第6章 Logistic回归
- 格式:pptx
- 大小:1.77 MB
- 文档页数:75
第6章回归分析变量之间的联系可以分为两类,一类是确定性的,另一类是非确定性的。
确定型的关系是指某一个或某几个现象的变动必然会引起另一个现象确定的变动,他们之间的关系可以使用数学函数式确切地表达出来,即y=f(x)。
当知道x的数值时,就可以计算出确切的y值来。
如圆的周长与半径的关系:周长=2πr。
非确定关系则不然,例如,在发育阶段,随年龄的增长,人的身高会增加。
但不能根据年龄找到确定的身高,即不能得出11岁儿童身高一定就是1米40公分。
年龄与身高的关系不能用一般的函数关系来表达。
研究变量之间既存在又不确定的相互关系及其密切程度的分析称为相关分析。
如果把其中的一些因素作为自变量,而另一些随自变量的变化而变化的变量作为因变量,研究他们之间的非确定因果关系,这种分析就称为回归分析。
在本章,我们将讲解回归分析有关的内容,而在下一章,我们将讲解相关分析的具体操作方法。
在SppS 10.0 For windows中回归分析分为以下几种:(主要讲前三种)●Linear:线性回归分析(data09-03)●Curve Estimation:曲线回归分析(data13-01)●Binary Logistic:二维 Logistic回归分析(data13-02)●Multinomial Logistic:多维Logistic回归分析●Ordinal:Ordinal回归分析●Proibit:概率单位回归分析●Nonlinear:非线性回归分析●Weight Estimation: 加权估测分析●2-Stage Least Squares: 两阶最小二乘分析8.1线性回归(data09-03)一元线性回归方程(卫生统计114~121页)直线回归分析的任务就是根据若干个观测(Xi,yi)i=1~n找出描述两个变量X、y之间关系的直线回归方程y^=a+bx。
y^是变量y的估计值。
求直线回归方程y^=a+bx,实际上是用回归直线拟合散点图中的各观测点。
logistic回归方程的含义
摘要:
一、Logistic回归简介
二、Logistic回归的应用场景
三、Logistic回归方程的含义
四、Logistic回归方程的实际应用
五、结论
正文:
一、Logistic回归简介
Logistic回归是一种概率型非线性回归模型,主要用于研究二分类观察结果与影响因素之间的关系。
它分为二项logistic回归(因变量为二分类)和多分类logistic回归(因变量为无序多分类)。
二、Logistic回归的应用场景
Logistic回归广泛应用于预测某一事件发生的概率,例如预测病人是否会痊愈,顾客是否会购买产品等。
通过分析影响因素与事件发生概率之间的关系,我们可以更好地了解目标群体,为决策提供依据。
三、Logistic回归方程的含义
Logistic回归方程是一种概率转换公式,将线性方程转换为概率形式。
公式如下:
P(Y=1) = 1 / (1 + exp(-β0 + β1X1 + β2X2 + ...+ βnXn))
其中,P(Y=1)表示事件发生的概率,β0、β1、β2、...、βn为回归系数,
X1、X2、...、Xn为影响因素。
四、Logistic回归方程的实际应用
在实际应用中,我们通常通过最大似然估计法或梯度下降法来求解logistic回归方程的参数。
一旦获得回归系数,我们可以根据实际情况对目标群体进行预测和分析。
五、结论
总之,Logistic回归方程是一种强大的工具,可以帮助我们分析影响因素与二分类事件之间的关系。
logistic回归的模型公式Logistic回归模型是一种经典的统计学习方法,用于解决二分类问题。
它通过建立一个逻辑回归方程,预测某个样本属于某一类别的概率。
本文将介绍Logistic回归模型的原理和应用,并探讨其优缺点。
一、Logistic回归模型的原理Logistic回归模型是建立在线性回归模型的基础上,通过引入一个非线性函数(称为Logistic函数或Sigmoid函数)将线性回归的输出结果转化为概率值。
