【详解】A、∵2+3<6,∴以此三条线段不能组成三角形;B、3+4<8,∴以此三条线段不能组成三角形;C、∵5+6>10,∴以此三条线段能组成三角形;D、∵5+6=11,∴以此三条线段不能组成三角形;故选:C.【点睛】此题考查三角形的三边关系:三角形两边的和大于第三边.9.A解析:A【分析】根据多边形的内角和定理与多边形外角和即可得出结论.【详解】解:∵四边形的内角和等于a,∴a=(4-2)•180°=360°.∵五边形的外角和等于b,∴b=360°,∴a=b.故选:A.【点睛】本题考查的是多边形的内角与外角,熟知多边形的内角和定理是解答此题的关键.10.B解析:B【分析】根据三角形的三边关系定理:两边之和大于第三边,即两条较短的边的长大于最长的边即可.【详解】A、1+2=3,不能构成三角形,A错误;B、2+3=5>4可以构成三角形,B正确;C、2+5=7<8,不能构成三角形,C错误;D、3+3=6,不能构成三角形,D错误.故答案选:B.【点睛】本题主要考查三角形的三边关系,比较简单,熟记三边关系定理是解决本题的关键.11.D解析:D【分析】根据三角形的外角的性质得到∠ADC=∠B+∠BAD,得到x>70°,根据平角的概念得到x<180°,计算后进行判断得到答案.【详解】解:∵∠ADC=∠B+∠BAD,∴x>70°,又x<180°,∴x 的度数可能为80°,故选:D .【点睛】本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.12.B解析:B【分析】三角形的任意两边的和大于第三边,根据三角形的三边关系就可以求解.【详解】解:根据三角形的三边关系,知:A 中,1+2=3,排除;B 中,3+4>5,可以;C 中,6+6=12,排除;D 中,5+6<12,排除.故选:B .【点睛】本题考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.二、填空题13.12【分析】根据瓷片为正多边形及可知正多边形的外角为进而可求得正多边形的边数【详解】如图延长BC 可知∠1为正多边形的外角∵瓷片为正多边形∴AD=DB=BC ∠ADB=∠DBC ∴四边形ACBD 为等腰梯形解析:12【分析】根据瓷片为正多边形及=30ACB ∠︒,可知正多边形的外角为30︒,进而可求得正多边形的边数.【详解】如图,延长BC ,可知∠1为正多边形的外角,∵瓷片为正多边形,∴AD=DB=BC ,∠ADB=∠DBC ,∴四边形ACBD 为等腰梯形,∴BD ∥AC ,∴∠1==30ACB ∠︒,∴正多边形的边数为:360=1230︒︒, 故答案为:12.【点睛】本题考查正多边形的外角和,掌握相关知识点是解题的关键. 14.2【分析】多边形的每一个内角都是108°则每个外角是72°多边形的外角和是360°这个多边形的每个外角相等因而用360°除以外角的度数就得到外角的个数外角的个数就是多边形的边数再根据从n 边形的一个顶解析:2【分析】多边形的每一个内角都是108°,则每个外角是72°.多边形的外角和是360°,这个多边形的每个外角相等,因而用360°除以外角的度数,就得到外角的个数,外角的个数就是多边形的边数.再根据从n 边形的一个顶点出发可引出(n−3)条对角线,连接这个点与其余各顶点,可以把一个多边形分割成(n−2)个三角形,依此作答.【详解】根据题意得:360°÷(180°−108°)=360°÷72°=5,那么它的边数是五,从它的一个顶点出发的对角线共有5−3=2条,故答案为:2.【点睛】此题考查了多边形内角与外角,根据多边形的外角和求多边形的边数是常用的一种方法,需要熟记.另外需要记住从n 边形的一个顶点出发可引出(n−3)条对角线,把这个多边形分割成(n−2)个三角形.15.5或4【分析】先设长度为412的高分别是ab 边上的边c 上的高为h △ABC 的面积是S 根据三角形面积公式可求结合三角形三边的不等关系可得关于h 的不等式组解即可【详解】解:设长度为412的高分别是ab 边上解析:5或4.【分析】先设长度为4、12的高分别是a ,b 边上的,边c 上的高为h ,△ABC 的面积是S ,根据三角形面积公式,可求222,,412S S S a b c h ===,结合三角形三边的不等关系,可得关于h 的不等式组,解即可.【详解】解:设长度为4、12的高分别是a ,b 边上的,边c 上的高为h ,△ABC 的面积是S ,那么222,,412S S S a b c h===, 又∵a-b <c <a+b , ∴2222412412S S S S c -<<+, 即2233S S S h <<, 解得3<h <6,∴h=4或h=5,故答案为:5或4.【点睛】本题考查了三角形面积、三角形三边之间的关系、解不等式组.求出整数值后,能根据三边关系列出不等式组是解题关键.16.75°【分析】先根据四边形的内角和求出∠BAD+∠CDA 然后再根据角平分线的定义求得∠EAD+∠EDA 最后根据三角的内角和定理求解即可【详解】解:∵在四边形ABCD 中∠ABC=80°∠BCD=70°解析:75°.【分析】先根据四边形的内角和求出∠BAD+∠CDA ,然后再根据角平分线的定义求得∠EAD+∠EDA,最后根据三角的内角和定理求解即可.【详解】解:∵在四边形ABCD 中,∠ABC=80°,∠BCD=70°∴∠BAD+∠CDA=360°-80°-70°=210°∵∠EAD=12∠BAD ,∠EDA=12∠CAD ∴∠EAD+∠EDA=12(∠BAD+∠CDA )=105° ∴∠AED=180°-(∠EAD+∠EDA )=180°-105°=75°.故答案为75°.【点睛】本题主要考查了三角形的内角和、四边形的内角和以及角平分线的相关知识,灵活应用相关知识成为解答本题的关键.17.【分析】题目给出等腰三角形有两条边长为11和5而没有明确腰底分别是多少所以要进行讨论还要应用三角形的三边关系验证能否组成三角形【详解】分两种情况:当腰为11时11+11>511-11<5所以能构成三解析:27cm【分析】题目给出等腰三角形有两条边长为11和5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】分两种情况:当腰为11时,11+11>5,11-11<5,所以能构成三角形,周长是:11+11+5=27cm;当腰为5时,5+5<11,所以不能构成三角形,故答案为:27cm.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.18.110°【分析】连接AD并延长根据三角殂的外角性质分别表示出∠3和∠4因为∠BDC是∠3和∠4的和从而不难求得∠BDC的度数【详解】解:连接AD 并延长∵∠3=∠1+∠B∠4=∠2+∠C∴∠BDC=∠解析:110°【分析】连接AD,并延长,根据三角殂的外角性质分别表示出∠3和∠4,因为∠BDC是∠3和∠4的和,从而不难求得∠BDC的度数.【详解】解:连接AD,并延长.∵∠3=∠1+∠B,∠4=∠2+∠C.∴∠BDC=∠3+∠4=(∠1+∠B)+(∠2+∠C)=∠B+∠BAC+∠C.∵∠A=47°,∠B=38°,∠C=25°.∴∠BDC=47°+38°+25°=110°,故答案为:110°.【点睛】本题考查了三角形的外角性质:三角形的一个外角等于和它不相邻的两个内角的和.19.40【分析】如图(见解析)先根据直角三角板的定义可得再根据平行线的性质可得然后根据三角形的外角性质可得最后根据对顶角相等即可得【详解】如图由题意得:由对顶角相等得:故答案为:40【点睛】本题考查了平解析:40【分析】∠=︒,再根据平行线的性质可得如图(见解析),先根据直角三角板的定义可得445∠=︒,然后根据三角形的外角性质可得340=∠5851∠=︒,最后根据对顶角相等即可得.【详解】∠=︒,如图,由题意得:445∠=︒,//a b,185=︒,∴∠∠=5518∴∠=∠-∠=︒,35440∠=∠=︒,由对顶角相等得:2340故答案为:40.【点睛】本题考查了平行线的性质、对顶角相等、三角形的外角性质,熟练掌握三角形的外角性质是解题关键.20.10或50【分析】分点P在AB的上方点P在AB与CD的中间点P在CD的下方三种情况再分别根据平行线的性质三角形的外角性质求解即可得【详解】由题意分以下三种情况:(1)如图点P在AB的上方;(2)如图解析:10或50【分析】分点P在AB的上方、点P在AB与CD的中间、点P在CD的下方三种情况,再分别根据平行线的性质、三角形的外角性质求解即可得.【详解】由题意,分以下三种情况:(1)如图,点P在AB的上方,∠=︒∠=︒,BPD PBA30,20∴∠=∠+∠=︒,150BPD PBAAB CD,//∴∠=∠=︒;CDP150(2)如图,点P在AB与CD的中间,延长BP,交CD于点E,20BED PBA ∴∠=∠=︒,30BPD ∠=︒,10CDP BPD BED ∴∠=∠-∠=︒;(3)如图,点P 在CD 的下方,//,20AB CD PBA ∠=︒,120PBA ∴∠=∠=︒,30BPD ∠=︒,13030CDP BPD CDP ∴∠=∠+∠=∠+︒>︒与120∠=︒不符,即点P 不可能在CD 的下方;综上,10CDP ∠=︒或50CDP ∠=︒,故答案为:10或50.【点睛】本题考查了平行线的性质、三角形的外角性质,依据题意,正确分三种情况讨论是解题关键.三、解答题21.(1)40∠=︒ECB ;(2)52B ︒∠=【分析】(1)根据同位角相等,两直线平行判定//DF CE ,然后再根据平行线的性质求解; (2)根据角平分线的定义求得80ACB ︒∠=,然后利用三角形内角和求解.【详解】解:(1)BEC BFD ∠=∠,//DF CE ∴,ECB D ∴∠=∠. 40D ︒∠=,40ECB ∴∠=︒.(2)CE 是ACB ∠的平分线.80ACB ︒∴∠=.180A B ACB ︒∠+∠+∠=,180180488052B A ACB ︒︒︒︒︒∴∠=-∠-∠=--=.【点睛】本题考查平行线的判定和性质以及三角形内角和,掌握相关性质定理正确推理计算是解题关键.22.(1)30D ∠=︒;(2)()11802D M N ∠=∠+∠-︒,理由见解析 【分析】(1)根据三角形内角和定理以及角平分线定义,先求出∠D 、∠A 的等式,推出∠A=2∠D ,最后代入求出即可;(2)根据(1)中的结论即可得到结论.【详解】解:ACE A ABC ∠=∠+∠, ACD ECD A ABD DBE ∴∠+∠=∠+∠+∠,DCE D DBC ∠=∠+∠,又∵BD 平分ABC ∠,CD 平分ACE ∠,ABD DBE ∴∠=∠,ACD ECD ∠=∠,()2A DCE DBC ∴∠=∠-∠,D DCE DBC ∠=∠-∠,2A D ∴∠=∠,75ABC ∠=︒,45ACB ∠=︒,60A ∴∠=︒,30D ∴∠=︒;(2)()11802D M N ∠=∠+∠-︒; 理由:延长BM 、CN 交于点A ,则180A BMN CNM ∠=∠+∠-︒,由(1)知,12D A ∠=∠, ()11802D M N ∴∠=∠+∠-︒.【点睛】此题考查三角形内角和定理以及角平分线的定义的综合运用,解此题的关键是求出∠A=2∠D.23.(1)∠A+∠C=∠B+∠D;(2)①3,4;②110°;③3∠P=∠B+2∠C.【分析】(1)根据三角形的内角和即可得到结论;(2)①以线段AC为边的“8字型”有3个,以点O为交点的“8字型”有4个;②根据角平分线的定义得到∠CAP=∠BAP,∠BDP=∠CDP,再根据三角形内角和定理得到∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,两等式相减得到∠C-∠P=∠P-∠B,即∠P=1(∠C+∠B),然后把∠C=120°,∠B=100°代入计算即可;2③与②的证明方法一样得到3∠P=∠B+2∠C.【详解】(1)证明:在图1中,有∠A+∠C=180°-∠AOC,∠B+∠D=180°-∠BOD,∵∠AOC=∠BOD,∴∠A+∠C=∠B+∠D;(2)解:①以线段AC为边的“8字型”有3个:以点O为交点的“8字型”有4个:故答案为:3,4;②以M为交点“8字型”中,有∠P+∠CDP=∠C+∠CAP,以N为交点“8字型”中,有∠P+∠BAP=∠B+∠BDP∴2∠P+∠BAP+∠CDP=∠B+∠C+∠CAP+∠BDP,∵AP、DP分别平分∠CAB和∠BDC,∴∠BAP=∠CAP,∠CDP=∠BDP,∴2∠P=∠B+∠C,∵∠B=100°,∠C=120°,∴∠P=12(∠B+∠C)=12(100°+120°)=110°;③3∠P=∠B+2∠C,其理由是:∵∠CAP=13∠CAB,∠CDP=13∠CDB,∴∠BAP=23∠CAB,∠BDP=23∠CDB,以M为交点“8字型”中,有∠P+∠CDP=∠C+∠CAP,以N为交点“8字型”中,有∠P+∠BAP=∠B+∠BDP∴∠C-∠P=∠CDP-∠CAP=13(∠CDB-∠CAB),∠P-∠B=∠BDP-∠BAP=23(∠CDB-∠CAB).∴2(∠C-∠P)=∠P-∠B,∴3∠P=∠B+2∠C.【点睛】本题考查了三角形内角和定理:三角形内角和是180°.也考查了角平分线的定义.24.能摆放出5种形状不同的三角形,它们的三边长分别是1,1,1、1,2,2、2,2,2、1,3,3、2,2,3.【分析】根据三角形的三边关系定理逐一摆放出来即可.【详解】由题意,根据选取牙签的根数,分以下五种情况:(1)当选取3根牙签时,三边长只能是1,1,1,满足三角形的三边关系定理,能摆出三角形;(2)当选取4根牙签时,三边长只能是1,1,2,不满足三角形的三边关系定理,不能摆出三角形;(3)当选取5根牙签时,三边长可以是1,1,3或1,2,2,其中,1,1,3不满足三角形的三边关系定理,不能摆出三角形,1,2,2满足三角形的三边关系定理,能摆出三角形;(4)当选取6根牙签时,三边长可以是1,1,4或1,2,3或2,2,2,其中,1,1,4和1,2,3均不满足三角形的三边关系定理,均不能摆出三角形,2,2,2满足三角形的三边关系定理,能摆出三角形;(5)当选取7根牙签时,三边长可以是1,1,5或1,2,4或1,3,3或2,2,3,其中,1,1,5和1,2,4均不满足三角形的三边关系定理,均不能摆出三角形,1,3,3和2,2,3均满足三角形的三边关系定理,均能摆出三角形;综上,能摆放出5种形状不同的三角形,它们的三边长分别是1,1,1、1,2,2、2,2,2、1,3,3、2,2,3.