(完整word版)小学奥数流水行程问题教学设计
- 格式:doc
- 大小:22.01 KB
- 文档页数:2
小学奥数流水行程问题教学设计集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-流水行程问题教学设计本课分为两课时,第一课时为例题讲解、答疑激趣、归纳算理、布置课后作业;第二课时为习题讲解,反思总结。
一、教学目标:1、知识与技能:掌握行船、流水问题的基本规律,能理清水速、船速之间的关系2、过程与方法:经历应用问题的解决,掌握流水行程问题的基本解决方法和步骤,学会用画图等方法解决问题3、情感态度价值观:经历问题解决的步骤,加强逻辑能力和思维水平,增加学生思维的挑战,引发学生的兴趣。
二、教学重点:船速、水速和顺水、逆水的等量关系式教学难点:理解问题的解决方法三、教学过程(一)展示例题,指出关键已知一艘轮船顺水行48千米需4小时,逆水行48千米需6小时.现在轮船从上游A港到下游B港.已知两港间的水路长为72千米,开船时一旅客从窗口扔到水里一块木板,问船到B港时,木块离B港还有多远1、理解信息。
请学生从中找出关键词和所了解到的信息,说说如何理解2、集思广益。
根据你了解到的信息,如何解决现在的问题3、教师展示思路:分析:顺水行速度为:48÷4=12(千米),逆水行速度为:48÷6=8(千米).因为顺水速度是比船的速度多了水的速度,而逆水速度是船的速度再减去水的速度,因此顺水速度和逆水速度之间相差的是“两个水的速度”,因此可求出水的速度为:(12-8)÷2=2(千米).现条件为到下游,因此是顺水行驶,从A到B所用时间为:72÷12=6(小时).木板从开始到结束所用时间与船相同,木板随水而飘,所以行驶的速度就是水的速度,可求出6小时木板的路程为:6×2=12(千米);与船所到达的B地距离还差:72-12=60(千米).解:顺水行速度为:48÷4=12(千米),逆水行速度为:48÷6=8(千米),水的速度为:(12-8)÷2=2(千米),从A到B所用时间为:72÷12=6(小时),6小时木板的路程为:6×2=12(千米),与船所到达的B地距离还差:72-12=60(千米).答:船到B港时,木块离B港还有60米.此题运用了关系式:(顺水速度-逆水速度)÷2=水速(二)训练拓展,巩固思维根据学生所学到的关系式进行进一步推理。
温馨提醒:亲爱的孩子:过了这条河我们就可以抵达花的海洋;爬过这座山我们就可以到达山的顶峰;战胜这个困难我们就可以来到梦想的地方!相信自己!流水问题想一想:从南京长江逆流而上去长江三峡,与从长江三峡顺水而下回南京,哪个花的时间少?哪个花的时间多?为什么?原因很简单。
在长江行船与在一个平静的湖这行船是不一样的,因为长江的水是一直从西向东(也就是从上游向下游)流着的,船的速度会受到江水的影响。
而在平静的湖水中行船时,船的速度不会受到水流的影响。
考虑船在水流速度的情况下行驶的问题,就是我们这一讲要讲的流水问题。
船在顺水航行时(比方说,从长江三峡顺流而下到南京),船一方面按照自己本身的速度即船速(船在静水中行驶的速度)行驶,同时整个水面又按照水的流动速度在前进,水推动着船向前,所以,船顺水时的航行速度应该等于船本身的速度与水流速度的和。
也就是顺水速度=船速+水速比方说,船在静水中行驶10千米,水流速度是每小时5千米,那么,船顺水航行的速度就是每小时10+5=15(千米)。
同学们可以想一想,上面的问题中,如果是问“船逆水航行的速度是多少?”答案又该怎么样呢?船逆水行驶,情况恰好相反。
本来船每小时行驶10千米,但由于水每小时又把它往回推了5千米,结果船每小时只向上游行驶了10—5=5(千米)。
也就是船在逆水中的速度等于船速度与水速之差。
即逆水速度=船速—水速专题简析:当你逆风骑自行车时有什么感觉?是的,逆风时需用很大力气,因为面对的是迎面吹来的风。