Logistic函数的数学表达式为:f(x) = 1 / (1 + e^(-x)),其中e为自然对数的底。
该函数的特点是输出值在0和1之间,可以用来表示某个事件发生的概率。
在Logistic回归模型中,假设有n个自变量(特征)x1,x2,...,xn,对应的回归系数为β1,β2,...,βn。
模型的方程可以表示为:P(y=1|x) = f(β0 + β1x1 + β2x2 + ... + βnxn),其中P(y=1|x)表示样本属于正例的概率。
为了估计回归系数,通常采用最大似然估计方法。
具体来说,我们希望通过最大化似然函数来找到最优的回归系数,使得模型对观测数据的拟合度最高。
然后,利用估计得到的回归系数,我们可以对新的样本进行预测,并给出其属于正例的概率。
二、Logistic回归模型的应用Logistic回归模型有广泛的应用领域,尤其在医学、金融、市场营销等领域中得到了广泛的应用。
在医学领域,Logistic回归模型常用于疾病风险预测和诊断模型的建立。
例如,可以利用患者的年龄、性别、血压等特征来预测患者患某种疾病的风险。
在金融领域,Logistic回归模型可以用于信用评分和违约预测。
银行可以根据客户的个人信息和历史信用记录,利用Logistic回归模型来评估客户的信用风险,并据此决定是否给予贷款。
在市场营销领域,Logistic回归模型可以用于客户分类和市场细分。
根据客户的购买行为、兴趣爱好等特征,可以预测客户对某种产品或服务的购买概率,进而制定相应的市场营销策略。
统计学中的Logistic回归分析Logistic回归是一种常用的统计学方法,用于建立并探索自变量与二分类因变量之间的关系。
它在医学、社会科学、市场营销等领域得到广泛应用,能够帮助研究者理解和预测特定事件发生的概率。
本文将介绍Logistic回归的基本原理、应用领域以及模型评估方法。
一、Logistic回归的基本原理Logistic回归是一种广义线性回归模型,通过对数据的处理,将线性回归模型的预测结果转化为概率值。
其基本原理在于将一个线性函数与一个非线性函数进行组合,以适应因变量概率为S形曲线的特性。
该非线性函数被称为logit函数,可以将概率转化为对数几率。
Logistic回归模型的表达式如下:\[P(Y=1|X) = \frac{1}{1+e^{-(\beta_0+\beta_1X_1+...+\beta_pX_p)}}\]其中,P(Y=1|X)表示在给定自变量X的条件下,因变量为1的概率。
而\(\beta_0\)、\(\beta_1\)、...\(\beta_p\)则是待估计的参数。
二、Logistic回归的应用领域1. 医学领域Logistic回归在医学领域中具有重要的应用。
例如,研究者可以使用Logistic回归分析,探索某种疾病与一系列潜在风险因素之间的关系。
通过对患病和非患病个体的数据进行回归分析,可以估计各个风险因素对疾病患病的影响程度,进而预测某个个体患病的概率。
2. 社会科学领域在社会科学研究中,研究者常常使用Logistic回归来探索特定变量对于某种行为、态度或事件发生的影响程度。
例如,研究者可能想要了解不同性别、教育程度、收入水平对于选民投票行为的影响。
通过Logistic回归分析,可以对不同自变量对于投票行为的作用进行量化,进而预测某个选民投票候选人的概率。
3. 市场营销领域在市场营销中,Logistic回归也被广泛应用于客户分类、市场细分以及产品销量预测等方面。
通过分析客户的个人特征、购买习惯和消费行为等因素,可以建立Logistic回归模型,预测不同客户购买某一产品的概率,以便制定个性化的市场营销策略。
logistic回归原理
Logistic回归是一种有效的、相对简单的数据分类技术,用于确定某个事件或观测值属于某类的概率。
它可以解释二元数据和多类数据,并且能够应用于各种场景,比如风险分析、金融建模、社会研究等等。
Logistic回归源自线性模型,它是一种称为逻辑斯蒂(logit)模型的回归模型,该模型基于概率理论。
Logistic回归模型是由概率对数函数构建而成的,即:
Y = log(P/(1-P))
其中,P代表事件Y发生的概率。
