1.3.2杨辉三角与二项式系数的性质
- 格式:pptx
- 大小:6.57 MB
- 文档页数:22
1.3.2 “杨辉三角”与二项式系数的性质1.杨辉三角的特点(1)在同一行中每行两端都是1,与这两个1等距离的项的系数相等.(2)在相邻的两行中,除1以外的每一个数都等于它“肩上”两个数的和,即C rn +1=C r -1n +C rn2.二项式系数的性质题型一、二项式系数与二项展开式中项的系数的区别例1、已知(x 23+3x 2)n 的展开式中,各项系数和与它的二项式系数和的比为32. (1)求展开式中二项式系数最大的项;(2)求展开式中系数最大的项. [解析] 令x =1得,展开式中各项系数和为(1+3)n =22n . 又展开式中二项式系数和为2n ,∴22n2n=32,n =5. (1)∵n =5,展开式共6项,∴二项式系数最大的项为第三、四两项,∴T 3=C 25(x 23 )3(3x 2)2=90x 6,T 4=C 35(x 23 )2(3x 2)3=270x 223 . (2)设展开式中第k +1项的系数最大, 则由T k +1=C k 5(x 23 )5-k (3x 2)k =3k C k 5x10+4k3, 得⎩⎨⎧3k C k 5≥3k -1C k -15,3k C k5≥3k +1C k +15,∴72≤k ≤92,∴k =4, 即展开式中系数最大的项为T 5=C 45(x 23 )(3x 2)4=405x 263 .例2、(1)若nx x ⎪⎭⎫ ⎝⎛+421展开式中前三项系数成等差数列.则展开式中系数最大的项为________.(2)在(1+2x )n 的展开式中,末三项的二项式系数和为56,则展开式中系数最大的项为________. [答案] (1)7·x 35 和7·x 74(2)15360x 7 题型二、求展开式中各项系数之和例3、已知(1-2x )7=a 0+a 1x +a 2x 2+…+a 7x 7.求:(1)a 1+a 2+…+a 7;(2)a 1+a 3+a 5+a 7;(3)a 0+a 2+a 4+a 6;(4)|a 0|+|a 1|+|a 2|+…+|a 7|. [解析] 令x =1,则a 0+a 1+a 2+a 3+a 4+a 5+a 6+a 7=-1① 令x =-1,则a 0-a 1+a 2-a 3+a 4-a 5+a 6-a 7=37② (1)∵a 0=C 07=1,∴a 1+a 2+a 3+…+a 7=-2. (2)由(①-②)÷2,得a 1+a 3+a 5+a 7-1-372=-1 094.(3)由(①+②)÷2,得a 0+a 2+a 4+a 6-1+372=1 093.(4)方法一:(1-2x )7的展开式中,a 0,a 2,a 4,a 6大于零,而a 1,a 3,a 5,a 7小于零, ∴|a 0|+|a 1|+|a 2|+…+|a 7|=(a 0+a 2+a 4+a 6)-(a 1+a 3+a 5+a 7) =1 093+1 094=2 187.方法二:∵|a 0|+|a 1|+|a 2|+…+|a 7|是(1+2x )7展开式中各项的系数和. ∴|a 0|+|a 1|+|a 2|+…+|a 7|=37=2 187.例4(1)(x +a x )·(2x -1x)5的展开式中各项系数的和为2,则该展开式中常数项为( )A .-40B .-20C .20D .40(2)若(2x +3)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则(a 0+a 2+a 4)2-(a 1+a 3)2的值为________.[解析] (1)令x =1得,(1+a )·(2-1)5=2,∴a =1,(2x -1x )5展开式的通项T r +1=C r 5(2x )5-r ·(-1x)r =(-1)r ·25-r C r 5x5-2r. r =0、1、2、3、4、5.令5-2r =-1得r =3,令5-2r =1得,r =2.∴展开式的常数项为:(-1)3·22C 35+(-1)2·23C 25=40. (2)对于(2x +3)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4, 令x =1得(2+3)4=a 0+a 1+a 2+a 3+a 4, 令x =-1得(3-2)4=a 0-a 1+a 2-a 3+a 4, 两式相乘得1=(a 0+a 2+a 4)2-(a 1+a 3)2, 故答案为1.题型三、与杨辉三角有关的问题例5、如图,在“杨辉三角”中,斜线AB 的上方,从1开始箭头所指的数组成一个锯齿形数列:1,2,3,3,6,4,10,5,…,记其前n 项和为S n ,求S 19的值.