当顺风时,借着风力,相对而言用里较少。
在你的生活中是否也遇到过类似的如流水行船问题。
解答这类题的要素有下列几点:水速、流速、划速、距离,解答这类题与和差问题相似。
划速相当于和差问题中的大数,水速相当于小数,顺流速相当于和数,逆流速相当于差速。
划速=(顺流船速+逆流船速)÷2;水速=(顺流船速—逆流船速)÷2;顺流船速=划速+水速;逆流船速=划速—水速;顺流船速=逆流船速+水速×2;逆流船速=顺流船速—水速×2。
(六年级)备课教员:第9讲流水行船问题一、教学目标: 1. 在实际情境中理解顺水速度、逆水速度、静水速度及水速等数量的含义,掌握各数量间的关系。
2.掌握流水行船问题的解题方法,提高解题能力和思维的灵活性。
3. 初步养成独立思考、自主探究、合作交流的学习方式。
二、教学重点:顺水速度、逆水速度、静水速度及水速等数量间的关系,流水行船问题的解题方法。
三、教学难点:顺水速度、逆水速度、静水速度及水速等数量间的关系。
四、教学准备:PPT五、教学过程:第一课时(50分钟)一、导入(5分)师:这是龙舟比赛中的情景。
如果他们划船的速度一样,一个在顺水中划,一个在逆水中划,哪个会更快一点?生:在顺水中。
师:是的。
相信同学们应该看过。
我们知道池塘里面的水是不流动的,如果把船放在池塘里,船会动吗?生:不会。
师:是的。
这个时候要我们去划,船才会动,这时候船的速度我们称为船在静水中的速度。
也称为船速(划速)。
但如果把一条船放在流水中,那么船是不是就会顺着水流动。
其实这时候船的速度就是水流的速度。
这个时候如果我们再去划动的话,船会行的更快一点,这时候船的速度就等于水流的速度加上船在静水中的速度。
同样的道理,船在逆水中的速度等于什么?生:……师:是的,这类问题也是我们数学路程问题中的一类,今天我们就来学习这方面的知识。
板书:流水行船问题二、探索发现授课(40分)(一)例题一:(13分)一只渔船顺水行30千米,用了5小时,水流的速度是每小时1千米。
此船在静水中的速度是多少?师:同学们先看题目,题目中要我们求什么?生:船在静水中的速度。
师:前面我们推导了一些公式,船在静水中的速度可以怎么求?生:……师:很好,题目中告诉我们船是顺水行驶,那么船在静水中的速度等于什么呢?生:……师:题目中告诉我们渔船顺水行30千米,用了5小时,那么我们可以求出什么?生:……师:是的,根据速度=路程÷时间,我们求出速度,而这个速度是什么速度?生:……师:是的,顺水时的速度求出来了,题目中又告诉我们水流的速度,接下来同学们会做了吗?生:会了。
行程问题教案(共五篇)第一篇:行程问题教案课题名称:行程问题教学目标:1:理解相遇、追及问题的中路程、时间、速度的关系2:能准确地画出线段图3:能结合线段图来抓住路程时间速度的关系来求解教学重点与难点:1:掌握把题意转化为线段图来解题2:掌握相遇、追及、行程问题中时间、路程、速度的数理关系教学内容知识点一:相遇问题1:两个物体在同一路段上两个不同的地点相对而行时,如果同时到达某一地点,通常叫做相遇。
2:基本公式:速度和×相遇时间=距离3:解题时的关键在于理清运动过程,抓住两者同时行驶的路程及速度和,同时结合线段图求解。
例题1:例1:甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。
两人几小时后相遇?分析与解答:这是一道相遇问题。
所谓相遇问题就是指两个运动物体以不同的地点作为出发地作相向运动的问题。
(基本相遇问题)练习:1,一辆货车和一辆客车同时从相距450千米的两地相向而行,货车每小时行40千米,客车每小时行50米,问:几小时后两车在途中相遇?2.两艘轮船分别从A、B两港同时出发相向而行,甲船每小时行驶18千米,乙船每小时行驶15千米,经过6小时两船在途中相遇。