Logistic归模型在数据分析中最主要的用途就是用于分类,它的原理是:假定输入的数据可以用一个线性函数来描述,并且拟合一条S型函数来获得概率,这个概率决定了每个样本点属于某一类的概率大小。
在使用Logistic回归之前,首先要处理好数据集,确保它具有足够的观测值,并且有合理的分类标签(例如“是”、“否”)。
接下来,要使用回归的模型,先把正确的观测值用正向的系数系数,将错误的观测值用负向的系数进行编码。
然后,确定正确的估计量结果,比如系数、拟合度指标和参数检验,以及误差分析。
最后,定义一个提升指标来评估结果,例如:准确率、召回率和精确率。
Logistic回归在机器学习中有各种应用,比如文本分类、情感分析和预测分析;在图像识别中,它可以用于目标检测、纹理识别和
边缘检测;在金融行业,它可以应用于信贷分析、欺诈检测和市场风险分析。
它也可以用于生物药物研究、病毒鉴别;在医学领域,它可以用于数据分析、诊断分析和临床预测等。
简而言之,Logistic回归是一种用于预测任意事件的概率发生的有效模型,可以用于多类数据的分类,在数据挖掘领域扮演着重要的角色,是结构化数据建模的常用工具。
logistic回归计算讲解Logistic回归是一种广泛用于分类问题的机器学习算法。
它可以用于二分类问题,也可以通过一些修改用于多分类问题。
下面是Logistic回归的计算过程的简要讲解:1. 数据准备:首先,收集和准备用于训练和测试的数据集。
每个数据样本应该包括特征和对应的类别标签。
特征可以是连续值或离散值。
2. 特征缩放:如果特征具有不同的量纲或取值范围,可以对特征进行缩放,以便更好地使用Logistic回归算法。
常见的缩放方法包括标准化和归一化。
3. 参数初始化:初始化Logistic回归模型的参数,通常为权重(也称为系数)和偏置(也称为截距)。
4. 假设函数:定义Logistic回归的假设函数,它将特征值映射到预测的类别概率。
通常使用sigmoid函数作为Logistic回归的假设函数。
5. 成本函数:使用成本函数(也称为损失函数)来度量模型预测的错误程度。
对于Logistic回归,常用的成本函数是逻辑损失函数(Log Loss)或交叉熵损失函数。
6. 梯度下降:使用梯度下降算法或其他优化算法来最小化成本函数,从而找到最佳的模型参数。
梯度下降算法通过计算参数的梯度,沿着梯度的反方向更新参数,逐步调整参数值以降低成本。
7. 模型训练:使用训练数据集来训练Logistic回归模型。
通过迭代优化算法来更新参数,重复计算成本函数和梯度下降步骤,直到达到停止条件(如达到最大迭代次数或成本函数的变化很小)。
8. 模型预测:使用训练好的Logistic回归模型来进行预测。
将新的输入特征传递给假设函数,计算预测的类别概率。
通常,如果概率大于一个阈值,将样本预测为正类;否则,预测为负类。
常见的阈值是0.5。
以上是Logistic回归算法的主要计算步骤。
在实践中,还需要考虑特征选择、模型评估和调优等方面,以获得更好的分类性能。
逻辑回归是一种广泛使用的统计工具,其核心在于利用多维特征对结果进行建模。
它是机器学习中的一个重要组成部分,常被用于金融预测、市场营销以及健康保险理赔等。
与决策树等其他算法相比,逻辑回归具有更强的可解释性,能够清晰地揭示各个特征对结果的影响。
逻辑回归基于一组输入变量(也称为特征或自变量),通过训练数据集估计出一条或几条直线,以此为基础对新的样本进行分类或预测。
这种算法具有直观、简洁和可解释性强的优点,而且适合处理各种数据类型,无论是连续的还是离散的。
在逻辑回归中,因变量通常是二分类的,例如“是否购买某商品”或“是否患某种疾病”。
通过训练数据集,模型可以学习到各个特征与这个二分类因变量之间的关联。
这种关联被表示为权重,它们揭示了每个特征对结果的贡献程度。
通过这些权重,我们不仅能了解各个特征的重要性,还能根据新样本的特征预测其属于正类(通常记为1)或负类(通常记为0)的概率。
逻辑回归在许多领域都有广泛的应用。
例如,在金融领域,它被用来预测客户是否可能违约;在医疗领域,它被用来预测患者患某种疾病的风险;在市场营销领域,它被用来预测消费者是否可能购买某产品。