[解析] 由图知,数列的首项是C 22,第2项是C 12,第3项是C 23,第4项是C 13,…,第18项是C 110,第19项是C 211,∴S 19=C 22+C 12+C 23+C 13+…+C 210+C 110+C 211 =(C 12+C 13+C 14+…+C 110)+(C 22+C 23+C 24+…+C 211) =(2+3+4+…+10)+(C 33+C 23+…+C 211)=(2+10)×92+C 312 =54+12×11×101×2×3=274.例6、如图所示,满足:①第n 行首尾两数均为n ;②表中的递推关系类似杨辉三角,将第n (n ≥2)行的第m 个数记作a (n ,m ),则a (100,2)=________.1 2 2 3 4 3 4 7 7 4 5 11 14 11 5 6 16 25 25 16 6…[解析] 由a (n ,m )的定义知,a (100,2)表示表中第100行第2个数,注意观察可以发现,从第三行开始,每一行的第二个数都等于它的上一行肩上两个数字的和,故a (100,2)=a (99,1)+a (99,2)=a (99,1)+a (98,1)+a (98,2) =a (99,1)+a (98,1)+a (97,1)+a (97,2)=…… =a (99,1)+a (98,1)+a (97,1)+…+a (2,1)+a (2,2) =(99+98+97+…+2)+2 =98×(99+2)2+2=4951. 题型四、求系数最大的项例7、已知(3x +x )2n 的展开式的二项式系数的和比(3x -1)n 的展开式的二项式系数的和大992.求(2x -1x )2n的展开式中,(1)二项式系数最大的项;(2)系数的绝对值最大的项.[解析] 由题意22n -2n =992,解得n =5.(1)(2x -1x )10的展开式中第6项的二项式系数最大,即T 6=T 5+1=C 510·(2x )5·(-1x )5=-8 064. (2)设第r +1项的系数的绝对值最大, 则T r +1=C r 10·(2x )10-r ·(-1x )r=(-1)r ·C r 10·210-r ·x 10-2r,∴⎩⎨⎧C r 10·210-r ≥C r -110·210-r +1,C r 10·210-r ≥C r +110·210-r -1. ∴⎩⎨⎧C r 10≥2C r -110,2C r 10≥C r +110.即⎩⎨⎧11-r ≥2r ,2(r +1)≥10-r . 解得83≤r ≤113.∵0≤r ≤10,且r ∈N ,∴r =3.故系数的绝对值最大的项是第4项,即T 4=-15360x 4. 例8、已知(1+2x )n 的展开式所有的二项式系数之和为128. (1)求展开式中二项式系数最大的项;(2)求展开式中的系数最大项.[解析] (1)由题意知2n =128,所以n =7.在二项式系数C 07,C 17,C 27,…,C 77中,最大的是C 37与C 47,故二项式系数最大项是第4项与第5项,即T 4=C 37(2x )3=280x 3与T 5=C 47(2x )4=560x 4.(2)设第r +1项的系数最大,则由⎩⎨⎧T r +1≥T r ,T r +1≥T r +2⇒⎩⎨⎧ C r 72r ≥C r -172r -1,C r 72r ≥C r +172r +1⇒⎩⎨⎧3r ≤16,3r ≥13,由于r 是整数,故r =5,所以系数最大的是第6项,即T 6=C 57(2x )5=672x 5. 例9、已知(2x -1)n 的展开式中,奇次项系数的和比偶次项系数的和小316,求C 2n +C 4n +C 6n +…+C n n 的值.[正解] 设f (x )=(2x -1)n =a 0+a 1x +…+a n x n ,且奇次方项系数和为A ,偶次方项系数和为B ,则依题意可得,A =a 1+a 3+a 5+…,B =a 0+a 2+a 4+…,且B -A =316,令x =-1得,f (-1)=(-3)n =a 0-a 1+a 2-a 3+…+(-1)n a n =(a 0+a 2+…)-(a 1+a 3+…) =B -A =316=(-3)16, ∴n =16.从而C 0n +C 2n +C 4n +…+C n n =C 016+C 216+C 416+…+C 1616=216-1=215. ∴C 2n +C 4n +…+C n n =215-1.课后作业一、选择题 1.若(3x -1x)n的展开式中各项系数之和为256,则展开式的常数项是( ) A .第3项 B .第4项 C .第5项 D .