两地间的水路长多少千米?3.辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发,汽车每小时行40千米,摩托车每小时行50千米。
8小时后两车相距多少千米?例2:小明住东村,小牛住西村,小明和小牛同时从东村、西村出发到对方家走去,2小时后在途中相遇,小明每小时走3千米,小牛每小时走4千米,东西村相距多少千米?练习二:1,甲车每小时行50千米,乙车每小时行60千米,两车同时从两地相对开出,经过3小时两车可以相遇,两地之间相距多少千米?2,两辆汽车从相距450公里的两地相对开出,3小时后相遇,一辆汽车的速度是每小时80公里,求另一辆汽车的速度?课后作业:1、小明家和小牛家相距14千米,星期六小明和小牛同时从自己家出发向对方家里走去,小明每小时行3千米,小牛每小时走4千米,经过几小时两人在途中相遇?2、甲乙两车分别从相距480千米的A、B两城同时出发,相向而行,已知甲车从A城到B城需6小时,乙车从B城到A城需12小时。
流水行船教案模板(共5篇)第1篇:行船问题教案课题名称:行船问题教学重点与难点:1:理解水流速度,船速,顺水速度,逆水速度的概念2:掌握水流速度,船速,顺水速度,逆水速度之间的数量关系教学内容:知识点1:基本概念(一)船在静水中的速度叫(二)船从上游顺水而行的速度叫(三)江河流动的速度叫做(四)船从下游逆水而行的速度叫做知识点2:基本公式顺流速度=船速+水速逆水速度=船速-水速变形公式:通过两个方程,把它们相加减借着两个方程组成的方程组可得:船速=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷2例题1:甲乙两码头相距360千米,一艘汽艇从甲码头顺水而行到乙码头需要9小时,返回时所用的时间比去时多用1/3,求水流速度是多少千米/时?(基本行船问题求速度)练习:1、甲乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度?2、甲乙两港间水路长252千米,一只船从甲港开往乙港,顺水9小时到达,从乙港返回甲港,逆水14小时到达,求船在静水中的速度和水流速度?3、一只船在河中航行,顺流而行时每小时20千米,已知此船顺水航行3小时和逆水航行5小时所行的路程相等,则船速和水速各是多少?4、一只船在河中航行,水速为每小时2千米,它在静水中航行12千米,则顺水航行每小时航行多少千米?逆水每小时航行多少千米?顺水航行140千米用多少小时?5、甲乙两港相距208千米,一艘船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,问船在静水中的速度和水流速度各是多少?6、一艘轮船顺流80千米,逆流45千米共用9小时;顺流60千米、逆流90千米共用13小时。
求轮船在静水中的速度?例题2:一艘小船逆水而行,到A地时随身带的一个重要的水壶掉入水中随波而下。
半小时后船行到B地,发现丢失了水壶,立即返回寻找,终于在距离A地5千米的地方追上水壶,然后又用了10分钟返回到A地。
小学五年级奥数教材:流水行船问题船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情况下计算船只的航行速度、时间和所行的路程,叫做流水行船问题。
流水行船问题,是行程问题中的一种,因此行程问题中三个量(速度、时间、路程)的关系在这里将要反复用到.此外,流水行船问题还有以下两个基本公式:顺水速度=船速+水速,(1)逆水速度=船速-水速.(2)这里,船速是指船本身的速度,也就是在静水中单位时间里所走过的路程.水速,是指水在单位时间里流过的路程.顺水速度和逆水速度分别指顺流航行时和逆流航行时船在单位时间里所行的路程。
根据加减法互为逆运算的关系,由公式(l)可以得到:水速=顺水速度-船速,船速=顺水速度-水速。
由公式(2)可以得到:水速=船速-逆水速度,船速=逆水速度+水速。