通过这些预测,企业和研究人员可以更好地理解客户、病人或消费者的行为和需求,从而制定更有效的策略。
总的来说,逻辑回归是一种强大而灵活的统计工具,具有广泛的应用前景。
它不仅能帮助我们更好地理解数据和预测结果,还能提供可解释性和透明度,使决策者能够基于坚实的证据做出决策。
无论是在
学术研究、商业决策还是日常生活中,逻辑回归都发挥着重要的作用。
logistic回归原理
Logistic回归,又称为逻辑回归,是一种广泛应用的机器学习算法,主要用于分类问题。
它将一个数值变量预测为两个或多个二元变量值之一,例如:通过观察一个变量,我们可以预测另一个变量为正类/负类。
Logistic回归是一种函数拟合技术,它可以根据给定的输入数据,建立一个模型以预测数据的输出值。
它使用一个逻辑函数(也称为S形函数)来将连续的输入变量映射到二元类别输出中,形成一个只具有两个类别的模型。
Logistic回归的基本原理是,我们根据输入特征(例如年龄、性别、学历等)来预测输出(例如好/坏借款人)。
在Logistic回归模型中,输入特征是一个变量,而输出是一个二元变量,即只有两个值-0或1。
为了使Logistic回归模型正确地对数据进行建模,需要在训练阶段对参数进行估计。
估计的方式多种多样,但最常用的是最大似然估计(MLE)。
在MLE中,我们根据给定的训练数据找到最可能产生该数据的参数,也就是找到能够最好地拟合训练数据的参数。
一旦参数被估计出来,就可以使用该模型来预测新数据。
预测时,通常使用两个概念来描述预测:概率和似然估计。
概率表示新数据属于某个类别的可能性,即预测出的结果是0还是1的概率。
而似然估计则表示特定参数的可信度,即该参数产生观测数据的可能性。
总之,Logistic回归是一种广泛应用于分类问题的机器学习算
法,它将一个数值变量预测为两个或多个二元变量值之一。
它使用一个函数来将连续的输入变量映射到二元类别输出中,以预测数据的输出值。
在Logistic回归模型中,我们使用最大似然估计来估计参数,以及概率和似然估计来预测新数据。
一、回归分析的分类logistic回归(logistic regression)是研究因变量为二分类或多分类观察结果与影响因素(自变量)之间关系的一种多变量分析方法,属概率型非线性回归。
根据1个因变量与多个因变量之分,有以下区分:①一个因变量y:I连续形因变量(y)——线性回归分析II分类型因变量(y)——Logistic 回归分析III 生存时间因变量(y)——生存风险回归分析IV时间序列因变量(y)——时间序列分析②多个因变量(y1,y2,……yn):I 路径分析II 结构方程模型分析在流行病学研究中,常需要分析疾病与各种危险因素间的定量关系,同时为了能真实反映暴露因素与观察结果间的关系,需要控制混杂因素的影响。
(1)Mantel-Haenszel分层分析:适用于样本量大、分析因素较少的情况。
当分层较多时,由于要求各格子中例数不能太少,所需样本较大,往往难以做到;当混杂因素较多时,分层数也呈几何倍数增长,这将导致部分层中某个格子的频数为零,无法利用其信息。
(2)线性回归分析:由于因变量是分类变量,不能满足其正态性要求;有些自变量对因变量的影响并非线性。
(3)logistic回归:不仅适用于病因学分析,也可用于其他方面的研究,研究某个二分类(或无序及有序多分类)目标变量与有关因素的关系。
二、logistic回归分析(一)logistic回归的分类(1)二分类资料logistic回归:因变量为两分类变量的资料,可用非条件logistic回归和条件logistic回归进行分析。
非条件logistic回归多用于非配比病例-对照研究或队列研究资料,条件logistic回归多用于配对或配比资料。
(2)多分类资料logistic回归:因变量为多项分类的资料,可用多项分类logistic回归模型或有序分类logistic回归模型进行分析。
队列研究(cohort study):也称前瞻性研究、随访研究等。
是一种由因及果的研究,在研究开始时,根据以往有无暴露经历,将研究人群分为暴露人群和非暴露人群,在一定时期内,随访观察和比较两组人群的发病率或死亡率。