第6项[答案] C[解析] 令x =1,得出(3x -1x)n的展开式中各项系数和为(3-1)n =256,解得n =8; ∴(3x -1x)8的展开式通项公式为: T r +1=C r 8·(3x )8-r ·(-1x)r =(-1)r ·38-r ·C r 8·x 4-r , 令4-r =0,解得r =4.∴展开式的常数项是T r +1=T 5,即第5项.故选C .2.若9n +C 1n +1·9n -1+…+C n -1n +1·9+C nn +1是11的倍数,则自然数n 为( )A .奇数B .偶数C .3的倍数D .被3除余1的数[答案] A[解析] 9n +C 1n +1·9n -1+…+C n -1n +1·9+C n n +1=19(9n +1+C 1n +19n +…+C n -1n +192+C n n +19+C n +1n +1)-19 =19(9+1)n +1-19=19(10n +1-1)是11的倍数, ∴n +1为偶数,∴n 为奇数.3.若a 为正实数,且(ax -1x)2016的展开式中各项系数的和为1,则该展开式第2016项为( )A .1x 2016B .-1x 2016C .4032x 2014D .-4032x2014[答案] D[解析]由条件知,(a -1)2016=1,∴a -1=±1, ∵a 为正实数,∴a =2. ∴展开式的第2016项为: T 2016=C 20152016·(2x )·(-1x )2015 =-2C 12016·x -2014=-4032x-2014,故选D .4.若二项式(2x +a x )7的展开式中1x3的系数是84,则实数a =( )A .2B .54 C .1 D .24[答案] C[解析] 二项式(2x +a x )7的通项公式为T r +1=C r 7(2x )7-r (a x )r =C r 727-r a r x 7-2r,令7-2r =-3,得r =5.故展开式中1x3的系数是C 5722a 5=84,解得a =1. 5.已知(x -ax )8展开式中常数项为1120,其中实数a 是常数,则展开式中各项系数的和是________.[答案] 1或38[解析] T r +1=C r 8x 8-r(-a x )r =(-a )r ·C r 8·x 8-2r,令8-2r =0得r =4,由条件知,a 4C 48=1120,∴a =±2, 令x =1得展开式各项系数的和为1或38.6.在二项式(x +3x )n 的展开式中,各项系数之和为A ,各项二项式系数之和为B ,且A +B=72,则n =________.[答案] 3[解析] 由题意可知,B =2n ,A =4n ,由A +B =72,得4n +2n =72,∴2n =8,∴n =3. 7.设(1-2x )2017=a 0+a 1x +a 2x 2+…+a 2017x 2017(x ∈R ).(1)求a 0+a 1+a 2+…+a 2017的值. (2)求a 1+a 3+a 5+…+a 2017的值. (3)求|a 0|+|a 1|+|a 2|+…+|a 2017|的值. [解析] (1)令x =1,得:a 0+a 1+a 2+…+a 2017=(-1)2017=-1①(2)令x =-1,得:a 0-a 1+a 2-…-a 2017=32017② ①-②得:2(a 1+a 3+…+a 2015+a 2017)=-1-32017, ∴a 1+a 3+a 5+…+a 2017=-1+320172.(3)∵T r +1=C r 2017·12017-r ·(-2x )r =(-1)r ·C r 2017·(2x )r , ∴a 2k -1<0(k ∈N *),a 2k >0(k ∈N *). ∴|a 0|+|a 1|+|a 2|+|a 3|+…+|a 2017| =a 0-a 1+a 2-a 3+…+a 2016-a 2017 =320178.若n 为正奇数,则7n +C 1n ·7n -1+C 2n ·7n -2+…+C n -1n ·7被9除所得的余数是( ) A .0 B .2 C .7 D .8[答案] C[解析] 原式=(7+1)n -C n n =8n -1=(9-1)n -1=9n -C 1n ·9n -1+C 2n ·9n -2-…+C n -1n ·9(-1)n -1+(-1)n -1,n 为正奇数,(-1)n -1=-2=-9+7,则余数为7.9.设(3x -1)8=a 8x 8+a 7x 7+…+a 1x +a 0,则(1)a 8+a 7+…+a 1=________; (2)a 8+a 6+a 4+a 2+a 0=________. [答案] (1)255 (2)32896 [解析] 令x =0,得a 0=1. (1)令x =1得(3-1)8=a 8+a 7+…+a 1+a 0,①∴a 8+a 7+…+a 2+a 1=28-a 0=256-1=255. (2)令x =-1得(-3-1)8=a 8-a 7+a 6-…-a 1+a 0.