【点睛】本题考查了三角形的三边关系定理的应用,依据题意,正确分情况讨论是解题关键. 25.10EAD ∠=︒,55BOE ∠=︒【分析】根据三角形内角和定理求出∠BAC=180°-60°-70°=50°,再由AE 是角平分线,求出∠EAC=12∠BAC=30°,由AD 是高,求出∠CAD=90°-∠C=20°,最后即可求出∠EAD=∠EAC-∠CAD=10°;根据角平分线的性质,得∠OAB=12∠BAC ,∠OBA=12∠ABC ,所以∠BOE=∠OAB+∠OBA=12(∠BAC+∠ABC )=12(180°-∠C )=12×(180°-70°)=55°. 【详解】解:∠B AC =60°,∠C =70°∴∠ABC =180°−∠ABC −∠C =180°−60°-70°=50°,∵AE 是角平分线,∴∠EAC =12∠BAC =12×60°=30°, ∵AD 是高,∴∠ADC =90°,∴∠CAD =90°−∠C =90°−70°=20°,∴∠DAE =∠EAC −∠CAD =30°−20°=10°;∵AE ,BF 是角平分线,∴∠OAB =12∠BAC ,∠OBA =12∠ABC , ∴∠BOE =∠OAB +∠OBA =12(∠BAC +∠ABC )=12(180°−∠C )=12×(180°−70°) =55°. 【点睛】本题考查了三角形内角和定理、角平分线性质,解题的关键是明确题意,找出所求问题需要的条件.26.见解析【分析】 根据外角的性质和角平分线的性质证明1902PBC BCP BAC ∠+∠=︒+∠,再根据三角形内角和定理得到180PBC BCP BPC ∠+∠=︒-∠,就可以证明结论.【详解】解:∵180DBC ABC ∠=︒-∠,180BCE ACB ∠=︒-∠, ∴()()360360180180DBC BCE ABC ACB BAC BAC ∠+∠=︒-∠+∠=︒-︒-∠=︒+∠,∵BP 平分DBC ∠,CP 平分BCE ∠, ∴12PBC DBC ∠=∠,12BCP BCE ∠=∠, ∴()119022PBC BCP DBC BCE BAC ∠+∠=∠+∠=︒+∠, ∵180PBC BCP BPC ∠+∠=︒-∠, ∴1180902BPC BAC ︒-∠=︒+∠,即1902BPC BAC ∠=︒-∠. 【点睛】本题考查三角形的内角和定理和角平分线的性质,解题的关键是掌握这些性质定理进行角度求解.。
一、选择题1.将一副直角三角板如图放置,使两直角重合DFB ∠的度数为( )A .145︒B .155︒C .165︒D .175︒ 2.一个多边形的外角和是360°,这个多边形是( ) A .四边形 B .五边形 C .六边形 D .不确定 3.如图,//,40,50,AB CD B C ∠=︒∠=︒则E ∠的度数为( )A .70︒B .80︒C .90︒D .100︒ 4.如图,AB 和CD 相交于点O ,A C ∠=∠,则下列结论中不正确的是( ).A .B D ∠=∠B .1A D ∠=∠+∠C .2D ∠>∠D .C D ∠=∠ 5.下列每组数分别是三根小木棒的长度,不能用它们搭成三角形的是( ) A .1cm ,2cm ,3cmB .2cm ,3cm ,4cmC .3cm ,4cm ,5cmD .5cm ,6cm ,7cm 6.如图,ABC 中,将A ∠沿DE 翻折,若30A ∠=︒,25BDA '∠=︒,则CEA '∠多少度( )A .60°B .75°C .85°D .90° 7.以下列各组线段为边,能组成三角形的是( ) A .1,2,3B .1,3,5C .2,3,4D .2,6,10 8.三角形的两条边长为3和7,那么第三边长可能是( )A .1B .4C .7D .10 9.如图,在ABC 中,AD 是角平分线,AE 是高,已知2BAC B ∠=∠,2B DAE ∠=∠,那么C ∠的度数为( )A .72°B .75°C .70°D .60° 10.若多边形的边数由3增加到n (n 为大于3的正整数),则其外角和的度数( ) A .不变B .减少C .增加D .不能确定 11.下列每组数分别三根小木棒的长度,用它们能摆成三角形的是( )A .3,4,8cm cm cmB .7,8,15cm cm cmC .12,13,22cm cm cmD .10,10,20cm cm cm12.内角和与外角和相等的多边形是( )A .六边形B .五边形C .四边形D .三角形 二、填空题13.如图是一块正多边形的碎瓷片,经测得30ACB ∠=︒,则这个正多边形的边数是_________.14.如果三角形的三边长分别为5,8,a ,那么a 的取值范围为__.15.如图,在Rt ACB ∆中,90ACB ∠=︒,25A ∠=︒,D 是AB 上一点,将Rt ABC∆沿CD 折叠,使点B 落在AC 边上的B '处,则ADB '∠等于_______.16.从一个多边形的一个顶点出发,一共可作9条对角线,则这个多边形的内角和是_________度.17.如图,Rt △ABC 中,∠ACB =90°,∠A =50°,将其折叠,使点A 落在边CB 上A′处,折痕为CD ,则A DB '∠=________.18.如图,把ABC 折叠,点B 落在P 点位置,若12120∠+∠=︒,则B ∠=______.19.一块含45°角的直角三角板如图放置,其中,直线//a b ,185∠=︒,则2∠=______度.20.一个三角形的三个内角的度数的比是1∶2∶3,这个三角形是_________________三角形.(填锐角、直角或钝角)三、解答题21.在ABC ∆中, ,AB AC CG BA =⊥交BA 的延长线于点G ,点D 是线段BC 上的一个动点.特例研究:()1当点D 与点B 重合时,过B 作BF AC ⊥交AC 的延长线于点F ,如图①所示,通过观察﹑测量BF 与CG 的长度,得到BF CC =.请给予证明.猜想证明:()2当点D 由点B 向点C 移动到如图②所示的位置时,过D 作DF AC ⊥交CA 的延长线于点F ,过D 作DE BA ⊥交BA 于点E ,此时请你通过观察,测量DE DF 、与CG 的长度,猜想并写出DE DF 、与CG 之间存在的数量关系,并证明你的猜想.拓展延伸:()3当点D 由点B 向点C 继续移动时(不与C 重合) ,过D 作DF AC ⊥交AC 于点F ,过D 作DF BA ⊥交BA (或BA 的延长线)于点E ,如图③,图④所示,请你判断(2)中的猜想是否仍然成立?(不用证明)22.如图1,△ABC 中,AD 是∠BAC 的角平分线,AE ⊥BC 于点E .(1)若∠C=80°,∠B=40°,求∠DAE 的度数;(2)若∠C >∠B ,试说明∠DAE=12(∠C-∠B); (3)如图2,若将点A 在AD 上移动到A′处,A′E ⊥BC 于点E .此时∠DAE 变成∠DA′E ,请直接回答:(2)中的结论还正确吗?23.在ABC 中,,20A B C A B ∠+∠=∠∠-∠=︒,(1)求A ∠,B ,C ∠的度数;(2)ABC 按角分类,属于什么三角形ABC 按边分类,属于什么三角形? 24.如图1,已知ACD ∠是ABC 的一个外角,我们容易证明ACD A B ∠=∠+∠,即三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?尝试探究:(1)如图2,DBC ∠与ECB ∠分别为ABC 的两个外角,则DBC ECB ∠+∠_______180A ∠+︒(横线上填“>”、“<”或“=”).初步应用:(2)如图3,在ABC 纸片中剪去CED ,得到四边形ABDE ,1135∠=︒,则2C ∠-∠=_______.(3)解决问题:如图4,在ABC 中,BP 、CP 分别平分外角DBC ∠、ECB ∠,P ∠与A ∠有何数量关系?请尝试证明.(4)如图5,在四边形ABCD 中,BP 、CP 分别平分外角EBC ∠、FCB ∠,请利用上面的结论直接写出P ∠与A ∠、D ∠的数量关系.25.如图所示,AD 、AE 分别是△ABC 的高和角平分线,∠B=20°,∠C=80°,求∠EAD 的度数.26.如图,在ABC 中,60,80,BAC C AD ︒︒∠=∠=是ABC 的角平分线,点E 是边AC 上一点,且12ADE B ∠=∠,求CDE ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据三角形的内角和定理可求45E ∠=︒,利用补角的定义可求120FBE ∠=︒,再根据三角形的一个外角等于与它不相邻的两个内角的和即可求出DFB ∠的度数【详解】解:在DEC ∆中∵90C ∠=︒,45CDE ∠=︒∴45E ∠=︒又∵60ABC ∠=︒∴120FBE ∠=︒由三角形的外角性质得DFB E FBE ∠=∠+∠45120=︒+︒165=︒故选:C【点睛】本题考查了三角形的内角和定理,互为补角的定义及三角形的外角性质,解题的关键是掌握三角形的外角性质2.D解析:D【分析】根据多边形的外角和等于360°判定即可.【详解】∵多边形的外角和等于360°,∴这个多边形的边数不能确定.故选:D .【点睛】本题考查了多边形的外角和定理,注意利用多边形的外角和与边数无关,任何多边形的外角和都是360°是解题的关键.3.C解析:C【分析】根据平行线的性质求出140∠=︒,根据三角形内角和定理计算,得到答案.【详解】解:∵//AB CD ,40B ∠=︒,50C ∠=︒,∴140B ∠=∠=︒,∴ 1801180405090E C ∠=︒-∠-∠=︒-︒-︒=︒.故选:C【点睛】本题考查的是平行线的性质、三角形内角和定理,掌握两直线平行,同位角相等是解题的关键.4.D解析:D【分析】利用三角形的外角性质,对顶角相等逐一判断即可.【详解】∵∠1=∠2,∠A=∠C ,∠1=∠A+∠D ,∠2=∠B+∠C ,∴∠B=∠D ,∴选项A 、B 正确;∵∠2=∠A+∠D ,∴2D ∠>∠,∴选项C 正确;没有条件说明C D ∠=∠故选:D.【点睛】本题考查了对顶角的性质,三角形外角的性质,熟练掌握并运用两条性质是解题的关键.5.A解析:A【分析】根据三角形的三边关系,两边之和大于第三边,即两短边的和大于最长的边,即可作出判断.【详解】解:A 、1+2=3,故以这三根木棒不能构成三角形,符合题意;B 、2+3>4,故以这三根木棒能构成三角形,不符合题意;C 、3+4>5,故以这三根木棒可以构成三角形,不符合题意;D 、5+6>7,故以这三根木棒能构成三角形,不符合题意.故选:A .【点睛】本题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边,判断能否组成三角形的方法是看两个较小的和是否大于第三边.6.C解析:C【分析】根据折叠前后对应角相等可得ADE A DE '∠=∠,AED A ED '∠=∠,再运用平角的定义和三角形内角和定理依次求得ADE ∠、AED ∠,再次运用平角的定义即可求得CEA '∠.【详解】解:∵将A ∠沿DE 翻折,∴ADE A DE '∠=∠,AED A ED '∠=∠,∵D 是线段AB 上的点,25BDA '∠=︒,∴180ADE A D B E DA '∠+∠-'∠=︒,即251280ADE ︒=∠-︒,解得102.5ADE ∠=︒,∵30A ∠=︒,180A AED ADE ∠+∠+∠=︒,∴180180102.53047.5AED ADE A ∠=︒-∠-∠=︒-︒-︒=︒,∴18018047.547.585CEA AED A ED ''∠=︒-∠-∠=︒-︒-︒=︒.故选:C .【点睛】本题考查折叠的性质,三角形内角和定理,平角的定义.理解折叠前后对应角相等是解题关键.7.C解析:C【分析】根据三角形三边关系逐一进行判断即可.【详解】A 、1+2=3,不能构成三角形,故不符合题意;B 、1+3=4<5,不能构成三角形,故不符合题意;C 、2+3=5>4,可以构成三角形,故符合题意;D 、2+6=8<10,不能构成三角形,故不符合题意,故选:C .【点睛】本题主要考查三角形的三边关系,比较简单,熟记三边关系定理是解决本题的关键. 8.C解析:C【分析】根据三角形的两边之和大于第三边,确定第三边的取值范围即可.【详解】解:三角形的两条边长为3和7,设第三边为x ,则第三边的取值范围是:7-3<x <7+3,解得,4<x <10,故选:C .【点睛】本题考查了三角形的三边关系,根据两边长确定第三边的取值范围是解题关键. 9.A解析:A【分析】利用角平分线的定义和三角形内角和定理,余角即可计算.【详解】由图可知DAE DAC EAC ∠=∠-∠,∵AD 是角平分线. ∴12DAC BAC ∠=∠, ∴12DAE BAC EAC ∠=∠-∠, ∵90EAC C ∠=︒-∠, ∴1(90)2DAE BAC C ∠=∠-︒-∠ ∵2BAC B ∠=∠,2B DAE ∠=∠, ∴14(90)2DAE DAE C ∠=⨯∠-︒-∠, ∴90DAE C ∠=︒-∠∵180C B BAC ∠=︒-∠-∠, ∴18024C DAE DAE ∠=︒-∠-∠,∴1802(90)4(90)C C C ∠=︒-︒-∠-︒-∠,∴72C ∠=︒.故选:A .【点睛】本题主要考查了角平分线的定义和三角形的内角和定理以及余角.根据题意找到角之间的数量关系是解答本题的关键.10.A解析:A【分析】利用多边形的外角和特征即可解决问题.【详解】解:因为多边形外角和固定为360°,所以外角和的度数是不变的.故选:A .【点睛】此题考查多边形内角与外角的性质,容易受误导,注意多边形外角和等于360°. 11.C解析:C【分析】根据三角形两边之和大于第三边,两边之差小于第三边计算判断即可.【详解】∵3+4<8,∴A 选项错误;∵7+8=15,∴B 选项错误;∵12+13>22,∴C 选项正确;∵10+10=20,∴D 选项错误;故选C.【点睛】本题考查了三角形的存在性,熟练掌握三角形的三边关系定理是解题的关键.12.C解析:C【分析】设这个多边形为n 边形,根据题意列出方程,解方程即可求解.【详解】解:设这个多边形为n 边形,由题意得(n-2)180°=360°,解得n=4,所以这个多边形是四边形.故选:C【点睛】本题考查多边形的内角和公式,多边形的外角和360°,熟知两个定理是解题关键.二、填空题13.12【分析】根据瓷片为正多边形及可知正多边形的外角为进而可求得正多边形的边数【详解】如图延长BC 可知∠1为正多边形的外角∵瓷片为正多边形∴AD=DB=BC ∠ADB=∠DBC ∴四边形ACBD 为等腰梯形解析:12【分析】根据瓷片为正多边形及=30ACB ∠︒,可知正多边形的外角为30︒,进而可求得正多边形的边数.