这就是说,只要知道了船在静水中的速度,船的实际速度和水速这三个量中的任意两个,就可以求出第三个量。
另外,已知船的逆水速度和顺水速度,根据公式(1)和公式(2),相加和相减就可以得到:船速=(顺水速度+逆水速度)÷2,水速=(顺水速度-逆水速度)÷2。
例1 甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度。
分析根据题意,要想求出船速和水速,需要按上面的基本数量关系先求出顺水速度和逆水速度,而顺水速度和逆水速度可按行程问题的一般数量关系,用路程分别除以顺水、逆水所行时间求出。
解:顺水速度:208÷8=26(千米/小时)逆水速度:208÷13=16(千米/小时)船速:(26+16)÷2=21(千米/小时)水速:(26—16)÷2=5(千米/小时)答:船在静水中的速度为每小时21千米,水流速度每小时5千米。
例2 某船在静水中的速度是每小时15千米,它从上游甲地开往下游乙地共花去了8小时,水速每小时3千米,问从乙地返回甲地需要多少时间?分析要想求从乙地返回甲地需要多少时间,只要分别求出甲、乙两地之间的路程和逆水速度。
行程问题——流水行船问题学生姓名年级学科授课教师日期时段核心内容利用和差问题,结合路程,速度,时间关系以及追及相遇运动解决流水行船问题。
课型一对一教学目标1、利用和差问题解决水流问题。
2、运用路程,速度,时间关系解决题目。
3、利用相遇,追及解决相向运动,同向运动,背向运动的解题规律。
4、利用多种方法解决流水行船问题。
重、难点重点:教学目标1、2、3 难点:教学目标2、3、4课首沟通了解学生对行程问题的掌握情况;了解学生对行程图绘制的掌握情况;知识导图课首小测1.某船在静水中的速度是每小时18千米,水流速度是每小时2千米,这艘船从甲地逆水航行到乙地需要15小时,甲、乙两地的路程是多少千米?这艘船从乙地回到甲地需要多少小时?2.(举一反三)水流速度是每小时15千米。
现在有船顺水而行,8小时行320千米。
若逆水行320千米需几小时?3.(举一反三)有只大木船在长江中航行,逆流而上5小时行5千米,顺流而下1小时行5千米。
求这只木船每小时划船速度和河水的流速各是多少?知识梳理船速:是指船在静水中航行的速度。
水速:指江河中水流动的速度。
顺速:指船从江河中的上游往下游航行的速度。
逆速:指船从江河中的下游往上游航行的速度。
常用公式逆水速度=路程÷逆水时间顺水速度=路程÷水速时间顺水速度=船速度+水速度逆水速度=船速度-水速度导学一:逆水速度,顺水速度求法例 1. 轮船在静水中的速度是每小时21千米,轮船自甲港逆水航行8小时,到达相距144千米的乙港,再从乙港返回甲港需要多少小时?我爱展示1.两个码头相距432千米,轮船顺水行这段路程需要16小时。
逆水行每小时比顺水少行9千米,逆水行驶比顺水行驶多用多少小时?2.(举一反三)已知一船自上游向下游航行,经9小时后,已行673千米,此船每小时的划速是47千米。
求此河的水速是多少?3.一艘轮船每小时行15千米,它逆水6小时行了72千米,如果它顺水行驶同样长的航程需要多少小时?导学二:顺水速度,逆水速度,水速的关系知识点讲解 1:顺水速度-2×水速=逆水速度逆水速度+2×水速=顺水速度顺水速度-逆水速度=2×水速例 1. (举一反三)汽船每小时行30千米,在长176千米的河中逆流航行要11小时到达,返回需几小时?我爱展示1.(举一反三)当一机动船在水流每小时3千米的河中逆流而上时,8小时行48千米。
(六B )年级备课教员姓名:李巧红第五讲流水行程问题一、教学目标:1、在情境中理解顺水速度、逆水速度、静水速度及水速等数量的含义,掌握各数量间的关系。
2、掌握流水行船问题的解题方法,提高解题能力,培养思维的灵活性。
3、根据和差公式求出速度和时间。
二、教学重点:用解方程求解流水问题中的行程及和差问题。