② ①+②得28+48=2(a 8+a 6+a 4+a 2+a 0), ∴a 8+a 6+a 4+a 2+a 0=12(28+48)=32 896.10.在(2x -3y )10的展开式中,求: (1)二项式系数的和; (2)各项系数的和;(3)x 的奇次项系数和与x 的偶次项系数和.[解析] 设(2x -3y )10=a 0x 10+a 1x 9y +a 2x 8y 2+…+a 10y 10,(*) 由于(*)是恒等式,故可用“赋值法”求出相关的系数和.(1)二项式系数和为C 010+C 110+…+C 1010=210.(2)令x =y =1,各项系数和为(2-3)10=(-1)10=1. (3)x 的奇次项系数和为a 1+a 3+a 5+…+a 9=1-5102;x 的偶次项系数和为a 0+a 2+a 4+…+a 10=1+5102.11.在二项式(x +12x)n的展开式中,前三项系数成等差数列.(1)求展开式中的常数项; (2)求展开式中系数最大的项.[解析] (1)二项式(x +12x )n 的展开式中,前三项系数分别为1,n 2,n (n -1)8,再根据前三项系数成等差数列,可得n =1+n (n -1)8,求得n =8或n =1(舍去).故二项式(x +12x)8的展开式的通项公式为T r +1=C r 8·2-r ·x 4-r . 令4-r =0,求得r =4,可得展开式的常数项为T 5=C 48·(12)4=358. (2)设第r +1项的系数最大,则由⎩⎨⎧C r 8·(12)r ≥C r +18·(12)r +1C r 8·(12)r≥C r -18·(12)r -1,求得2≤r ≤3,因为r ∈Z ,所以r =2或r =3,故第三项和第四项的系数最大,再利用通项公式可得系数最大的项为T 3=7x 2,T 4=7x .。
“杨辉三角与二项式系数的性质”说课一、教材分析:二项式系数性质是《二项式定理》的重要内容之一,教学应通过揭示二项式定理是代数中乘法公式的推广,了解二项式定理的推广过程,理解从特殊到一般的思维方法,培养学生的观察归纳能力、抽象思维能力和逻辑思维能力。
结合二项式定理介绍“杨辉三角”,对学生进行爱国主义教育,激励学生的民族自豪感。
二项式定理是组合知识与多项式知识的结合,教学时应特别注意让学生掌握二项展开式的通项公式。
二项展开式的性质有比较广泛的应用,尤其要注意赋值法在证明组和数等式时的应用。
发现从杨辉三角去探索二项式系数性质有助于学生掌握这部分知识,提高其数学能力。
二项展开式的性质运用涉及项、项数、系数、二项式系数等容易混淆的一些概念,还由于a,b 的变化使得计算比较复杂,教学时要抓住通项公式,并结合具体问题加以分析、比较,避免产生误解。
二、教学过程: 复习回顾:[引入]计算(a+b)n 展开式的二项式系数并填入下表:师:通过计算填表,你发现了什么?大家思考一下如何迅速准确地写出二项式系数?生:写出二项展开式的系数运用计算器,或者组和数公式。
每一行的系数具有对称性。
师:除此以外还有什么规律呢?上表写成如下形式:能借助上面的表示形式发现一些新的规律吗? [稍让学生思考]师:(首先从横向观察,启发学生发现规律1,纠正表达错误) 规律1:首末两项系数为1,与首末两项等距离的系数相等。
(再从上、下两行系数观察,画出斜线寻找规律2)规律2:除首末两项系数外,每一个数都等于它肩上两个数和。
师:再提问()7b a +=7652433425677213535217b ab b a b a b a b a b a a +++++++[由此类比、归纳提问学生,并一同写出()7a b +二项式系数(1,7,21,35,35,21,7,1)] 师:[归纳小结]启用观察、类比、归纳的方法我们得到二项式系数的两个规律,可见应用观察、分析、类比、归纳的方法是我们获得新知识的重要途径。