【详解】如图,延长BC ,可知∠1为正多边形的外角,∵瓷片为正多边形,∴AD=DB=BC ,∠ADB=∠DBC ,∴四边形ACBD 为等腰梯形,∴BD ∥AC ,∴∠1==30ACB ∠︒,∴正多边形的边数为:360=1230︒︒, 故答案为:12.【点睛】本题考查正多边形的外角和,掌握相关知识点是解题的关键. 14.3<a<13【分析】根据三角形的三边关系解答【详解】由题意得:8-5<a<8+5∴3<a<13故答案为:3<a<13【点睛】此题考查三角形的三边关系:三角形任意两边的和大于第三边解析:3<a<13【分析】根据三角形的三边关系解答.【详解】由题意得:8-5<a<8+5,∴3<a<13,故答案为:3<a<13.【点睛】此题考查三角形的三边关系:三角形任意两边的和大于第三边.15.【分析】根据翻折变换的性质得出∠ACD=∠BCD ∠CDB=∠CDB′进而利用三角形内角和定理得出∠BDC=∠B′DC 再利用平角的定义即可得出答案【详解】解:∵将Rt △ABC 沿CD 折叠使点B 落在AC 边解析:40︒【分析】根据翻折变换的性质得出∠ACD=∠BCD ,∠CDB=∠CDB′,进而利用三角形内角和定理得出∠BDC=∠B′DC ,再利用平角的定义,即可得出答案.【详解】解:∵将Rt △ABC 沿CD 折叠,使点B 落在AC 边上的B′处,∴∠ACD=∠BCD ,∠CDB=∠CDB′,∵∠ACB=90°,∠A=25°,∴∠ACD=∠BCD=45°,∠B=90°-25°=65°,∴∠BDC=∠B′DC=180°-45°-65°=70°,∴∠ADB′=180°-70°-70°=40°.故答案为:40°.【点睛】此题主要考查了翻折变换的性质以及三角形内角和定理,得出∠BDC 和∠B′DC 的度数是解题关键.16.1800【分析】设多边形边数为n 根据n 边形从一个顶点出发可引出(n-3)条对角线可得n-3=9计算出n 的值再根据多边形内角和(n-2)•180°可得答案【详解】设多边形边数为n 由题意得:n-3=9n解析:1800【分析】设多边形边数为n ,根据n 边形从一个顶点出发可引出(n-3)条对角线可得n-3=9,计算出n 的值,再根据多边形内角和(n-2)•180°可得答案.【详解】设多边形边数为n ,由题意得:n-3=9,n=12,内角和:()1221801800-⨯︒=︒.故答案为:1800.【点睛】本题主要考查了多边形的对角线,以及多边形内角和,关键是掌握n 边形从一个顶点出发可引出(n-3)条对角线,多边形内角和公式(n-2)•180°.17.10°【分析】由对折可得:∠A=∠CA′D=50°∠ACD=∠A′CD=45°再利用三角形的内角和求解【详解】解:由对折可得:∠A=∠CA′D=50°∠ACD=∠A′CD=×90°=45°∴∠ADC解析:10°【分析】由对折可得:∠A=∠CA′D=50°,∠ACD=∠A′CD=45°,再利用三角形的内角和求解.【详解】解:由对折可得:∠A=∠CA′D=50°,∠ACD=∠A′CD=1×90°=45°,2∴∠ADC=∠A′DC=180°−45°−50°=85°,∴∠A′DB=180°−85°×2=10°.故答案为:10°.【点睛】本题利用对折考查轴对称的性质,三角形的内角和定理,掌握以上知识是解题的关键.18.60°【分析】先根据折叠的性质得∠3=∠4∠5=∠6再利用平角的定义得∠3+∠4+∠1=180°∠5+∠6+∠2=180°根据等式的性质得到2∠4+∠1+2∠6=360°把∠1+∠2=120°代入得解析:60°【分析】先根据折叠的性质得∠3=∠4,∠5=∠6,再利用平角的定义得∠3+∠4+∠1=180°,∠5+∠6+∠2=180°,根据等式的性质得到2∠4+∠1+2∠6=360°,把∠1+∠2=120°代入得到∠4+∠6=120°,然后根据三角形内角和定理可计算出∠B的度数.【详解】∵把△ABC的∠B折叠,点B落在P的位置,∴∠3=∠4,∠5=∠6,∵∠3+∠4+∠1=180°,∠5+∠6+∠2=180°,∴2∠4+∠1+∠2+2∠6=360°,而∠1+∠2=120°,∴∠4+∠6=120°,∵∠4+∠6+∠B=180°,∴∠B=180°−120°=60°.故答案为60°.本题考查了三角形内角和定理,也考查了折叠的性质,“数形结合”是关键.19.40【分析】如图(见解析)先根据直角三角板的定义可得再根据平行线的性质可得然后根据三角形的外角性质可得最后根据对顶角相等即可得【详解】如图由题意得:由对顶角相等得:故答案为:40【点睛】本题考查了平解析:40【分析】∠=︒,再根据平行线的性质可得如图(见解析),先根据直角三角板的定义可得445∠=︒,然后根据三角形的外角性质可得340=∠5851∠=︒,最后根据对顶角相等即可得.【详解】∠=︒,如图,由题意得:445∠=︒,a b,185//∴∠∠==︒,5518∴∠=∠-∠=︒,35440∠=∠=︒,由对顶角相等得:2340故答案为:40.【点睛】本题考查了平行线的性质、对顶角相等、三角形的外角性质,熟练掌握三角形的外角性质是解题关键.20.直角【分析】根据三角形内角和定理和已知求出这个三角形的最大内角的度数即可得出答案【详解】180°÷(1+2+3)×3=180°÷6×3=30°×3=90°答:这个三角形中最大的角是直角故答案为:直角解析:直角【分析】根据三角形内角和定理和已知求出这个三角形的最大内角的度数,即可得出答案.【详解】180°÷(1+2+3)×3=180°÷6×3=30°×3答:这个三角形中最大的角是直角.故答案为:直角.【点睛】本题考查了三角形内角和定理的应用,能求出这个三角形的最大内角的度数是解此题的关键,注意:三角形的内角和等于180°.三、解答题21.(1)证明见解析;(2)CG DE DF =+,证明见解析;(3)结论不变:CG DE DF =+【分析】(1)根据12ABC S AC BF =⋅△,12ABC S AB CG =⋅△, 即可解决问题; (2)结论CG DE DF =+,利用面积法证明即可;(3)结论不变,证明方法类似(2).【详解】(1)证明:如图①中,∵90F G ︒∠=∠=,∴12ABC S AC BF =⋅△,12ABC S AB CG =⋅△, ∴1122AC BF AB CG ⋅=⋅, 又∵AB AC =,∴BF AC =;(2)解:结论CG DE DF =+,理由:如图②中,连接AD ,∵ABC ABD ADC SS S =+,DE AB ⊥,DF AC ⊥,CG AB ⊥, ∴111222AB CG AB DE AC DF ⋅⋅=⋅⋅+⋅⋅, ∵AB AC =,∴CG DE DF =+;(3)结论不变:CG DE DF =+,证明如下:如图③,连接AD ,∵ABC ABD ADC SS S =+,DE AB ⊥,DF AC ⊥,CG AB ⊥, ∴111222AB CG AB DE AC DF ⋅⋅=⋅⋅+⋅⋅, ∵AB AC =,∴CG DE DF =+;如图④,连接AD ,∵ABC ABD ADC SS S =+,DE AB ⊥,DF AC ⊥,CG AB ⊥, ∴111222AB CG AB DE AC DF ⋅⋅=⋅⋅+⋅⋅, ∵AB AC =,∴CG DE DF =+.【点睛】本题考查三角形的判定和性质、三角形的面积等知识,解题的关键是利用面积法证明线段之间的关系.22.(1)∠DAE=15°;(2)见解析;(3)正确.【分析】(1)先根据三角形内角和定理求出∠BAC 的度数,再根据角平分线的定义求得∠BAD 的度数,在△ABE 中,利用直角三角形的性质求出∠BAE 的度数,从而可得∠DAE 的度数. (2)结合第(1)小题的计算过程进行证明即可.(3)利用三角形的外角等于与它不相邻的两个内角之和先用∠B和∠C表示出∠A′DE,再根据三角形的内角和定理可证明∠DA′E=12(∠C-∠B).【详解】(1)∵∠C=80°,∠B=40°,∴∠BAC=180°-∠B-∠C =180°-40°-80°=60°,∵AD是∠BAC的角平分线,∴∠BAD=∠CAD=12∠BAC=30°,∵AE⊥BC,∴∠AEC=90°,∴∠BAE=50°,∴∠DAE=∠BAE-∠BAD =20°;(2)理由:∵AD是∠BAC的角平分线,∴∠BAD=∠CAD=12∠BAC=12(180°-∠B-∠C)= 90°-12∠B-12∠C,∵AE⊥BC,∴∠AEC=90°,∴∠BAE=90°-∠B,∴∠DAE=∠BAE-∠BAD=(90°-∠B) -(90°-12∠B-12∠C )=12∠C-12∠B=12(∠C-∠B);(3)(2)中的结论仍正确.∵∠A′DE=∠B+∠BAD=∠B+12∠BAC=∠B+12(180°-∠B-∠C) = 90°+12∠B-12∠C;在△DA′E中,∠DA′E=180°-∠A′ED-∠A′DE=180°-90°-(90°+12∠B-12∠C)=12(∠C-∠B).【点睛】本题考查了三角形的角平分线和高,三角形的内角和定理,三角形的外角性质等知识,注意综合运用三角形的有关概念是解题关键.23.(1)∠A=55°,∠B=35°,∠C=90°;(2)ABC按角分类属于直角三角形,按边分类属于不等边三角形【分析】(1)根据三角形内角和定理根据方程组即可解决问题.(2)根据三角形的分类解决问题即可.【详解】(1)由题意得:20180A B C A B A B C ∠+∠=∠⎧⎪∠-∠=︒⎨⎪∠+∠+∠=︒⎩,解得:553590A B C ∠=︒⎧⎪∠=︒⎨⎪∠=︒⎩,∴∠A=55°,∠B=35°,∠C=90°;(2)∵∠C=90°,∠A=55°,∠B=35°,∴按角分类,属于直角三角形,按边分类,属于不等边三角形.【点睛】本题考查了三角形内角和定理,三角形的分类等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24.(1)= (2) 45° (3)1902P A ∠=︒-∠;证明见解析 (4)1118022P A D ∠=︒-∠-∠ 【分析】(1)根据三角形外角的性质得:∠DBC =∠A +∠ACB ,∠ECB =∠A +∠ABC ,两式相加可得结论;(2)利用(1)的结论:∵∠2+∠1−∠C =180°,将∠1=135°代入可得结论; (3)根据角平分线的定义得:∠CBP =12∠DBC ,∠BCP =12∠ECB ,根据三角形内角和可得:∠P 的式子,代入(1)中得的结论:∠DBC +∠ECB =180°+∠A ,可得:∠P =90°−12∠A ; (4)根据平角的定义得:∠EBC =180°−∠1,∠FCB =180°−∠2,由角平分线得:∠3=12∠EBC =90°−12∠1,∠4=12∠FCB =90°−12∠2,相加可得:∠3+∠4=180°−12(∠1+∠2),再由四边形的内角和与三角形的内角和可得结论.【详解】(1)∠DBC +∠ECB−∠A =180°,理由是:∵∠DBC =∠A +∠ACB ,∠ECB =∠A +∠ABC ,∴∠DBC +∠ECB =2∠A +∠ACB +∠ABC =180°+∠A ,∴∠DBC+∠ECB=∠A+180°,故答案为:=;(2)∠2−∠C=45°.理由是:∵∠2+∠1−∠C=180°,∠1=135°,∴∠2−∠C+135°=180°,∴∠2−∠C=45°.故答案为:45°;(3)∠P=90°−12∠A,理由是:∵BP平分∠DBC,CP平分∠ECB,∴∠CBP=12∠DBC,∠BCP=12∠ECB,∵△BPC中,∠P=180°−∠CBP−∠BCP=180°−12(∠DBC+∠ECB),∵∠DBC+∠ECB=180°+∠A,∴∠P=180°−12(180°+∠A)=90°−12∠A;(4)∠P=180°−12(∠A+∠D).理由是:如图:∵∠EBC=180°−∠1,∠FCB=180°−∠2,∵BP平分∠EBC,CP平分∠FCB,∴∠3=∠EBC=90°−12∠1,∠4=12∠FCB=90°−12∠2,∴∠3+∠4=180°−12(∠1+∠2),∵四边形ABCD中,∠1+∠2=360°−(∠A+∠D),又∵△PBC中,∠P=180°−(∠3+∠4)=12(∠1+∠2),∴∠P=12×[360°−(∠A+∠D)]=180°−12(∠A+∠D).【点睛】本题是四边形和三角形的综合问题,考查了三角形和四边形的内角和定理、三角形外角的性质、角平分线的定义等知识,难度适中,熟练掌握三角形外角的性质是关键.25.30°【分析】由三角形的内角和可求得∠BAC,则由角平分线定义可求得∠EAC,三角形的内角和可求得∠DAC 即可.【详解】解:在△ABC 中∵∠B=20°,∠C=80°∴∠BAC=180°-∠B -∠C=180°-20°-80°=80°;∵AE 是△ABC 的角平分线,∴∠EAC=12∠BAC=12×80°=40°; ∵AD 是△ABC 的高∴∠ADC=90°;又∵在△ADC 中,∠C=80°∴∠DAC=180°-∠C -∠ADC=180°-80°-90°=10°;∴∠EAD=∠EAC -∠DAC=40°-10°=30°;【点睛】本题考查了角平分线定义,三角形内角和定理的应用,题目比较好,难度适中. 26.50︒【分析】根据角平分线的性质求出∠BAD 的度数,利用三角形内角和求出∠B 的度数,由此得到∠ADE 的度数,利用三角形外角性质求出∠ADC ,即可得到答案.【详解】解:∵AD 平分BAC ∠,∴1302BAD DAC BAC ∠=∠=∠=︒, ∵180180608040B BAC C ∠=︒-∠-∠=︒-︒-︒=︒,∴403070ADC B BAD ∠=∠+∠=︒+︒=︒, ∴1202ADE B ∠=∠=︒, ∴702050CDE ADC ADE ∠=∠-∠=︒-︒=︒.【点睛】 此题考查三角形内角和定理,角平分线的性质,三角形外角定理,正确分析图形掌握各角直角的位置关系是解题的关键.。