logistic回归逐步法摘要:1.引言2.Logistic 回归的概念和原理3.逐步法的概念和原理4.Logistic 回归与逐步法的关系5.Logistic 回归在实际应用中的案例6.结论正文:1.引言Logistic 回归是一种用于分类问题的统计分析方法,其应用广泛,包括了生物学、社会科学、医疗健康等领域。
在解决实际问题时,我们通常需要通过建立模型来分析和预测数据,这就需要选择合适的变量。
而逐步法作为一种逐步筛选变量的方法,可以帮助我们找到影响分类结果的关键变量。
本文将从Logistic 回归和逐步法的概念、原理以及在实际应用中的关系进行探讨。
2.Logistic 回归的概念和原理Logistic 回归是一种用于解决分类问题的线性模型,其基本原理是利用sigmoid 函数将线性模型的输出映射到0 到1 之间,表示为某一类的概率。
Logistic 回归模型主要包括两个部分:一部分是线性部分,另一部分是sigmoid 函数部分。
其数学表达式为:P(Y=1|X=x) = 1 / (1 + e^(-z)),其中,z = β0 + β1x1 + β2x2 +...+ βn*xn。
3.逐步法的概念和原理逐步法是一种逐步筛选变量的方法,其基本思想是在每一步中,通过比较当前模型和去掉一个变量后的模型的预测效果,决定是否保留该变量。
逐步法主要有两种:一种是向前逐步法,也称为加法法;另一种是向后逐步法,也称为减法法。
向前逐步法是从一个没有变量的模型开始,每步加入一个变量,直到不再加入变量为止;向后逐步法则是从一个包含所有变量的模型开始,每步去掉一个变量,直到不再去掉变量为止。
4.Logistic 回归与逐步法的关系在实际应用中,我们通常需要通过建立Logistic 回归模型来分析和预测数据。
而在建立模型时,我们面临的一个重要问题是如何选择变量。
这时,逐步法就派上用场了。
通过逐步法,我们可以筛选出对分类结果影响较大的变量,从而提高模型的预测准确性。
logistic回归原理Logistic回归是一种常用的分类算法,它基于Logistic函数进行建模,用于解决二分类问题。
本文将介绍Logistic回归的原理及其应用。
一、Logistic回归原理Logistic回归是一种广义线性模型,它的目标是通过对数据进行拟合,得到一个能够将输入数据映射到0和1之间的函数,从而进行分类。
其基本思想是通过线性回归模型的预测结果,经过一个Logistic函数(也称为Sigmoid函数)进行转换,将预测结果限制在0和1之间。
Logistic函数的定义如下:$$f(x) = \frac{1}{1+e^{-x}}$$其中,$e$是自然对数的底数,$x$是输入值。
Logistic函数的特点是在$x$接近正负无穷时,函数值趋近于1和0,而在$x=0$时,函数值为0.5。
这样,我们可以将Logistic函数的输出视为样本属于正类的概率。
而Logistic回归模型的表达式为:$$h_{\theta}(x) = f(\theta^Tx) = \frac{1}{1+e^{-\theta^Tx}}$$其中,$h_{\theta}(x)$表示预测值,$\theta$表示模型参数,$x$表示输入特征。
二、Logistic回归的应用Logistic回归广泛应用于二分类问题,例如垃圾邮件分类、疾病诊断、信用评估等。
下面以垃圾邮件分类为例,介绍Logistic回归的应用过程。
1. 数据预处理需要对邮件数据进行预处理。
包括去除HTML标签、提取文本特征、分词等操作。
将每封邮件表示为一个向量,向量的每个元素表示对应词汇是否出现。
2. 特征工程在特征工程中,可以通过选择合适的特征、进行特征组合等方式,提取更有用的特征。
例如,可以统计邮件中出现的特定词汇的频率,或者使用TF-IDF等方法进行特征提取。
3. 模型训练在模型训练阶段,需要将数据集划分为训练集和测试集。
通过最大似然估计或梯度下降等方法,求解模型参数$\theta$,得到训练好的Logistic回归模型。
logistic回归模型一、模型简介在实际分析中,有时候因变量为分类变量,例如阴性阳性、性别、血型等,此时使用线性回归模型进行拟合会出现问题。