第一章 1.3 1.3.2【基础练习】1.在(1+x )6(1+y )4的展开式中,记x m y n 项的系数为f (m ,n ),则f (3,0)+f (2,1)+f (1,2)+f (0,3)=( )A .45B .60C .120D .210【答案】C2.(2018年宁波模拟)若(1+mx )6=a 0+a 1x +a 2x 2+…+a 6x 6,且a 1+a 2+…+a 6=63,则实数m 的值为( )A .1或3B .-3C .1D .1或-3【答案】D3.设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m+1展开式的二项式系数的最大值为b .若13a =7b ,则m =( )A .5B .6C .7D .8【答案】B【解析】(x +y )2m 展开式中二项式系数的最大值为C m 2m ,即a =C m 2m .同理b =C m 2m +1,∴13C m 2m=7C m 2m +1,即13·(2m )!m !m !=7·(2m +1)!m !(m +1)!,∴7(2m +1)m +1=13,解得m =6.4.设(x 2+1)(2x +1)9=a 0+a 1(x +2)+a 2(x +2)2+…+a 11(x +2)11,则a 0+a 1+a 2+…+a 11等于( )A .-2B .-1C .1D .2【答案】A【解析】令x =-1,得[(-1)2+1]×[2×(-1)+1]9=a 0+a 1(2-1)+a 2(2-1)2+…+a 11(2-1)11,∴a 0+a 1+a 2+…+a 11=-2.故选A.5.(2019年六安期末)在(1+x)2+(1+x)3+…+(1+x)8的展开式中,含x 2项的系数是________.(结果用数值表示)【答案】84 【解析】展开式中,含x 2项的系数是C 22+C 32+C 42+C 52+C 62+C 72+C 82=C 33+C 32+C 42+C 52+C 62+C 72+C 82=C 93=84.6.如图是一个类似杨辉三角的递推式,则第n 行的首尾两个数均为________.【答案】2n -17.(1-x )5(3+2x )9=a 0(x +1)14+a 1(x +1)13+…+a 13(x +1)+a 14,求: (1)a 0+a 1+…+a 14的值; (2)a 1+a 3+…+a 13的值.【解析】(1)令x =0,得a 0+a 1+…+a 14=39.(2)设A =a 0+a 2+…+a 14,B =a 1+a 3+…+a 13,则有A +B =39.令x =-2,有A -B =-35,联立方程组,解得a 1+a 3+…+a 13=39+352.8.在(3x -2y )20的展开式中,求: (1)二项式系数最大的项; (2)系数绝对值最大的项; (3)系数最大的项.【解析】(1)二项式系数最大的项是第11项, T 11=C 1020·310·(-2)10·x 10y 10=C 1020·610·x 10y 10. (2)设系数绝对值最大的项是第r +1项,于是⎩⎪⎨⎪⎧C r 20·320-r ·2r ≥C r +120·319-r ·2r +1,C r 20·320-r ·2r ≥C r -120·321-r ·2r -1.化简,得⎩⎪⎨⎪⎧3(r +1)≥2(20-r ),2(21-r )≥3r .解得725≤r ≤825.所以r =8,即T 9=C 820·312·28·x 12y 8是系数绝对值最大的项. (3)由于第9项系数绝对值最大且为正,所以第9项系数最大. T 9=C 820·312·28·x 12y 8. 【能力提升】A.-80B.-40C.40D.80【答案】D【解析】令x=1,可得展开式中各项系数的和为(1+a)(2-1)5=2,解得a=1,则(1+a x )(2x-1x )5=(2x-1x )5+1x(2x-1x )5.其中,(2x-1x )5的展开式的通项为T r+1=C 5r (2x)5-r(-1x )r =(-1)r 25-r C 5r x 5-2r ,其中不含常数项,令r=2得T 3=80x ,所以该展开式中常数项为80.故选D.10.若(x +1)5=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a 0,则(a 5+a 3+a 1)2-(a 4+a 2+a 0)2的值等于( )A .0B .-32C .32D .-1【答案】A【解析】令x =1得到25=a 5+a 4+a 3+a 2+a 1+a 0, 令x =-1得到0=-a 5+a 4-a 3+a 2-a 1+a 0,所以(a 5+a 3+a 1)2-(a 4+a 2+a 0)2=(a 5+a 4+a 3+a 2+a 1+a 0)(a 5-a 4+a 3-a 2+a 1-a 0)=0. 11.(2015年上海)在⎝⎛⎭⎫1+x +1x 2 01510的展开式中,x 2项的系数为________.(结果用数值表示)【答案】45【解析】⎝⎛⎭⎫1+x +1x 2 01510=⎣⎡⎦⎤(1+x )+1x 2 01510,其二项展开式的通项公式为T r +1=C r 10(1+x )10-r x -2 015r .当r >0时不合题意,故r =0,问题转化为求(1+x )10的展开式中x 2的系数,其二项展开式的通项公式为T k +1=C k 10x k ,令k =2,则x 2项的系数为C 210=45.12.