一、初一数学几何模型部分解答题压轴题精选(难)1.如图下图所示,已知AB//CD, ∠B=30°,∠D=120°;(1)若∠E=60°,则∠F=________;(2)请探索∠E与∠F之间满足的数量关系?说明理由.(3)如下图所示,已知EP平分∠BEF,FG平分∠EFD,反向延长FG交EP于点P,求∠P的度数;【答案】(1)90°(2)解:如图,分别过点E,F作EM∥AB,FN∥AB∴EM∥AB∥FN∴∠B=∠BEM=30°,∠MEF=∠EFN又∵AB∥CD,AB∥FN∴CD∥FN∴∠D+∠DFN=180°又∵∠D =120°∴∠DFN=60°∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°∴∠EFD=∠MEF +60°∴∠EFD=∠BEF+30°(3)解:如图,过点F作FH∥EP由(2)知,∠EFD=∠BEF+30°设∠BEF=2x°,则∠EFD=(2x+30)°∵EP平分∠BEF,GF平分∠EFD∴∠PEF= ∠BEF=x°,∠EFG= ∠EFD=(x+15)°∵FH∥EP∴∠PEF=∠EFH=x°,∠P=∠HFG ∵∠HFG=∠EFG-∠EFH=15°∴∠P=15°【解析】【解答】解:(1)分别过点E、F作EM∥AB,FN∥AB,则有AB∥EM∥FN∥CD.∴∠B=∠BEM=30°,∠MEF=∠EFN,∠DFN=180°-∠CDF=60°,∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°,∴∠EFD=∠BEF+30°=90°.【分析】(1)分别过点E、F作AB的平行线,根据平行线的性质即可求解;(2)根据平行线的性质可得∠DFN=60°,∠BEM=30°,∠MEF=∠NFE,即可得到结论;(3)过点F作FH∥EP,设∠BEF=2x°,根据(2)中结论即可表示出∠BFD,根据角平分线的定义可得∠PEF=x°,∠EFG=(x+15)°,再根据平行线的性质即可得到结论.2.将一副三角板中的两个直角顶点叠放在一起(如图①),其中,, .(1)猜想与的数量关系,并说明理由;(2)若,求的度数;(3)若按住三角板不动,绕顶点转动三角,试探究等于多少度时,并简要说明理由.【答案】(1)解:,理由如下:,(2)解:如图①,设,则,由(1)可得,,,(3)解:分两种情况:①如图1所示,当时,,又,;②如图2所示,当时,,又,.综上所述,等于或时, .【解析】【分析】(1)由∠BCD=∠ACB+∠ACD=90°+∠ACD,即可求出∠BCD+∠ACE的度数.(2)如图①,设∠ACE=a,可得∠BCD=3a,结合(1)可得3a+a=180°,求出a的度数,即得∠BCD的度数.(3)分两种情况讨论,①如图1所示,当AB∥CE时,∠BCE=180°-∠B=120°,②如图2所示,当AB∥CE时,∠BCE=∠B=60°,分别求出∠BCD的度数即可.3.感知:如图①,∠ACD为△ABC的外角,易得∠ACD=∠A+∠B(不需证明) ;(1)探究:如图②,在四边形ABDC中,试探究∠BDC与∠A、∠B.、∠C之间的关系,并说明理由;(2)应用:如图③,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,若∠A=50°,则∠ABX+∠ACX=________度;(直接填答案,不需证明) (3)拓展:如图④,BE平分∠ABD,CE平分∠ACD,若∠BAC=100°,∠BDC=150°,则∠BEC=________度. (直接填答案,不需证明)【答案】(1)解:如图5,连接AD并延长至点F.∵∠BDF为△ABD的外角,∴∠BDF=∠BAD+∠B,同理可得∠CDF=∠CAD+∠C,∴∠BDF+∠CDF=∠BAD+∠B+∠CAD+∠C,即∠BDC=∠BAC+∠B+∠C;(2)40°(3)125°【解析】【解答】解:(2)由题意可得∠BXC=90°,由(1)中结论可得∠BXC=∠A+∠ABX+∠ACX,∵∠A=50°,∴∠ABX+∠ACX=90°-50°=40°;(3)如图6,∵∠A=100°,∠BDC=150°,∠BDC=∠A+∠ABD+∠ACD,∴∠ABD+∠ACD=150°-100°=50°,∵BE平分∠ABD,CE平分∠ACD,∴∠ABE+∠ACE= (∠ABD+∠ACD)=25°,又∵∠BEC=∠A+∠ABE+∠ACE,∴∠BEC=100°+25°=125°.【分析】(1)如图5,连接AD并延长至F,然后利用三角形外角的性质进行分析证明即可得到∠BDC=∠BAC+∠B+∠C;(2)由题意可知∠BXC=90°,结合∠A=50°和(1)中所得结论即可得到∠ABX+∠ACX=90°-50°=40°;(3)如图6,利用(1)中所得结论结合已知条件进行分析解答即可.4.如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.(1)试判断直线AB与直线CD的位置关系,并说明理由;(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.【答案】(1)解:AB∥CD.理由如下:如图1,∵∠1与∠2互补,∴∠1+∠2=180°.又∵∠1=∠AEF,∠2=∠CFE,∴∠AEF+∠CFE=180°,∴AB∥CD;(2)证明:如图2,由(1)知,AB∥CD,∴∠BEF+∠EFD=180°.又∵∠BEF与∠EFD的角平分线交于点P,∴∠FEP+∠EFP= (∠BEF+∠EFD)=90°,∴∠EPF=90°,即EG⊥PF.∵GH⊥EG,∴PF∥G H;(3)解:∠HPQ的大小不发生变化,理由如下:如图3,∵∠1=∠2,∴∠3=2∠2.又∵GH⊥EG,∴∠4=90°-∠3=90°-2∠2.∴∠EPK=180°-∠4=90°+2∠2.∵PQ平分∠EPK,∴∠QPK= ∠EPK=45°+∠2.∴∠HPQ=∠QPK-∠2=45°,∴∠HPQ的大小不发生变化,一直是45°.【解析】【分析】(1)利用对顶角相等、等量代换可以推知同旁内角∠AEF、∠CFE互补,所以易证AB∥CD;(2)利用(1)中平行线的性质推知°;然后根据角平分线的性质、三角形内角和定理证得∠EPF=90°,即EG⊥PF,故结合已知条件GH⊥EG,易证PF∥GH;(3)利用三角形外角定理、三角形内角和定理求得∠4=90°-∠3=90°-2∠2;然后由邻补角的定义、角平分线的定义推知∠QPK= ∠EPK=45°+∠2;最后根据图形中的角与角间的和差关系求得∠HPQ的大小不变,是定值45°.5.如图1,点为直线上一点,过点作射线,使,将一直角三角板的直角顶点放在点处,一边在射线上,另一边在直线的下方.(1)将图1中的三角板绕点逆时针旋转至图,使一边在的内部,且恰好平分,问:此时直线是否平分?请直接写出结论:直线 ________(平分或不平分) .(2)将图1中的三角板绕点以每秒的速度沿逆时针方向旋转一周,在旋转的过程中,第秒时,直线恰好平分锐角,则的值为________.(直接写出结果)(3)将图1中的三角板绕点顺时针旋转,请探究:当始终在的内部时(如图3),与的差是否发生变化?若不变,请求出这个差值;若变化,请举例说明.【答案】(1)平分(2)或49(3)解:不变,设,,,【解析】【解答】(1)直线平分;(2)或【分析】(1)根据图形得到直线ON平分∠AOC ;(2)由三角板绕点 O 以每秒 5 °的速度沿逆时针方向旋转一周,在旋转的过程中,第t 秒时,直线ON恰好平分锐角∠AOC,求出t的值;(3)根据题意得到∠AON=50°−y,∠AOM−∠NOC=x−y=40°.6.如图1,已知线段AB=16cm,点C为线段AB上的一个动点,点D、E分别是AC和BC 的中点.(1)若点C恰为AB的中点,求DE的长;(2)若AC=6cm,求DE的长;(3)试说明不论AC取何值(不超过16cm),DE的长不变;(4)知识迁移:如图2,已知∠AOB=130°,过角的内部任一点C画射线OC,若OD、OE 分别平分∠AOC和∠BOC,试说明∠DOE=65°与射线OC的位置无关.【答案】(1)解:∵点C恰为AB的中点,∴AC=BC= AB=8cm,∵点D、E分别是AC和BC的中点,∴DC= AC=4cm,CE= BC=4cm,∴DE=8cm(2)解:∵AB=16cm,AC=6cm,∴BC=10cm,由(1)得,DC= AC=3cm,CE= CB=5cm,∴DE=8cm(3)解:∵点D、E分别是AC和BC的中点,∴DC= AC,CE= BC,∴DE= (AC+BC)= AB,∴不论AC取何值(不超过16cm),DE的长不变(4)解:∵OD、OE分别平分∠AOC和∠BOC,∴∠DOC= ∠AOC,∠EOC= ∠BOC,∴∠DOE=∠DOC+∠EOC= (∠AOC+∠BOC)= ∠AOB=65°,∴∠DOE=65°与射线OC的位置无关【解析】【分析】(1)由点C恰为AB的中点,得到AC=BC的值,再由点D、E分别是AC和BC的中点,求出DE的值;(2)由(1)得,DC= AC的值,CE= CB的值,得到DE的值;(3)由点D、E分别是AC和BC的中点,得到不论AC取何值(不超过16cm),DE 的长不变;(4)由OD、OE分别平分∠AOC和∠BOC,根据角平分线定义,得到∠DOE=∠DOC+∠EOC=(∠AOC+∠BOC)=∠AOB,得到∠DOE=65°与射线OC的位置无关.7.如图,已知AB∥CD,∠A=40°,点P是射线B上一动点(与点A不重合),CM,CN分别平分∠ACP和∠PCD,分别交射线AB于点M,N.(1)求∠MCN的度数.(2)当点P运动到某处时,∠AMC=∠ACN,求此时∠ACM的度数.(3)在点P运动的过程中,∠APC与∠ANC的比值是否随之变化?若不变,请求出这个比值:若变化,请找出变化规律.【答案】(1)解:∵A B∥CD,∴∠ACD=180°﹣∠A=140°,又∵CM,CN分别平分∠ACP和∠PCD,∴∠MCN=∠MCP+∠NCP= (∠ACP+∠PCD)= ∠ACD=70°,故答案为:70°.(2)解:∵AB∥CD,∴∠AMC=∠MCD,又∵∠AMC=∠ACN,∴∠MCD=∠ACN,∴∠ACM=∠ACN﹣∠MCN=∠MCD﹣∠MCN=∠NCD,∴∠ACM=∠MCP=∠NCP=∠NCD,∴∠ACM= ∠ACD=35°,故答案为:35°.(3)解:不变.理由如下:∵AB∥CD,∴∠APC=∠PCD,∠ANC=∠NCD,又∵CN平分∠PCD,∴∠ANC=∠NCD= ∠PCD= ∠APC,即∠APC:∠ANC=2:1.【解析】【分析】(1)由AB∥CD可得∠ACD=180°-∠A,再由CM、CN均为角平分线可求解;(2)由AB∥CD可得∠AMC=∠MCD,再由∠AMC=∠ACN可得∠ACM =∠NCD(3)由AB∥CD可得∠APC=∠PCD,再由CN为角平分线即可解答.8.(1)思考探究:如图①,的内角的平分线与外角的平分线相交于点,请探究与的关系是________.(2)类比探究:如图②,四边形中,设,,,四边形的内角与外角的平分线相交于点 .求的度数.(用,的代数式表示)(3)拓展迁移:如图③,将(2)中改为,其它条件不变,请在图③中画出,并直接写出 ________.(用,的代数式表示)【答案】(1)(2)解:延长、,交于点 .,由(1)知:∴ .(3)【解析】【解答】解:(1)∵平分,平分,∴,∵是的外角∴∵是的外角∴( 3 )延长,交于点 . 作与外角的平分线相交于点 . 如图:,【分析】(1)利用角平分线求出∠PCD= ∠ACD,∠PBD= ∠ABC,再利用三角形的一个外角定理即可求出.(2)延长BA、CD交于点F,然后根据(1)的结题可得到∠P的表达式.(3)延长AB、DC交于F,然后根据(1)的结题可得到∠P的表达式.9.如图1,在△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于点A1,(1)分别计算:当∠A分别为700、800时,求∠A1的度数.(2)根据(1)中的计算结果,写出∠A与∠A1之间的数量关系________.(3)∠A1BC的角平分线与∠A1CD的角平分线交于点A2,∠A2BC的角平分线与∠A2CD的角平分线交于点A3,如此继续下去可得A4,…,∠A n,请写出∠A5与∠A的数量关系________.(4)如图2,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E 滑动时,有下面两个结论:①∠Q+∠A1的值为定值;②∠D-∠A1的值为定值.其中有且只有一个是正确,请写出正确结论,并求出其值.【答案】(1)解:∵A1C、A1B分别是∠ACD、∠ABC的角平分线∴∠A1BC= ∠ABC,∠A1CD= ∠ACD由三角形的外角性质知:∠A=∠ACD-∠ABC,∠A1=∠A1CD-∠A1BC,即:∠A1= (∠ACD-∠ABC)= ∠A;当∠A=70°时,∠A1=35°;当∠A=80°,∠A1=40°(2)∠A=2∠A1(3)∠A5= ∠A(4)解:△ABC中,由三角形的外角性质知:∠BAC=∠AEC+∠ACE=2(∠QEC+∠QCE);即:2∠A1=2(180°-∠Q),化简得:∠A1+∠Q=180°故①的结论是正确,且这个定值为180°【解析】【解答】解:(2)由(1)可知∠A1== ∠A即∠A=2∠A1(3)同(1)可求得:∠A2= ∠A1= ∠A,∠A3= ∠A2= ∠A,…依此类推,∠A n= ∠A;当n=5时,∠A5= ∠A= ∠A【分析】(1)由三角形的外角性质易知:∠A=∠ACD-∠ABC,∠A1=∠A1CD-∠A1BC,而∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1,可得∠A1= (∠ACD-∠ABC)= ∠A(2)根据(1)可得到∠A=2∠A1(3)根据(1)可得到∠A2= ∠A1=∠A,∠A3= ∠A2= ∠A,…依此类推,∠A n= ∠A,根据这个规律即可解题.(4)用三角形的外角性质求解,易知2∠A1=∠AEC+∠ACE=2(∠QEC+∠QCE),利用三角形内角和定理表示出∠QEC+∠QCE,即可得到∠A1和∠Q的关系.10.如图①,△ABC的角平分线BD,CE相交于点P.(1)如果∠A=80∘,求∠BPC=.(2)如图②,过点P作直线MN∥BC,分别交AB和AC于点M和N,试求∠MPB+∠NPC的度数(用含∠A的代数式表示).(3)将直线MN绕点P旋转。