因此,我们需要找出其他解决思路,那就是logit变换(逻辑变换)。
逻辑变换将某种结果出现的概率和不出现的概率之比称为优势比P/(1-P),并取其对数,使之与自变量之间呈线性关系,从而解决了线性回归模型无法保证因变量只有两个取值的问题。
经过逻辑变换的线性模型称为logistic回归模型(逻辑回归模型),属于广义线性回归模型的范畴。
逻辑回归可以预测某个结果出现的概率,对因变量进行变换的方法很多,并不只有逻辑变换一种。
二、模型估计方法逻辑回归不能使用普通最小二乘估计,而使用极大似然估计或迭代重加权最小二乘法IRLS(XXX)。
使用极大似然估计的好处是,这是一种概率论在参数估计中的应用,正好和我们对因变量的概率预测相符合。
极大似然估计基于这样的思想:如果某些参数能使这个样本出现的概率最大,那就把这个参数作为估计的真实值。
三、优势比odds根据因变量的取值不同,逻辑回归可以分为四种:二分类逻辑回归、有序多分类逻辑回归、无序多分类逻辑回归、配对逻辑回归。
优势比odds是逻辑回归中的一个重要概念,指某种结果出现的概率和不出现的概率之比,通过逻辑变换,优势比可以被用作因变量进行拟合。
对于一些特殊情况,还需具体问题具体分析,不能一味地使用逻辑变换。
在二分类逻辑回归中,自变量可以是连续变量、二分类变量和多分类变量。
对于多分类变量,需要引入哑变量进行处理。
哑变量也称为虚拟变量,取值通常为0或1,代表参照分类和比较分类。
需要注意避免共线性,定义k-1个哑变量(包含截距)或k个哑变量(不包含截距)。
有序多分类变量指各因变量之间存在等级或程度差异。
对于因变量为有序分类变量的数据,可以通过拟合因变量个数-1个的逻辑回归模型,称为累积逻辑模型来进行。
这种方式依次将因变量按不同的取值水平分割成若干个二分类变量,然后再依次拟合二分类逻辑回归模型。
第六章 Logistic回归练习题 (操作部分:部分参考答案)1. 下面问题的数据来自“ch6-logistic_exercise”,数据包含受访者的人口学特征、劳动经济特征、流动身份。
数据的变量及其定义如下:变量名变量的定义age 年龄,连续测量degree 受教育程度:1=未上过学;2=小学;3=初中;4=高中;5=大专;6=大学;7=研究生girl 性别:1=女性;0=男性hanzu 民族:1=汉族;0=少数民族hetong 劳动合同:1=固定合同;2=非固定合同;3=无合同income 月收入ldhour 每周劳动时间married 婚姻状态:1=在婚;0=其他(未婚、离异、再婚、丧偶,等)migtype4 流动身份:1=本地市民;2=城-城流动人口;3=乡-城流动人口pid IDss_jobloss 失业保险:1=有;0=无ss_yanglao 养老保险:1=有;1=无这里的研究问题是,流动人口与流入地居民在社会保障、劳动保护和居住环境等方面是否存在显著差别。
流动人口被区分为城-城流动人口(即具有城镇户籍、但离开户籍地半年以上之人)和乡-城流动人口(即具有农村户籍、且离开户籍地半年以上之人)。
因此,样本包含三类人群:本地市民、城-城流动人口、乡-城流动人口及相应特征。
说明:(1)你需要对数据进行一些必要的处理,才能正确回答研究问题;(2)将变量hetong的缺失数据作为一个类别;(3)将degree合并为四类:<=小学,初中、高中、>高中. use "D:\course\integration of theory andmethod\8_ordered\chapter8-logistic_exercise.dta", clear*重新三个社会保障变量. gen ss_jobl=ss_jobloss==1. gen ss_ylao=ss_yanglao==1. gen ss_yili=ss_yiliao ==1*重新code受教育程度. recode degree (1/2=1) (3=2) (4=3)(5/7=4)*将劳动合同的缺失作为一个分类. recode hetong (.=4)请基于该数据,完成以下练习,输出odds ratio的分析结果:其一,运用二分类Logistic模型,探讨流动人口的社会保障机会。