(2019年江苏)设(1+x )n =a 0+a 1x +a 2x 2+…+a n x n ,n ≥4,n ∈N *.已知a 32=2a 2a 4. (1)求n 的值;(2)设(1+3)n =a +b 3,其中a ,b ∈N *,求a 2-3b 2的值. 【解析】(1)由(1+x )n =C n 0+C n 1x +C n 2x 2+…+C n n x n ,n ≥4,可得a 2=C n 2=12n (n -1),a 3=C n 3=16n (n -1)(n -2),a 4=C n 4=124n (n -1)(n -2)(n -3).由a 32=2a 2a 4,可得[16n (n -1)(n -2)]2=12n (n -1)·124n (n -1)(n -2)(n -3),化简得2(n -2)=3(n -3),解得n =5.(2)方法一:(1+3)5=C 50+C 513+C 52(3)2+C 53(3)3+C 54(3)4+C 55(3)5 =1+53+30+303+45+9 3 =76+443,又(1+3)n =a +b 3,其中a ,b ∈N *, 所以a =76,b =44. 所以a 2-3b 2=762-3×442=-32. 方法二:(1+3)5=a 0+a 13+a 2(3)2+a 3(3)3+a 4(3)4+a 5(3)5=a +b 3,则(1-3)5=a 0+a 1(-3)+a 2(-3)2+a 3(-3)3+a 4(-3)4+a 5(-3)5=a -b 3, 可得(a +b 3)(a -b 3)=(1+3)5(1-3)5, 即a 2-3b 2=(1-3)5=-32.。
1.3.2 “杨辉三角”与二项式系数的性质
【学习目标】
1.结合“杨辉三角”体会二项式系数的性质. 2.会求二项展开式中二项式系数最大的项. 3. 会对n
b a )(+中的b a ,赋值解决和的问题.
【复习】
1. 二项式定理:
2. 二项展开式的通项: 公式中的r n
C 叫做 【探究活动与知识点梳理】
(三)、二项式系数的性质:
①性质1: ,即
直线 将函数r n
C r f =)( ,},,2,1,0{n r ∈的图象分成对称的两部分,它是图象的对称轴. ②性质2:
当 时,二项式系数是逐渐增大的;
当 时,二项式系数是逐渐减小的;
当n 是偶数时,第 项的二项式系数最大;
当n 是奇数时,第 项的二项式系数最大.
③性质3: , 即
④ ,
即
【例题及练习】
例1. 画出函数r
C r f 6)(= ,}6,543,2,1,0{,,r ∈的图象.
例2. 试证明:在n
b a )(+的展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和.
练习:
1. 当n 为偶数时,n
b a )(+的二项式系数的最大值是
当n 为奇数时,n
b a )(+的二项式系数的最大值是
2. =+++1111311111C C C
3. =+++++++++++++1
1
221101210n n n n n n
n
n n n C C C C C C C C
4. =++++n n n n n C C C C 420。
高中数学杨辉三角综合测试题(含答案)选修2-3 1.3.2 杨辉三角与二项式系数的性质一、选择题1.1+(1+x)+(1+x)2+…+(1+x)n的展开式的各项系数之和为()A.2n-1 B.2n-1C.2n+1-1 D.2n[答案] C[解析] 解法一:令x=1得,1+2+22+ (2)=1(2n+1-1)2-1=2n+1-1.解法二:令n=1,知各项系数和为3,排除A、B、D,选C. 2.(x-y)7的展开式中,系数绝对值最大的是()A.第4项 B.第4、5两项C.第5项 D.第3、4两项[答案] B[解析] (x-y)n的展开式,当n为偶数时,展开式共有n +1项,中间一项的二项式系数最大;当n为奇数时,展开式有n+1项,中间两项的二项式系数最大,而(x-y)7的展开式中,系数绝对值最大的是中间两项,即第4、5两项.3.假设x3+1x2n展开式中的第6项的系数最大,那么不含x的项等于()A.210 B.120C.461 D.416[答案] A[解析] 由得,第6项应为中间项,那么n=10.Tr+1=Cr10(x3)10-r1x2r=Cr10x30-5r.令30-5r=0,得r=6.T7=C610=210.4.(2022安徽6)设(1+x)8=a0+a1x+…+a8x8,那么a0,a1,…,a8中奇数的个数为()A.2 B.3C.4 D.5[答案] A[解析] ∵a0=a8=C08=1,a1=a7=C18=8,a2=a6=C28=28,a3=a5=C38=56,a4=C48=70,奇数的个数是2,应选A.5.