一、选择题1.如图,AB ∥CD ,BE 和CE 分别平分∠ABC 和∠BCD ,AD 过点E ,且AD ⊥AB ,点P 为线段BC 上一动点,连接PE .若AD =14,则PE 的最小值为( )A .7B .10C .6D .52.如图,△ACB ≌△A′C B′,∠ACB =70°,∠ACB′=100°,则∠BCA′度数是( )A .40°B .35C .30°D .45°3.如图,点O 是△ABC 中∠BCA ,∠ABC 的平分线的交点,已知△ABC 的面积是12,周长是8,则点O 到边BC 的距离是( )A .1B .2C .3D .44.在平面直角坐标系xOy 中,以原点O 为圆心,任意长为半径作弧,分别交x 轴的负半轴和y 轴的正半轴于A 点,B 点,分别以点A ,点B 为圆心,AB 的长为半径作弧,两弧交于P 点,若点P 的坐标为(m ,n),则下列结论正确的是( )A .m =2nB .2m =nC .m =nD .m =-n 5.如图,AD 平分BAC ∠交BC 于点D ,DE AB ⊥于点E ,DF AC ⊥于点F ,若ABC S 12=,DF 2=,AC 3=,则AB 的长是 ( )A .2B .4C .7D .96.下列四个命题中,真命题是( )A .如果 ab =0,那么a =0B .面积相等的三角形是全等三角形C .直角三角形的两个锐角互余D .不是对顶角的两个角不相等7.如图,在Rt ABC △中,90C ∠=︒,CAB ∠的平分线交BC 于点D ,且DE 所在直线是AB 的垂直平分线,垂足为E .若3DE =,则BC 的长为( ).A .6B .7C .8D .98.如图,已知△ABC 的周长是20,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于,且OD=2,△ABC 的面积是( )A .20B .24C .32D .409.已知:如图,BD 为△ABC 的角平分线,且BD=BC ,E 为BD 延长线上的一点,BE=BA ,过E 作EF ⊥AB ,F 为垂足,下列结论:①△ABD ≌△EBC②∠BCE+∠BCD=180°③AD=AE=EC ④ BA+BC=2BF 其中正确的是( )A .①②③B .①③④C .①②④D .①②③④10.如图,在Rt ABC 中,C 90∠=,AD 是BAC ∠的平分线,若AC 3=,BC 4=,则ABD ACD S :S 为( )A .5:4B .5:3C .4:3D .3:411.如图,在ABC 中,B C ∠=∠,E 、D 、 F 分别是AB 、BC 、AC 上的点,且BE CD =,BD CF =,若 104A ∠=︒,则EDF ∠的度数为( )A .24°B .32°C .38°D .52° 12.如图,AD 是△ABC 中∠BAC 的角平分线,DE ⊥AB 于点E ,S △ABC =7,DE =2,AB =4,则AC 长是( )A .2.5B .3C .3.5D .4二、填空题13.如图,在Rt ABC △中,90C ∠=︒,10AC =,5BC =,线段PQ AB =,P ,Q 两点分别在线段AC 和过点A 且垂直于AC 的射线AD 上运动,当AQ =______时,ABC 和PQA △全等.14.如图,在Rt ABC △中,90C ∠=︒,以顶点A 为圆心,任意长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交BC 于点D .若3CD =,10AB =,则ABD △的面积是______.15.如图,在△ABC 中,∠ABC 的平分线与外角∠ACE 的平分线交于点D ,若∠D =20°,则∠A =_____.16.如图,线段AB ,CD 相交于点O ,AO=BO ,添加一个条件, 能使AOC BOD ≅,所添加的条件的是___________________________.17.如图,在△ABC 中,AD 是∠BAC 的平分线,AB =8 cm ,AC =6 cm ,S △ABD ∶S △ACD =________.18.如图,在四边形ABCD 中,90A ∠=︒,3AD =,连接BD ,BD CD ⊥,ADB C ∠=∠.若P 是BC 边上一动点,则DP 长的最小值为_______.19.如图,射线OC 是∠AOB 的角平分线,D 是射线OC 上一点,DP ⊥OA 于点P ,DP =5,若点Q 是射线OB 上一点,OQ =4,则△ODQ 的面积是__________.20.如图,ABC 中,90ACB ∠=︒,8cm,6cm AC BC ==,直线l 经过点C 且与边AB 相交,动点P 从点A 出发沿A C B →→路径向终点B 运动,动点Q 从点B 出发沿B C A →→路径向终点A 运动,点P 和点Q 的速度分别为3cm/s 和2cm/s ,两点同时出发并开始计时,当点P 到达终点B 时计时结束.在某时刻分别过点P 和点Q 作PM l ⊥于点M ,QN l ⊥点N ,设运动时间为t 秒,则当t =__________秒时,PMC △与QNC 全等.三、解答题21.如图,已知AB ∥CD ,BE 平分∠ABC ,DE 平分∠ADC ,∠BAD =80°,试求:(1)∠EDC 的度数.(2)若∠BCD =n °,试求∠BED 的度数.(用含n 的式子表示)(3)类比探究:已知AB ∥CD ,BE 、DE 分别是∠ABC 、∠ADC 的n 等分线,ABE ∠=1ABC n ∠,1CDE ADC n∠=∠,∠BAD =α,∠BCD =β,请猜想∠BED = .22.阅读下面材料:学习了三角形全等的判定方法(即“SAS ”“ASA ”“AAS ”“SSS ”)和直角三角形全等的判定方法(即“HL ”)后,小聪继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.小聪将命题用符号语言表示为在ABC 和DEF 中,AC DF =,BC EF =,B E ∠=∠.小聪的探究方法是对B 分为“直角、钝角、锐角”三种情况进行探究.第一种情况:当B 是直角时,如图1,在ABC 和DEF 中,AC DF =,BC EF =,90B E ∠=∠=︒,根据“HL ”定理,可以知道Rt Rt ABC DEF ≌△△. 第二种情况:当B 是锐角时,如图2,90B E ∠=∠<︒,BC EF =.(1)在射线EM 上是否存在点D ,使DF AC =?若存在,请在图中作出这个点,并连接DF ;若不存在,请说明理由;(2)这种情形下,ABC 和DEF 的关系是 (选填“全等”“不全等”或“不一定全等”);第三种情况:当B 是钝角时,如图3,在ABC 和DEF 中,AC DF =,BC EF =,90B E ∠=∠>︒.(3)请判断这种情形下,ABC 和DEF 是否全等,并说明理由.23.如图所示,A ,C ,E 三点在同一直线上,且ABC DAE △△≌.(1)求证:BC DE CE =+;(2)当ABC 满足什么条件时,//BC DE ?24.如图,在△ABD 中,∠ABC=45°,AC ,BF 为△ABD 的两条高,CM//AB ,交AD 于点M ;求证:BE=AM+EM .25.如图,点D ,E 分别在AB 和AC 上,DE//BC ,点F 是AD 上一点,FE 的延长线交BC 延长线BH 于点G .(1)若∠DBE =40°,∠EBC =35°,求∠BDE 的度数;(2)求证:∠EGH >∠ADE ;(3)若点E 是AC 和FG 的中点,△AFE 与△CEG 全等吗?请说明理由.26.沛沛沿一段笔直的人行道行走,边走边欣赏风景,在由C走到D的过程中,通过隔离带的空隙P,刚好浏览完对面人行道宣传墙上的一条标语,具体信息如下:如图,AB//PM//CD,相邻两平行线间的距离相等AC,BD相交于P,PD CD⊥垂足为D.已知16CD=米.请根据上述信息求标语AB的长度.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】当EP⊥BC时,EP最短,根据角平分线的性质,可知EP=EA=ED=12AD,由AD=14,求出即可.【详解】解:当EP⊥BC时,EP最短,∵AB∥CD,AD⊥AB,∴AD⊥CD,∵BE平分∠ABC,AE⊥AB,EP⊥BC,∴EP=EA,同理,EP=ED,此时,EP=12AD=12×14=7,故选A.【点睛】本题考查了角平分线的性质和垂线段最短,熟练找到P点位置并应用角平分线性质求EP是解题关键.2.A解析:A【分析】根据已知ACB≌A′CB′,得到∠A′CB′=∠ACB=70︒,再通过∠ACB′=100︒,继而利用角的和差求得∠BCB′=30︒,进而利用∠BCA′=∠A′CB′-∠BCB′得到结论.【详解】解:∵ACB≌A′CB′,∴∠A′CB′=∠ACB=70︒,∵∠ACB′=100︒,∴∠BCB′=∠ACB′-∠ACB=30︒,∴∠BCA′=∠A′CB′-∠BCB′=40︒,故选:C.【点睛】本题考查了全等三角形的性质,熟练掌握全等三角形的性质是解题的关键.3.C解析:C【分析】过点O作OE⊥AB于E,OF⊥AC于F,连接OA,根据角平分线的性质得:OE=OF=OD然后根据△ABC的面积是12,周长是8,即可得出点O到边BC的距离.【详解】如图,过点O作OE⊥AB于E,OF⊥AC于F,连接OA.∵点O是∠ABC,∠ACB平分线的交点,∴OE=OD,OF=OD,即OE=OF=OD∴S△ABC=S△ABO+S△BCO+S△ACO=12AB·OE+12BC·OD+12AC·OF=12×OD×(AB+BC+AC)=12×OD×8=12OD=3故选:C【点睛】此题主要考查了角平分线的性质以及三角形面积求法,角的平分线上的点到角的两边的距离相等,正确表示出三角形面积是解题关键.4.D解析:D【分析】根据角平分线的性质及第二象限内点的坐标特点即可得出结论.【详解】解:∵由题意可知,点C在∠AOB的平分线上,∴m=-n.故选:D.【点睛】本题考查的是作图−基本作图,熟知角平分线的作法及其性质是解答此题的关键.5.D解析:D【分析】求出DE的值,代入面积公式得出关于AB的方程,求出即可.【详解】解:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF=2,∵S△ABC=S△ABD+S△ACD,∴12=12×AB×DE+12×AC×DF,∴24=AB×2+3×2,∴AB=9,故选:D.【点睛】本题考查了角平分线性质,三角形的面积的应用,注意:角平分线上的点到角两边的距离相等.6.C解析:C【分析】根据有理数的乘法、全等三角形的概念、直角三角形的性质、对顶角的概念判断即可.【详解】解:A、如果ab=0,那么a=0或b=0或a、b同时为0,本选项说法是假命题,不符合题意;B、面积相等的三角形不一定全等,本选项说法是假命题,不符合题意;C、直角三角形的两个锐角互余,本选项说法是真命题,符合题意;D、不是对顶角的两个角可能相等,本选项说法是假命题,不符合题意;故选:C.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,判断命题的真假关键是要熟悉课本中的性质定理.7.D解析:D【分析】由角平分线和线段垂直平分线的性质可求得∠B=∠CAD=∠DAB=30°,【详解】解:∵DE垂直平分AB,∴DA=DB,∴∠B=∠DAB,∵AD平分∠CAB,∴∠CAD=∠DAB,∵∠C=90°,∴3∠EAD=90°,∴∠EAD=30°,∵∠AED=90°,∴DA=BD=2DE,∵AD平分∠CAB,DE⊥AB,CD⊥AC,∴CD=DE=3,∴DA=BD=6,∴BC=BD+CD=6+3=9,故选:D.【点睛】本题考查了线段垂直平分线的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.8.A解析:A【分析】连接OA,过O作OE⊥AB于E,OF⊥AC于F;然后利用角平分线定理可得OF=OE=DO=2,然后用S△ABC=S△AOC+S△OBC+S△ABO求解即可.【详解】解:如图:连接OA,过O作OE⊥AB于E,OF⊥AC于F,∵OB ,OC 分别平分∠ABC 和∠ACB ,∴OD=OE,OF=OD,即OF=OE=DO=2,∴S △ABC =12×2AC+12×2BC +12×2AB =12×2(AC+BC+AB ) = AC+BC+AB=20.故答案为A .【点睛】本题主要考查了角平分线定理,正确作出辅助线、利用角平分线定理得到OF=OE=DO=2是解答本题的关键.9.D解析:D【分析】易证ABD EBC ∆∆≌,可得BCE BDA ∠=∠,AD=EC 可得①②正确;再根据角平分线的性质可求得DAE DCE ∠=∠ ,即③正确,根据③可判断④正确;【详解】∵ BD 为∠ABC 的角平分线,∴ ∠ABD=∠CBD ,∴在△ABD 和△EBD 中,BD=BC ,∠ABD=∠CDB ,BE=BA ,∴△ABD EBC ∆∆≌(SAS),故①正确;∵ BD 平分∠ABC ,BD=BC ,BE=BA ,∴ ∠BCD=∠BDC=∠BAE=∠BEA ,∵△ABD ≌△EBC ,∴∠BCE=∠BDA ,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,故②正确;∵∠BCE=∠BDA ,∠BCE=∠BCD+∠DCE ,∠BDA=∠DAE+∠BEA ,∠BCD=∠BEA ,∴∠DCE=∠DAE ,∴△ACE 是等腰三角形,∴AE=EC ,∵△ABD ≌△EBC ,∴AD=EC ,∴AD=AE=EC ,故③正确;作EG ⊥BC ,垂足为G ,如图所示:∵ E 是BD 上的点,∴EF=EG ,在△BEG 和△BEF 中BE BE EF EG =⎧⎨=⎩∴ △BEG ≌△BEF ,∴BG=BF ,在△CEG 和△AFE 中EF EG AE CE =⎧⎨=⎩∴△CEG ≌△AFE ,∴ AF=CG ,∴BA+BC=BF+FA+BG-CG=BF+BG=2BF ,故④正确;故选:D .【点睛】本题考查了全等三角形的判定,全等三角形对应边、对应角相等的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应边、对应角相等的性质是解题的关键;10.B解析:B【分析】过D 作DF AB ⊥于F ,根据角平分线的性质得出DF =DC ,再根据三角形的面积公式求出ABD 和ACD 的面积,最后求出答案即可.【详解】解:过D 点作DF AB ⊥于F ,∵AD 平分CAB ∠,C 90∠=(即AC BC ⊥),∴DF CD =,设DF CD R ==,在Rt ABC 中,C 90∠=,AC 3=,BC 4=, ∴22AB 5AC BC =+=, ∴ABD 115SAB DF 5R R 222=⨯⨯=⨯⨯=,ACD 113S AC CD 3R R 222=⨯⨯=⨯⨯=, ∴ABD ACD 5S :S R 2⎛⎫= ⎪⎝⎭:3R 5:32⎛⎫= ⎪⎝⎭, 故选:B.【点睛】本题考查了角平分线的性质和三角形的面积,能根据角平分线的性质求出DF =CD 是解此题的关键.11.C解析:C【分析】根据题意可证明BDE CFD ≌,以及求解∠B 的度数,再由三角形的外角性质和全等三角形的性质推出∠EDF=∠B ,从而得出结果.