设n为自然数,那么C0n2n-C1n2n-1+…+(-1)kCkn2n -k+…+(-1)nCnn=()A.2n B.0C.-1 D.1[答案] D[解析] 原式=(2-1)n=1,应选D.6.设A=37+C2735+C4733+C673,B=C1736+C3734+C5732+1,那么A-B=()A.128 B.129C.47 D.0[答案] A[解析] A-B=37-C1736+C2735-C3734+…-1=(3-1)7=128.7.x2+2x8的展开式中x4项的系数是()A.16 B.70C.560 D.1120[答案] D[解析] 考察二项式定理的展开式.设第r+1项含有x4,那么Tr+1=Cr8(x2)8-r(2x-1)r =Cr82rx16-3r,16-3r=4,即r=4,所以x4项的系数为C4824=1120. 8.(2022广东惠州)等差数列{an}的通项公式为an=3n-5,那么(1+x)5+(1+x)6+(1+x)7的展开式中含x4项的系数是该数列的()A.第9项 B.第10项C.第19项 D.第20项[答案] D[解析] ∵(1+x)5+(1+x)6+(1+x)7展开式中含x4项的系数是C4511+C4612+C4713=5+15+35=55,由3n-5=55得n=20,应选D.9.假设n为正奇数,那么7n+C1n7n-1+C2n7n-2+…+Cn-1n7被9除所得的余数是()A.0 B.2C.7 D.8[答案] C[解析] 原式=(7+1)n-Cnn=8n-1=(9-1)n-1=9n-C1n9n-1+C2n9n-2-…+Cn-1n9(-1)n-1+(-1)n-1,n为正奇数,(-1)n-1=-2=-9+7,那么余数为7. 10.(2022江西理,6)(2-x)8展开式中不含x4项的系数的和为()A.-1 B.0C.1 D.2[答案] B[解析] (2-x)8的通项式为Tr+1=Cr828-r(-x)r=(-1)r28-rCr8xr2,那么x4项的系数为1,展开式中所有项的系数之和为(2-1)8=1,故不含x4项的系数之和为0,应选B.二、填空题11.假设(1-2x)2022=a0+a1x+a2x2+…+a2022x2022+a2022x2022(xR),那么(a0+a1)+(a0+a2)+(a0+a3)+…+(a0+a2022)+(a0+a2022)=________.(用数字作答) [答案] 2021[解析] 令x=0,那么a0=1.令x=1,那么a0+a1+a2+…+a2022+a2022=(1-2)2022=-1.(a0+a1)+(a0+a2)+(a0+a3)+…+(a0+a2022)+(a0+a2022)=2022a0+(a0+a1+a2+a3+…+a2022)=2022-1=2021.12.(2022北京11)假设x2+1x3n展开式的各项系数之和为32,那么n=________,其展开式中的常数项为________(用数字作答).[答案] 5 10[解析] 令x=1,得2n=32,得n=5,那么Tr+1=Cr5(x2)5-r1x3r=Cr5x10-5r,令10-5r=0,r=2.故常数项为T3=10.13.(2022全国Ⅱ理,14)假设x-ax9的展开式中x3的系数是-84,那么a=________.[答案] 1[解析] 由Tr+1=Cr9x9-r-axr=(-a)rCr9x9-2r得9-2r=3,得r=3,x3的系数为(-a)3C39=-84,解得a=1.14.将杨辉三角中的奇数换成1,偶数换成0,得到如下图的01三角数表.从上往下数,第1次全行的数都为1的是第1行,第2次全行的数都为1的是第3行,…,第n次全行的数都为1的是第______行;第61行中1的个数是______.[答案] 2n-1 32[解析] 用不完全归纳法,猜测得出.三、解答题15.设(3x-1)8=a8x8+a7x7+…+a1x+a0.求:(1)a8+a7+…+a1;(2)a8+a6+a4+a2+a0.[解析] 令x=0,得a0=1.(1)令x=1得(3-1)8=a8+a7+…+a1+a0,①a8+a7+…+a2+a1=28-a0=256-1=255.(2)令x=-1得(-3-1)8=a8-a7+a6-…-a1+a0.②①+②得28+48=2(a8+a6+a4+a2+a0),a8+a6+a4+a2+a0=12(28+48)=32 896.16.设(1-2x)2022=a0+a1x+a2x2+…+a2022x2022(xR).(1)求a0+a1+a2+…+a2022的值.(2)求a1+a3+a5+…+a2021的值.(3)求|a0|+|a1|+|a2|+…+|a2022|的值.[分析] 分析题意令x=1求(1)式的值令x=-1求(2)式的值令x=-1求(3)式的值[解析] (1)令x=1,得:a0+a1+a2+…+a2022=(-1)2022=1①(2)令x=-1,得:a0-a1+a2-…+a2022=32022②与①式联立,①-②得:2(a1+a3+…+a2021)=1-32022,a1+a3+a5+…+a2021=1-320222.(3)∵Tr+1=Cr202212022-r(-2x)r=(-1)rCr2022(2x)r,a2k-10(kN*),a2k0(kN*).|a0|+|a1|+|a2|+|a3|+…+|a2022|=a0-a1+a2-a3+…+a2022,所以令x=-1得:a0-a1+a2-a3+…+a2022=32022. 17.证明:(C0n)2+(C1n)2+(C2n)2+…+(Cnn)2=Cn2n. [证明] ∵(1+x)n(1+x)n=(1+x)2n,(C0n+C1nx+C2nx2+…+Cnnxn)(C0n+C1nx+C2nx2+…+Cnnxn)=(1+x)2n,而Cn2n是(1+x)2n的展开式中xn的系数,由多项式的恒等定理得C0nCnn+C1nCn-1n+…+CnnC0n=Cn2n.∵Cmn=Cn-mn(0n),(C0n)2+(C1n)2+(C2n)2+…+(Cnn)2=Cn2n.18.求(1+x-2x2)5展开式中含x4的项.[分析] 由题目可获取以下主要信息:①n=5;②三项的和与差.解答此题可把三项看成两项,利用通项公式求解,也可先分解因式,根据多项式相乘的法那么,由组合数的定义求解.[解析] 方法一:(1+x-2x2)5=[1+(x-2x2)]5,那么Tr+1=Cr5(x-2x2)r(x-2x2)r展开式中第k+1项为Tk+1=Ckrxr-k(-2x2)k=(-2)kCkrxx+k.令r+k=4,那么k=4-r.∵0r,05,且k、rN,r=2k=2或r=3k=1或r=4k=0.展开式中含x4的项为[C25(-2)2C22+C35(-2)C13+C45(-2)0C04]x4=-15x4.方法二:(1+x-2x2)5=(1-x)5(1+2x)5,那么展开式中含x4的项为C05C45(2x)4+C15(-x)C35(2x)3+C25(-x)2C25(2x)2+C35(-x)3C15(2x)+C45(-x)4C05(2x)0=-15x4.。
姓名,年级:时间:1.3。
2 “杨辉三角"与二项式系数的性质学习目标核心素养1.了解杨辉三角各行数字的特点及其与组合数性质、二项展开式系数性质间的关系,培养学生的观察力和归纳推理能力.(重点)2。
理解和掌握二项式系数的性质,并会简单应用.(难点)3。
理解和初步掌握赋值法及其应用.(重点)1.通过学习二项式系数的性质,培养逻辑推理的素养。
2.借助二项式系数的性质解题,提升数学运算的素养.1.杨辉三角的特点(1)在同一行中,每行两端都是1,与这两个1等距离的项的系数相等.(2)在相邻的两行中,除1以外的每一个数都等于它“肩上"两个数的和,即C错误!=C错误!+C错误!.2.二项式系数的性质(1)对称性:在(a+b)n的展开式中,与首末两端“等距离”的两个二项式系数相等,即C错误!=C错误!,C错误!=C错误!,…,C错误!=C错误!.(2)增减性与最大值:当k<错误!时,二项式系数是逐渐增大的.由对称性知它的后半部分是逐渐减小的,且在中间取得最大值.当n是偶数时,中间一项的二项式系数取得最大值;当n是奇数时,中间两项的二项式系数与相等,且同时取得最大值.3.各二项式系数的和(1)C错误!+C错误!+C错误!+…+C错误!=2n;(2)C错误!+C错误!+C错误!+…=C错误!+C错误!+C错误!+…=2n-1。
1.(1-2x)15的展开式中的各项系数和是( )A.1 B.-1C.215D.315B[令x=1即得各项系数和,∴各项系数和为-1。
]2.在(a+b)10二项展开式中与第3项二项式系数相同的项是( )A.第8项B.第7项C.第9项D.第10项C[由二项式展开式的性质与首末等距离的两项的二项式系数相等.]3.在(a+b)8的展开式中,二项式系数最大的项为________,在(a+b)9的展开式中,二项式系数最大的项为________________.70a4b4126a5b4与126a4b5[因为(a+b)8的展开式中有9项,所以中间一项的二项式系数最大,该项为C错误!a4b4=70a4b4.因为(a+b)9的展开式中有10项,所以中间两项的二项式系数最大,这两项分别为C错误!a5b4=126a5b4,C错误!a4b5=126a4b5。