【详解】在BDE 与CFD 中,BE CD B C BD CF =⎧⎪∠=∠⎨⎪=⎩∴()BDE CFD SAS ≌∴∠BED=∠CDF ,又∵∠B+∠BED=∠EDC=∠EDF+∠CDF ,∴∠B=∠EDF ,∵在BAC 中,∠A=104°,∠B=∠C ,∴∠B=(180°-104°)÷2=38°,∴∠EDF=38°,故选:C .【点睛】本题考查全等三角形的判定与性质,三角形的内角和定理与外角性质,熟练证明全等并利用其性质进行推理演算是解题关键.12.B解析:B【分析】作DH⊥AC于H,如图,利用角平分线的性质得DH=DE=2,根据三角形的面积公式得1 2×2×AC+12×2×4=7,于是可求出AC的值.【详解】解:作DH⊥AC于H,如图,∵AD是△ABC中∠BAC的角平分线,DE⊥AB,DH⊥AC,∴DH=DE=2,∵S△ABC=S△ADC+S△ABD,∴12×2×AC+12×2×4=7,∴AC=3.故选:B.【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.这里的距离是指点到角的两边垂线段的长.二、填空题13.5或10【分析】分两种情况:当AQ=5时当AQ=10时利用全等三角形的判定及性质定理得到结论【详解】分两种情况:当AQ=5时∵∴AQ=BC∵AD⊥AC∴∠QAP=∠ACB=∵AB=PQ∴≌△PQA(解析:5或10【分析】分两种情况:当AQ=5时,当AQ=10时,利用全等三角形的判定及性质定理得到结论.【详解】分两种情况:当AQ=5时,∵5BC=,∴AQ=BC,∵AD⊥AC,∴∠QAP=∠ACB=90︒,∵AB=PQ,∴ABC≌△PQA(HL);当AQ=10时,∵10AC=,∴AQ=AC,∵AD⊥AC,∴∠QAP=∠ACB=90︒,∵AB=PQ,∴△ABC≌△QPA,故答案为:5或10.【点睛】此题考查全等三角形的判定及性质定理,运用分类思想,动点问题,熟记三角形的判定定理及性质定理是解题的关键.14.15【分析】如图过点D作DE⊥AB于E首先证明DE=CD=3再利用三角形的面积公式计算即可【详解】解:如图过点D作DE⊥AB于E由作图可知AD平分∠CAB∵CD⊥ACDE⊥AB∴DE=CD=3∴S△解析:15【分析】如图,过点D作DE⊥AB于E.首先证明DE=CD=3,再利用三角形的面积公式计算即可.【详解】解:如图,过点D作DE⊥AB于E.由作图可知,AD平分∠CAB,∵CD⊥AC,DE⊥AB,∴DE=CD=3,∴S△ABD=12•AB•DE=12×10×3=15,故答案为15.【点睛】本题考查了作图-基本作图,角平分线的性质定理等知识,解题的关键是学会添加常用辅助线,学会用转化的思想思考问题.15.40°【分析】利用角平分线的性质可知∠ABC=2∠DBC∠ACE=2∠DCE再根据三角形外角的性质可得出∠D=∠DCE﹣∠DBE∠A=∠ACE﹣∠ABC即得出∠A =2∠D即得出答案【详解】∵∠ABC解析:40°【分析】利用角平分线的性质可知∠ABC =2∠DBC ,∠ACE =2∠DCE .再根据三角形外角的性质可得出∠D =∠DCE ﹣∠DBE ,∠A =∠ACE ﹣∠ABC .即得出∠A =2∠D ,即得出答案.【详解】∵∠ABC 的平分线交∠ACE 的外角平分线∠ACE 的平分线于点D ,∴∠ABC =2∠DBC ,∠ACE =2∠DCE ,∵∠DCE 是△BCD 的外角,∴∠D =∠DCE ﹣∠DBE ,∵∠ACE 是△ABC 的外角,∠A =∠ACE ﹣∠ABC =2∠DCE ﹣2∠DBE =2(∠DCE ﹣∠DBE ),∴∠A =2∠D =40°.故答案为:40°.【点睛】本题考查角平分线和三角形外角的性质,熟练利用角平分线和三角形外角的性质来判断题中角之间的关系是解答本题的关键.16.或或或【分析】先根据对顶角相等可得再根据三角形全等的判定定理即可得【详解】由对顶角相等得:当时由定理可证当时由定理可证当时由定理可证当时则由定理可证故答案为:或或或【点睛】本题考查了对顶角相等三角形 解析:CO DO =或A B ∠=∠或C D ∠=∠或//AC BD【分析】先根据对顶角相等可得AOC BOD ∠=∠,再根据三角形全等的判定定理即可得.【详解】由对顶角相等得:AOC BOD ∠=∠,AO BO =,∴当CO DO =时,由SAS 定理可证AOC BOD ≅,当A B ∠=∠时,由ASA 定理可证AOC BOD ≅,当C D ∠=∠时,由AAS 定理可证AOC BOD ≅,当//AC BD 时,则A B ∠=∠,由ASA 定理可证AOC BOD ≅,故答案为:CO DO =或A B ∠=∠或C D ∠=∠或//AC BD .【点睛】本题考查了对顶角相等、三角形全等的判定定理等知识点,熟练掌握三角形全等的判定定理是解题关键.17.4:3【分析】利用角平分线的性质可得出△ABD 的边AB 上的高与△ACD 的边AC 的高相等根据三角形的面积公式即可得出△ABD 与△ACD 的面积之比等于对应边之比;【详解】∵AD 是△ABC 的角平分线∴设△解析:4:3【分析】利用角平分线的性质,可得出△ABD 的边AB 上的高与△ACD 的边AC 的高相等,根据三角形的面积公式,即可得出△ABD 与△ACD 的面积之比等于对应边之比;【详解】∵ AD 是△ABC 的角平分线,∴ 设△ABD 的边AB 上的高与△ACD 的边AC 的高分别为1h ,2h ,∴ 1h =2h ,∴△ABD 与△ACD 的面积之比=AB :AC=8:6=4:3,故答案为:4:3.【点睛】本题考查了角平分线的性质,以及三角形的面积公式,熟练掌握三角形角平分线的性质是解题的关键;18.3【分析】过点D 作于点H 先证明BD 是的角平分线然后根据角平分线的性质得到当点P 运动到点H 的位置时DP 的长最小即DH 的长【详解】解:如图过点D 作于点H ∵∴∵∴∴BD 是的角平分线∵∴∵点D 是直线BC 外一 解析:3【分析】过点D 作DH BC ⊥于点H ,先证明BD 是ABC ∠的角平分线,然后根据角平分线的性质得到3AD DH ==,当点P 运动到点H 的位置时,DP 的长最小,即DH 的长.【详解】解:如图,过点D 作DH BC ⊥于点H ,∵BD CD ⊥,∴90BDC ∠=︒,∵180C BDC DBC ∠+∠+∠=︒,180ADB A ABD ∠+∠+∠=︒,ADB C ∠=∠,90A ∠=︒,∴ABD CBD ∠=∠,∴BD 是ABC ∠的角平分线,∵AD AB ⊥,DH BC ⊥,∴3AD DH ==,∵点D 是直线BC 外一点,∴当点P 在BC 上运动时,点P 运动到与点H 重合时DP 最短,其长度为DH 长,即DP 长的最小值是3.故答案是:3.【点睛】本题考查角平分线的性质,解题的关键是熟练运用角平分线的性质定理.19.10【分析】作DH⊥OB于点H根据角平分线的性质得到DH=DP=5根据三角形的面积公式计算得到答案【详解】解:作DH⊥OB于点H∵OC是∠AOB的角平分线DP⊥OADH⊥OB∴DH=DP=5∴△OD解析:10【分析】作DH⊥OB于点H,根据角平分线的性质得到DH=DP=5,根据三角形的面积公式计算,得到答案.【详解】解:作DH⊥OB于点H,∵OC是∠AOB的角平分线,DP⊥OA,DH⊥OB,∴DH=DP=5,∴△ODQ的面积=12×OQ×DH=12×4×5=10;故答案为:10.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.20.2或【分析】分点Q在BC上和点Q在AC上根据全等三角形的性质分情况列式计算【详解】由题意得AP=3tBQ=2tAC=8cmBC=6cmCP=8﹣3tCQ=6﹣2t①如图当与全等时PC=QC解得;②如解析:2或145.【分析】分点Q在BC上和点Q在AC上,根据全等三角形的性质分情况列式计算.【详解】由题意得,AP=3t,BQ=2t,AC=8cm,BC=6cm,∴ CP=8﹣3t,CQ=6﹣2t,①如图,当PMC△与QNC全等时,PC=QC,6283t t-=-,解得2t=;②如图,当PMC △与QNC 全等时,点P 已运动至BC 上,且与点Q 相遇, 则PC=QC ,6238t t -=-,解得145t =;故答案为:2或145. 【点睛】 本题考查了全等三角形的性质,掌握全等三角形对应边相等是解决问题的关键.三、解答题21.(1)40︒;(2)1402BED n ∠=︒+︒;(3)1()αβ+n【分析】(1)根据平行线的性质及角平分线的性质即可得解;(2)过点E 作EF ∥AB ,则EF ∥AB ∥CD ,由AB ∥CD ,BE 平分∠ABC ,推出12BEF ABE n ∠=∠=︒,利用EF ∥CD ,求得∠FED =∠EDC =40°,即可得到 1402BED n ∠=︒+︒; (3)过点E 作EF ∥AB ,则EF ∥AB ∥CD ,利用AB ∥CD 推出∠ABC =∠BCD =β,∠ADC =∠BAD =α,求得1ABE n β∠=,111FED CDE ADC BAD n n n α∠=∠=∠=∠=,利用EF ∥AB ,求出1BEF ABE n β∠=∠=,即可得到1()BED n αβ∠=+. 【详解】解:(1)∵AB ∥CD , ∴∠ADC =∠BAD =80°, 又∵DE 平分∠ADC ,∴1402EDC ADC ∠=∠=︒; (2)如图,过点E 作EF ∥AB ,则EF ∥AB ∥CD ,∵AB ∥CD ,∴∠ABC =∠BCD =n °,又∵BE 平分∠ABC ,∴12ABE n ∠=︒, ∵EF ∥AB , ∴12BEF ABE n ∠=∠=︒, ∵EF ∥CD ,∴∠FED =∠EDC =40°,∴1402BED n ∠=︒+︒. (3)1()αβ+n.如图,过点E 作EF ∥AB ,则EF ∥AB ∥CD ,∵AB ∥CD ,∴∠ABC =∠BCD =β,∠ADC =∠BAD =α, ∴1ABE nβ∠=,111FED CDE ADC BAD n n n α∠=∠=∠=∠=, ∵EF ∥AB ,∴1BEF ABE n β∠=∠=, ∴1()BED nαβ∠=+. 故答案为:1()αβ+n .【点睛】此题考查平行线的性质,角平分线的性质,熟记平行线的性质并正确引出辅助线解决问题是解题的关键.22.(1)存在,见解析;(2)不一定全等;(3)全等,见解析【分析】(1)根据尺规作图的方法画出图形即可.(2)根据题(1)所得两种情况及全等三角形的判定即可求解;(3)第三种情况:如图所示,过点C 作AB 边的垂线交AB 的延长线于点M ,过点F 作DE 边的垂线交DE 的延长线于N,先证明△CMA ≌△FND ,推出AM =DN ,推出AB =DE ,再证明△ABC ≌△DEF 即可.【详解】解:(1)存在,如图所示.射线EM 上有两个点满足要求.(2)不一定全等.如题(1)所示:由于满足条件的D 有两个,故△ABC 和△DEF 不一定全等,故答案为:不一定全等;(3)△ABC 和△DEF 全等.理由如下:如图所示,过点C 作AB 边的垂线交AB 的延长线于点M ,过点F 作DE 边的垂线交DE 的延长线于N .∵ABC DEF ∠=∠,∴CBM FEN ∠=∠.∵CM AB ⊥,FN DE ⊥,∴90CMB FNE ∠=∠=︒.在△CBM 和△FEN 中,∵,,,CMB FNE CBM FEN BC EF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△CBM ≌△FEN (AAS ).∴BM EN =,∴CM FN =.在Rt △ACM 和Rt △DFN 中,∵,,AC DF CM FN =⎧⎨=⎩∴Rt △ACM ≌Rt △DFN (HL ).∴AM DN =,∴AM BM DN EN -=-,即AB DE =.又∵BC EF =,∴△ABC 和△DEF (SSS ).【点睛】本题考查全等三角形的判定和性质、解题的关键是熟练掌握全等三角形的判定方法,学会作辅助线,难度适中.23.(1)证明见解析;(2)ACB ∠为直角时,//BC DE【分析】(1)根据全等三角形的性质求出BD=AE ,AD=CE ,代入求出即可;2)根据全等三角形的性质求出∠E=∠BDA= 90︒,推出∠BDE=90︒ ,根据平行线的判定求出即可.【详解】(1)证明:∵ABC DAE △△≌,∴AE=BC ,AC=DE ,又∵AE AC CE =+,∴BC DE CE =+.(2)若//BC DE ,则BCE E ∠=∠,又∵ABC DAE △△≌,∴ACB E ∠=∠,∴ACB BCE ∠=∠,又∵180ACB BCE ∠+∠=︒,∴90ACB ∠=︒,即当ABC 满足ACB ∠为直角时,//BC DE .【点睛】本题考查全等三角形的性质和平行线的判定的应用,关键是通过三角形全等得出正确的结论.24.见解析【分析】求出∠CAD =∠EBC ,∠ACD =∠BCE ,AC =BC ,证出△BCE ≌△ACD ,求出CE =CD ,∠ECM =∠DCM ,证△ECM ≌△DCM ,推出DM =ME ,即可得出答案.【详解】∵AC 、BF 是高,∴∠BCE =∠ACD =∠AFE =90°,∵∠AEF =∠BEC ,∠CAD +∠AFE +∠AEF =180°,∠EBC +∠BCE +∠BEC =180°, ∴∠DAC =∠EBC ,∵∠ACB =90°,∠ABC =45°,∴∠BAC =45°=∠ABC ,∴BC =AC ,在△BCE 和△ACD 中BCE ACD BC ACEBC DAC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BCE ≌△ACD (ASA ),∴BE =AD .∵CM ∥AB ,∴∠MCE =∠BAC =45°,∵∠ACD =90°,∴∠MCD =45°=∠MCE ,∵△BCE ≌△ACD ,∴CE =CD ,在△CEM 和△CDM 中CE CD ECM DCM CM CM =⎧⎪∠=∠⎨⎪=⎩∴△CEM ≌△CDM (SAS ),∴ME =MD ,∴BE =AD =AM +DM =AM +ME ,即BE =AM +EM .【点睛】本题考查了全等三角形的性质和判定,平行线性质,三角形的内角和定理,垂直定义,等腰三角形的性质和判定的应用,主要考查学生综合运用定理进行推理的能力. 25.(1)∠BDE =105°;(2)见解析;(3)全等,理由见解析.【分析】(1)根据平行线的性质得出∠DEB=∠EBC=35°,再根据三角形的内角和定理即可得到结论;(2)根据三角形的外角性质得出∠EGH >∠ABC ,又根据平行线的性质得出∠ABC=∠ADE ,即可得出答案;(3)根据全等三角形判定的“SAS”定理即可得到结论.【详解】(1)解:∵DE//BC ,∠EBC =35°,∴∠DEB =∠EBC =35°,又∵∠BDE+∠DEB+∠DBE =180°,∠DBE =40°,∴∠BDE =105°;(2)证明:∵∠EGH 是△FBG 的外角,∴∠EGH >∠ABC ,又∵DE//BC ,∴∠ABC =∠ADE ,∴∠EGH >∠ADE ;(3)全等.证明:E 是AC 和FG 的中点,∴AE =CE ,FE =GE ,在△AFE 和△CEG 中,AE CE AEF CEG FE GE =⎧⎪∠=∠⎨⎪=⎩,∴△AFE ≌△CGE (SAS ).【点睛】本题考查了三角形的外角性质,平行线的性质的应用,全等三角形的判定,三角形内角和定理,能运用三角形外角性质进行推理是解此题的关键.26.16米【分析】已知AB ∥CD ,根据平行线的性质可得∠ABP=∠CDP ,再由垂直的定义可得∠CDO=90︒,可得PB ⊥AB ,根据相邻两平行线间的距离相等可得PD=PB ,即可根据ASA 定理判定△ABP ≌△CDP ,由全等三角形的性质即可得CD=AB=16米.【详解】∵AB ∥CD ,∴∠ABP=∠CDP ,∵PD ⊥CD ,∴∠CDP=90︒,∴∠ABP=90︒,即PB ⊥AB , ∵相邻两平行线间的距离相等, ∴PD=PB ,在△ABP 与△CDP 中, ABP CDP PD PBAPB CDP ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABP ≌△CDP (ASA ), ∴CD=AB=16米.【点睛】本题考察平行线的性质和全等三角形的判定和性质,综合运用各定理是解题的关键.。
天津耀华嘉诚中学数学全等三角形同步单元检测(Word版含答案)一、八年级数学轴对称三角形填空题(难)1.如图,在△ABC中,AB=10,∠B=60°,点D、E分别在AB、BC上,且BD=BE=4,将△BDE沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC内),连接AB′,则AB′的长为______.【答案】2.【解析】【分析】【详解】过点D作DF⊥B′E于点F,过点B′作B′G⊥AD于点G,∵∠B=60°,BE=BD=4,∴△BDE是等边三角形,∵△B′DE≌△BDE,∴B′F=1B′E=BE=2,DF=23,2∴GD=B′F=2,∴B′G=DF=23,∵AB=10,∴AG=10﹣6=4,∴AB′=27.考点:1轴对称;2等边三角形.2.如图,P 为∠AOB 内一定点,M ,N 分别是射线OA ,OB 上一点,当△PMN 周长最小时,∠OPM =50°,则∠AOB =___________.【答案】40°【解析】【分析】作P 关于OA ,OB 的对称点P 1,P 2.连接OP 1,OP 2.则当M ,N 是P 1P 2与OA ,OB 的交点时,△PMN 的周长最短,根据对称的性质可以证得:∠OP 1M=∠OPM=50°,OP 1=OP 2=OP ,根据等腰三角形的性质即可求解.【详解】如图:作P 关于OA ,OB 的对称点P 1,P 2.连接OP 1,OP 2.则当M ,N 是P 1P 2与OA 、OB 的交点时,△PMN 的周长最短,连接P 1O 、P 2O ,∵PP 1关于OA 对称,∴∠P 1OP=2∠MOP ,OP1=OP ,P 1M=PM ,∠OP 1M=∠OPM=50°同理,∠P 2OP=2∠NOP ,OP=OP 2,∴∠P 1OP 2=∠P 1OP+∠P 2OP=2(∠MOP+∠NOP )=2∠AOB ,OP 1=OP 2=OP , ∴△P 1OP 2是等腰三角形.∴∠OP 2N=∠OP 1M=50°,∴∠P 1OP 2=180°-2×50°=80°,∴∠AOB=40°,故答案为:40°【点睛】本题考查了对称的性质,正确作出图形,证得△P 1OP 2是等腰三角形是解题的关键.3.如图,ABC 中,ABC=45∠︒,CD AB ⊥于D ,BE 平分ABC ∠,且BE AC ⊥于E ,与CD 相交于点F ,H 是BC 边的中点,连接DH 与BE 相交于点G ,下列结论:BF=AC ①;A=67.5∠︒②;DG=DF ③;ADGE GHCE S S =四边形四边形④,其中正确的有__________(填序号).【答案】①②③【解析】【分析】只要证明△BDF≌△CDA,△BAC是等腰三角形,∠DGF=∠DFG=67.5°,即可判断①②③正确,作GM⊥BD于M,只要证明GH<DG即可判断④错误.【详解】解:∵CD⊥AB,BE⊥AC,∴∠BDC=∠ADC=∠AEB=90°,∴∠A+∠ABE=90°,∠ABE+∠DFB=90°,∴∠A=∠DFB,∵∠ABC=45°,∠BDC=90°,∴∠DCB=90°−45°=45°=∠DBC,∴BD=DC,在△BDF和△CDA中,∠BDF=∠CDA,∠A=∠DFB,BD=CD,∴△BDF≌△CDA(AAS),∴BF=AC,故①正确.∵∠ABE=∠EBC=22.5°,BE⊥AC,∴∠A=∠BCA=67.5°,故②正确,∵BE平分∠ABC,∠ABC=45°,∴∠ABE=∠CBE=22.5°,∵∠BDF=∠BHG=90°,∴∠BGH=∠BFD=67.5°,∴∠DGF=∠DFG=67.5°,∴DG=DF,故③正确.作GM⊥AB于M.如图所示:∵∠GBM=∠GBH,GH⊥BC,∴GH=GM<DG,∴S△DGB>S△GHB,∵S△ABE=S△BCE,∴S四边形ADGE<S四边形GHCE.故④错误,故答案为:①②③.【点睛】此题是三角形综合题,考查了等腰三角形的性质,直角三角形的性质,全等三角形的性质和判定,三角形的面积等知识点的综合运用,第五个问题难度比较大,添加辅助线是解题关键,属于中考选择题中的压轴题.4.如图,已知△ABC和△ADE都是正三角形,连接CE、BD、AF,BF=4,CF=7,求AF的长_________ .【答案】3【解析】【分析】过点A作AF⊥CE交于I,AG⊥BD交于J,证明CAE≅BAD,再证明CAI≅BAJ,求出°7830∠=∠=,然后求出12IF FJ AF==,,通过设FJ x=求出x,即可求出AF的长.【详解】解:过点A作AF⊥CE交于I,AG⊥BD交于J在CAE和BAD中AC AB CAE BADAE AD =⎧⎪∠=∠⎨⎪=⎩∴CAE ≅BAD∴ICA ABJ ∠=∠ ∴BFE CAB ∠=∠(8字形)∴°120CFD ∠=在CAI 和BAJ 中°90ICA ABJ CAI BJA CA BA ∠=∠⎧⎪∠=∠=⎨⎪=⎩∴CAI ≅BAJ ,AI AJ CI BJ ==∴°60CFA AFJ ∠=∠=∴°30FAI FAE ∠=∠=在RtAIF 和RtAJF 中°30FAI FAE ∠=∠=∴12IF FJ AF ==设FJ x = 7,4CF BF ==则47x x +=-32x ∴=2AF FJ =AF ∴=3【点睛】此题主要考查了通过做辅助线证明三角形全等,得出相关的边相等,学会合理添加辅助线求解是解决本题的重点.5.如图,在ABC 中,AB AC >,按以下步骤作图:分别以点B 和点C 为圆心,大于BC 一半长为半径作画弧,两弧相交于点M 和点N ,过点M N 、作直线交AB 于点D ,连接CD ,若10AB =,6AC =,则ADC 的周长为_____________________.【答案】16【解析】【分析】利用基本作图可以判定MN 垂直平分BC ,则DC=DB ,然后利用等线段代换得到ACD ∆的周长=AB+AC ,再把10AB =,6AC =代入计算即可.【详解】解:由作法得MN 垂直平分BC ,则DC=DB ,10616ACD C CD AC AD DB AD AC AB AC ∆=++=++=+=+=故答案为:16. 【点睛】本题考查了基本作图和线段垂直平分线的性质,熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)是本题的关键.6.如图,在等腰直角三角形ABC 中,90ACB ∠=︒,4AC BC ==,D 为BC 中点,E 为AC 边上一动点,连接DE ,以DE 为边并在DE 的右侧作等边DEF ∆,连接BF ,则BF 的最小值为______.【答案】3【解析】【分析】由60°联想旋转全等,转换动长为定点到定线的长,构建等边三角形BDG,利用△BDF≌△GDE,转换BF=GE,然后即可求得其最小值.【详解】以BD为边作等边三角形BDG,连接GE,如图所示:∵等边三角形BDG,等边三角形DEF∴∠BDG=∠EDF=60°,BD=GD=BG,DE=DF=EF∴∠BDG+∠GFD=∠EDF+∠GFD,即∠BDF=∠GDE∴△BDF≌△GDE(SAS)∴BF=GE当GE⊥AC时,GE有最小值,如图所示GE′,作DH⊥GE′∴BF=GE=CD+12DG=2+1=3故答案为:3.【点睛】此题主要考查等边三角形的性质以及全等三角形的判定与性质,解题关键是由60°联想旋转全等,转换动长为定点到定线的长.7.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交BC的延长线于F,若∠F =30°,DE=1,则EF的长是_____.【答案】2【解析】【分析】连接BE,根据垂直平分线的性质、直角三角形的性质,说明∠CBE=∠F,进一步说明BE =EF,,然后再根据直角三角形中,30°所对的直角边等于斜边的一半即可.【详解】解:如图:连接BE∵AB的垂直平分线DE交BC的延长线于F,∴AE=BE,∠A+∠AED=90°,∵在Rt△ABC中,∠ACB=90°,∴∠F+∠CEF=90°,∵∠AED=∠FEC,∴∠A=∠F=30°,∴∠ABE=∠A=30°,∠ABC=90°﹣∠A=60°,∴∠CBE=∠ABC﹣∠ABE=30°,∴∠CBE=∠F,∴BE=EF,在Rt△BED中,BE=2DE=2×1=2,∴EF=2.故答案为:2.【点睛】本题考查了垂直平分线的性质、直角三角形的性质,其中灵活利用垂直平分线的性质和直角三角形30°角所对的边等于斜边的一半是解答本题的关键.8.如图,∠AOB=45°,点M、点C在射线OA上,点P、点D在射线OB上,且OD=32,则CP+PM+DM的最小值是_____.34【解析】【分析】 如图,作点C 关于OB 的对称点C ′,作点D 关于OA 的对称点D ′,连接OC ′,PC ′,D ′M ,OD ′,C ′D ′,根据轴对称的性质得到OC ′=OC =2,OD ′=OD =32,CP =C ′P ,DM =D ′M ,∠C ′OD =′COD =∠COD ′=45°,于是得到CP +PM +MD =C ′+PM +D ′M ≥C ′D ′,当仅当C ′,P ,M ,D ′三点共线时,CP +PM +MD 最小为C ′D ′,作C ′T ⊥D ′O 于点T ,于是得到结论.【详解】解:如图,作点C 关于OB 的对称点C ′,作点D 关于OA 的对称点D ′,连接OC ′,PC ′,D ′M ,OD ′,C ′D ′,则OC ′=OC =2,OD ′=OD =32,CP =C ′P ,DM =D ′M ,∠C ′OD =′COD =∠COD ′=45°,∴CP +PM +MD =C ′+PM +D ′M ≥C ′D ′,当仅当C ′,P ,M ,D ′三点共线时,CP +PM +MD 最小为C ′D ′,作C ′T ⊥D ′O 于点T ,则C ′T =OT =2,∴D ′T =42,∴C ′D ′=34,∴CP +PM +DM 的最小值是34.故答案为:34.【点睛】本题考查了最短路径问题,掌握作轴对称点是解题的关键.9.如图,30AOB ∠=︒,P 是AOB ∠内一点,10PO =.若Q 、R 分别是边OA 、OB 上的动点,则PQR ∆周长的最小值为_______.【答案】10【解析】【分析】作点P关于OB的对称点P′,点P关于OA的对称点P″,连接P′P″交OB于R,交OA于Q,连接PR、PQ,如图3,利用对称的性质得到△PQR周长=P′P″,根据两点之间线段最短可判断此时△PQR周长最小,最小值为P′P″的长,再证明△P′OP″为等边三角形得到P′P″=OP′=OP=10,从而得到△PQR周长的最小值【详解】解:作点P关于OB的对称点P′,点P关于OA的对称点P″,连接P′P″交OB于R,交OA于Q,连接PR、PQ,如图3,则OP=OP′,OP=OP″,RP=RP′,QP=QP″,∴△PQR周长=PR+RQ+PQ=RP′+RQ+QP″=P′P″,∴此时△PQR周长最小,最小值为P′P″的长,∵由对称性可知OP=OP′,OP=OP″,PP′⊥OB,PP″⊥OA,∴∠1=∠2,∠3=∠4,∴∠P′OP″=∠1+∠2+∠3+∠4=2∠2+2∠3=2∠BOA=60°,∴△P′OP″为等边三角形,∴P′P″=OP′=OP=10,故答案是:10.【点睛】本题考查了几何变换综合题:熟练掌握轴对称的性质和等边三角形的性质;会利用两点之间线段最短解决最短路径问题.10.如图,∠BOC=60°,点A是BO延长线上的一点,OA=10cm,动点P从点A出发沿AB以2cm/s的速度移动,动点Q从点O出发沿OC以1cm/s的速度移动,如果点P、Q同时出发,用t(s)表示移动的时间,当t=_____s时,△POQ是等腰三角形.【答案】103或10【解析】【分析】根据△POQ是等腰三角形,分两种情况进行讨论:点P在AO上,点P在BO上,分别计算,即可得解.【详解】当PO=QO时,△POQ是等腰三角形,如图1所示当点P在AO上时,∵PO=AO-AP=10-2t,OQ=t当PO=QO时,102t t-=解得103 t=当PO=QO 时,△POQ 是等腰三角形,如图2所示当点P 在BO 上时∵PO=AP-AO=2t-10,OQ=t当PO=QO 时,210t t -=解得10t =故答案为:103或10 【点睛】本题考查等腰三角形的性质及动点问题,熟练掌握等腰三角形的性质以及分类讨论思想是解题关键.二、八年级数学轴对称三角形选择题(难)11.如图,坐标平面内一点A(2,-1),O 为原点,P 是x 轴上的一个动点,如果以点P 、O 、A 为顶点的三角形是等腰三角形,那么符合条件的动点P 的个数为( )A .2B .3C .4D .5【答案】C【解析】 以O 点为圆心,OA 为半径作圆与x 轴有两交点,这两点显然符合题意.以A 点为圆心,OA 为半径作圆与x 轴交与两点(O 点除外).以OA 中点为圆心OA 长一半为半径作圆与x 轴有一交点.共4个点符合,12.如图,ABC ,分别以AB 、AC 为边作等边三角形ABD 与等边三角形ACE ,连接BE 、CD ,BE 的延长线与CD 交于点F ,连接AF ,有以下四个结论:①BE CD =;②FA 平分EFC ∠;③FE FD =;④FE FC FA +=.其中一定正确的结论有( )A .1B .2C .3D .4【答案】C【解析】【分析】根据等边三角形的性质证出△BAE≌△DAC,可得BE=CD,从而得出①正确;过A作AM⊥BF于M,过A作AN⊥DC于N,由△BAE≌△DAC得出∠BEA=∠ACD,由等角的补角相等得出∠AEM=∠CAN,由AAS可证△AME≌△ANC,得到AM=AN,由角平分线的判定定理得到FA平分∠EFC,从而得出②正确;在FA上截取FG,使FG=FE,根据全等三角形的判定与性质得出△AGE≌△CFE,可得AG=CF,即可求得AF=CF+EF,从而得出④正确;根据CF+EF=AF,CF+DF=CD,得出CD≠AF,从而得出FE≠FD,即可得出③错误.【详解】∵△ABD和△ACE是等边三角形,∴∠BAD=∠EAC=60°,AE=AC=EC.∵∠BAE+∠DAE=60°,∠CAD+∠DAE=60°,∴∠BAE=∠DAC,在△BAE和△DAC中,∵AB ADBAE DAC AE AC=⎧⎪∠=∠⎨⎪=⎩,∴△BAE≌△DAC(SAS),∴BE=CD,①正确;过A作AM⊥BF于M,过A作AN⊥DC于N,如图1.∵△BAE≌△DAC,∴∠BEA=∠ACD,∴∠AEM=∠ACN.∵AM⊥BF,AN⊥DC,∴∠AME=∠ANC.在△AME和△ANC中,∵∠AEM=∠CAN,∠AME=∠ANC,AE=AC,∴△AME≌△ANC,∴AM=AN.∵AM⊥BF,AN⊥DC,AM=AN,FA平分∠EFC,②正确;在FA上截取FG,使FG=FE,如图2.∵∠BEA=∠ACD,∠BEA+∠AEF=180°,∴∠AEF+∠ACD=180°,∴∠EAC+∠EFC=180°.∵∠EAC=60°,∴∠EFC=120°.∵FA平分∠EFC,∴∠EFA=∠CFA=60°.∵EF=FG,∠EFA=60°,∴△EFG是等边三角形,∴EF=EG.∵∠AEG+∠CEG=60°,∠CEG+∠CEF=60°,∴∠AEG=∠CEF,在△AGE和△CFE中,∵AE ACAEG CEFEG EF=⎧⎪∠=∠⎨⎪=⎩,∴△AGE≌△CFE(SAS),∴AG=CF.∵AF=AG+FG,∴AF=CF+EF,④正确;∵CF+EF=AF,CF+DF=CD,CD≠AF,∴FE≠FD,③错误,∴正确的结论有3个.故选C.【点睛】本题考查了等边三角形的判定与性质以及全等三角形的判定与性质,正确作辅助线是解答本题的关键.13.如图,已知△ABC中,AB=AC,AD=AE,∠BAE=30°,则∠DEC等于()A .7.5°B .10°C .15°D .18°【答案】C【解析】 根据等腰三角形性质求出∠C=∠B,根据三角形的外角性质求出∠B=∠C=∠AED+α﹣30°,根据AE=AD ,可得∠AED=∠ADE=∠C+α,得出等式∠AED=∠AED+α﹣30°+α,求出α=15°,即得到∠DEC=α=15°,故选C.点睛:本题考查了等腰三角形的性质,三角形的内角和定理,三角形的外角性质等知识点的应用,主要考查学生运用定理进行推理的能力,本题有一点难度,但题型不错.14.在Rt ABC ∆中,90ACB ∠=︒,点D E 、是AB 边上两点,且CE 垂直平分,AD CD 平分,6BCE AC cm ∠=,则BD 的长为( )A .6cmB .7cmC .8cmD .9cm【答案】A【解析】【分析】 根据CE 垂直平分AD ,得AC=CD ,再根据等腰在三角形的三线合一,得ACE ECD ∠=∠,结合角平分线定义和90ACB ︒∠=,得30ACE ECD DCB ︒∠=∠=∠=,则BD CD AC ==.【详解】∵CE 垂直平分AD∴AC=CD =6cm ,ACE ECD ∠=∠∵CD 平分BCE ∠∴BCD ECD ∠=∠∴30ACE ECD DCB ︒∠=∠=∠=∴60A ︒∠=∴30B BCD ︒∠==∠∴6CD BD AC cm ===故选:A【点睛】本题考查的知识点主要是等腰三角形的性质的“三线合一”性质定理及判定“等角对等边”,熟记并能熟练运用这些定理是解题的关键.15.如图,ABC ∆中,AB 的垂直平分线DG 交ACB ∠的平分线CD 于点D ,过D 作DE AC ⊥于点E ,若10AC =,4CB =,则AE =( )A .7B .6C .3D .2【答案】C【解析】【分析】 连接BD 、AD,过点D 作DF ⊥CB 于点F ,利用角平分线及线段垂直平分线的性质可求出BD=AD ,DE=DF ,依据HL 定理可判断出Rt △AED ≌Rt △BFD ,根据全等三角形的性质即可得出BF=AE ,再运用AAS 定理可证得Rt △CED ≌Rt △CFD ,证出CE=CF ,设AE 的长度为x ,根据CE=CF 列方程求解即可.【详解】如图, 连接BD 、AD,过点D 作DF⊥CB 于点F.∵AB 的垂直平分线DG 交ACB ∠的平分线CD 于点D ,DE⊥AC,DF⊥BC,∴BD=AD,DE=DF .∴Rt△AED≌Rt△BFD.∴BF=AE.又∵∠ECD=∠FCD,∠CED=∠CFD,CA=CA ,∴Rt△CED≌Rt△CFD,∴CE=CF,设AE 的长度为x ,则CE=10-x ,CF=CB +BF= CB +AE= 4+x,∴可列方程10-x=4+x ,x=3,∴AE=3;故选C.【点睛】本题涉及到线段垂直平分线及角平分线的性质,直角三角形全等的判定定理及性质,解答此题的关键是作出辅助线,构造出直角三角形解答.16.如图,等腰ABC ∆中,AB AC =,120BAC ∠=,AD BC ⊥于点D ,点P 是BA 延长线上一点,点O 是线段AD 上一点,OP OC =.下列结论:①30APO DCO ∠+∠=;②APO DCO ∠=∠;③OPC ∆是等边三角形;④AB AO AP =+.其中正确结论的个数是( )A .1B .2C .3D .4【答案】D【解析】【分析】 ①②连接OB ,根据垂直平分线性质即可求得OB=OC=OP ,即可解题;③根据周角等于360°和三角形内角和为180°即可求得∠POC=2∠ABD=60°,即可解题;④AB 上找到Q 点使得AQ=OA ,易证△BQO≌△PAO,可得PA=BQ ,即可解题.【详解】连接OB ,∵AB AC =,AD ⊥BC ,∴AD 是BC 垂直平分线,∴OB OC OP ==,∴APO ABO ∠=∠,DBO DCO ∠=∠,∵AB=AC ,∠BAC =120∘∴30ABC ACB ∠=∠=︒∴30ABO DBO ∠+∠=︒,∴30APO DCO ∠+∠=.故①②正确;∵OBP ∆中,180BOP OPB OBP ∠=︒-∠-∠,BOC ∆中,180BOC OBC OCB ∠=︒-∠-∠,∴360POC BOP BOC OPB OBP OBC OCB ∠=︒-∠-∠=∠+∠+∠+∠,∵OPB OBP∠=∠,OBC OCB∠=∠,∴260POC ABD∠=∠=︒,∵PO OC,∴OPC∆是等边三角形,故③正确;在AB上找到Q点使得AQ=OA,则AOQ∆为等边三角形,则120BQO PAO∠=∠=︒,在BQO∆和PAO∆中,BQO PAOQBO APOOB OP∠∠⎧⎪∠∠⎨⎪⎩===∴BQO PAO AAS∆∆≌(),∴PA BQ=,∵AB BQ AQ=+,∴AB AO AP=+,故④正确.故选:D.【点睛】本题主要考查全等三角形的判定与性质、线段垂直平分线的性质,本题中求证BQO PAO∆∆≌是解题的关键.17.如图,△ABC是等边三角形,AQ=PQ,PR⊥AB于点R,PS⊥AC于点S,PR=PS,则下列结论:①AP⊥BC;②AS=AR;③QP∥AR;④△BRP≌△QSP.正确的有( )A.1个B.2个C.3个D.4个【答案】D【解析】【分析】根据到角的两边的距离相等的点在角的平分线上可得AP 平分∠BAC ,根据等腰三角形“三线合一”的性质判断出①正确;根据HL 证明Rt △APR ≌Rt △APS ,即可判断②正确;根据等边对等角的性质可得∠APQ =∠PAQ ,根据三角形外角的性质得到然后得到∠PQC =2∠PAC =60°=∠BAC ,然后根据同位角相等两直线平行可得QP ∥AB ,从而判断出③正确,④由③易证△QPC 是等边三角形,得到PQ =PC ,等量代换得到BP =PQ ,用HL 证明Rt △BRP ≌Rt △QSP ,即可得到④正确.【详解】∵△ABC 是等边三角形,PR ⊥AB ,PS ⊥AC ,且PR =PS ,∴P 在∠A 的平分线上.∵AB =AC ,∴AP ⊥BC ,故①正确;∵PA =PA ,PR =PS ,∴Rt △APR ≌Rt △APS ,∴AS =AR ,故②正确;∵AQ =PQ ,∴∠APQ =∠PAQ ,∴∠PQC =2∠PAC =60°=∠BAC ,∴PQ ∥AR ,故③正确; 由③得:△PQC 是等边三角形,∴△PQS ≌△PCS ,∴PQ =PC .又∵AB =AC ,AP ⊥BC ,∴BP =PC ,∴BP =PQ .∵PR =PS ,∴Rt △BRP ≌Rt △QSP ,故④也正确.∵①②③④都正确.故选D .【点睛】本题考查了等腰三角形的性质、全等三角形的判定与性质以及等边三角形的判定与性质,准确识图并熟练掌握全等三角形的判定方法与性质是解题的关键.18.如图,在ABC △中,2B C ∠=∠,AH BC ⊥,AE 平分BAC ∠,M 是 BC 中点,则下列结论正确的个数为( )(1)AB BE AC += (2)2AB BH BC += (3)2AB HM = (4)CH EH AC +=A .1B .2C .3D .4【答案】D【解析】【分析】(1)延长AB 取BD=BE ,连接DE ,由∠D=∠BED ,2ABC C ∠=∠,得到∠D=∠C ,在△ADE 和△ACE 中,利用AAS 证明ADE ACE ≌,可得AC=AD=AB+BE ;(2)在HC 上截取HF=BH,连接AF ,可知△ABF 为等腰三角形,再根据2ABC AFB C ∠=∠=∠,可得出△AFC 为等腰三角形,所以FC+BH+HF=AB+2BH=BC ; (3)HM=BM-BH ,所以2HM=2BM-2BH=BC-2BH ,再结合(2)中结论,可得2AB HM=;(4)结合(1)(2)的结论,BC2BH BE BC BH BE BH CH EHAC AB BE=+=-+=-+-=+.【详解】解:①延长AB取BD=BE,连接DE,∴∠D=∠BED,∠ABC=∠D+∠BED=2∠D,∵2ABC C∠=∠,∴∠D=∠C,在△ADE和△ACE中,DAE CAED CAE AE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ADE ACE≌∴AC=AD=AB+BE,故(1)正确;②在HC上截取HF=BH,连接AF,∵AH BC⊥,∴△ABF为等腰三角形,∴AB=AF,∠ABF=∠AFB,∵2ABC C∠=∠,∴∠AFB=2∠C=∠C+∠CAF,∴FC=AF=AB,∴FC+BH+HF=AB+2BH=BC,故(2)正确;③∵HM=BM-BH,∴2HM=2BM-2BH=BC-2BH,由②可知BC-2BH=AB,∴2AB HM=④根据①②结论,可得:BC2BH BE BC BH BE BH CH EHAC AB BE=+=-+=-+-=+,故(4)正确;故选D.【点睛】本题主要考查了等腰三角形的判定和性质、三角形的外角以及全等三角形的判定和性质,结合实际问题作出合适辅助线是解题关键.19.如图所示,在四边ABCD中,∠BAD=120°,∠B=∠D=90°,若在BC和CD上分别找一点M,使得△AMN的周长最小,则此时∠AMN+∠ANM的度数为()A.110°B.120°C.140°D.150°【答案】B【解析】【分析】根据要使△AMN的周长最小,即利用点的对称,让三角形的三边在同一直线上,作出A关于BC和CD的对称点A′,A″,即可得出∠AA′M+∠A″=60°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″)即可得出答案.【详解】作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″即为△AMN的周长最小值.∵∠DAB=120°,∴∠AA′M+∠A″=180°-120°=60°,∵∠MA′A=∠MAA′,∠NAD=∠A″,且∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×60°=120°,故选B.【点睛】此题主要考查了平面内最短路线问题求法,以及三角形的外角的性质和垂直平分线的性质等知识的综合应用,根据轴对称的性质,得出M,N的位置是解题的关键.20.如图,将△ABC沿DE、EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠CDO+∠CFO=108°,则∠C的度数为()A.40°B.41°C.32°D.36°【答案】D【解析】分析:如图,连接AO、BO.由题意EA=EB=EO,推出∠AOB=90°,∠OAB+∠OBA=90°,由DO=DA,FO=FB,推出∠DAO=∠DOA,∠FOB=∠FBO,推出∠CDO=2∠DAO,∠CFO=2∠FBO,由∠CDO+∠CFO=108°,推出2∠DAO+2∠FBO=98°,推出∠DAO+∠FBO=49°,由此即可解决问题.详解:如图,连接AO、BO.由题意得:EA=EB=EO,∴∠AOB=90°,∠OAB+∠OBA=90°.∵DO=DA,FO=FB,∴∠DAO=∠DOA,∠FOB=∠FBO,∴∠CDO=2∠DAO,∠CFO=2∠FBO.∵∠CDO+∠CFO=108°,∴2∠DAO+2∠FBO=108°,∴∠DAO+∠FBO=54°,∴∠CAB+∠CBA=∠DAO+∠OAB+∠OBA+∠FBO=144°,∴∠C=180°﹣(∠CAB+∠CBA)=180°﹣144°=36°.故选D.点睛:本题考查了三角形内角和定理、直角三角形的判定和性质、等腰三角形的性质等知识,解题的关键是灵活运用这些知识解决问题,学会把条件转化的思想,属于中考常考题型.。