三、教学难点:顺水速度、逆水速度、静水速度及水速等数量间的关系四、教学准备:无五、教学过程:第一课时(50分)上周作业比较难,需要详细的分析及讲解(10分)一、故事导入(5分)师:你们听过《刻舟求剑》的故事吗?(让学生来讲解大概的故事内容)故事大概内容:从前有一位剑客,在他坐船的时候,不小心把自己的佩戴的宝剑掉进了江里,他就在掉下剑的地方做上了记号,等船靠岸的时候,他就沿着船标记的位置跳下去找他的宝剑,师:你们觉得他能找到宝剑吗?为什么呢?(学生回答)因为水在流动,船也在前行。
而剑已经沉在水里随着水流的速度在前进。
船行驶的比剑行驶的快一些。
引入今天的课题——流水问题二、授新(15分):1、公式解说(图形分解)静水速度、船速、顺水速度、逆水速度(教师板书)水流的速度船的速度这是水流的速度带动船的速度,那么顺水的速度=船速+水流的速度水流的速度船的速度这是水流的速度阻碍船的速度,那么逆水的速度=船速—水流的速度2、推导出备用公式根据这两个公式,我们知道,顺水是两速之和,逆水是两速之差,你们会想到什么呢?(和差公式)师:如果老师告诉你们顺水和逆水的速度,你们能求出船速和水流的速度吗?水速=(顺水速度-逆水速度)÷2船速=(顺水速度+逆水速度)÷2根据和差公式进行理解,已知两数的和及差,就可以分别求出两数。
出示例题一:飞鱼号轮船在一条河流里顺水而下行200千米要10小时,逆流而上行120千米,也要用10小时这艘船在静水中航行280千米要几小时?引导过程:1、根据题意理解题目,你们看一看要求静水的行驶时间,必须根据哪个公式知道呢?是时间=路程÷速度2、那题目中哪几个量是已知的呢?路程是已知,静水中的速度是未知的。
(五年级)备课教员:第二讲行程问题(四)流水一、教学目标:知识目标1.理解顺水速度、逆水速度、静水速度及水流速度等量的含义,掌握各量间的关系。
2.准确运用公式解流水行船问题。
能力目标初步养成独立思考、自主探究、合作交流的学习方式。
情感目标感受数学的趣味性,从情境中感悟数学的美。
二、教学重点:顺水速度、逆水速度、静水速度及水速等数量间的关系,流水行船问题的解题方法三、教学难点:准确理清顺水速度、逆水速度、静水速度及水速等数量间的关系。
四、教学准备:PPT五、教学过程:第一课时(50分钟)一、导入(5分)【设计意图:让学生了解流水行船问题的概念,从具体情境中掌握,理解并区分什么是顺水速度、逆水速度、静水速度、水流速度等。
】师:同学们,你们观察过水面吗?当一片叶子掉进水里,叶子会漂得越来越远,而且是顺着一个方向一直飘走,为什么呢?生:因为水在流动。
师:是的,水自己在流动,是有一定的速度,这是水自己的速度,我们把它叫做水流速度。
记住了吗?生:记住了。
师:船如果在静止的水中航行,这个时候船航行的速度我们把它叫做静水速度,也可以叫做船速,明白吗?生:……师:现在老师给你们看一个小动画(点击PPT),这是一艘小船,蓝色部分代表的是水,从左往右代表顺水的方向。
我们先看第一个动画。
(播放PPT)师:我们看到小船从左往右走,是顺着水流动的方向的,我们叫做顺水航行,速度叫做顺水速度,船的速度与水的速度是同一个方向,那么顺水速度就等于静水速度加水流速度。
能理解吗?生:……师:那我们再来看另一个动画,(播放PPT)从右往左逆着水流航行,船的行驶速度会不会变慢?生:……师:所以逆水速度=静水速度-水流速度。
那么通过这个公式我们还可以引申出更多的公式,这就是我们这节课要学习的。
【探究新知,引入新课:我们已经学过了追及相遇问题,了解路程=速度×时间这个公式,也学会运用它的变式,这节课我们要深入学习行程问题中的另一个题型:流水行船问题。
流水行程问题教学设计
本课分为两课时,第一课时为例题讲解、答疑激趣、归纳算理、布置课后作业;第二课时为习题讲解,反思总结。
一、教学目标:
1、知识与技能:掌握行船、流水问题的基本规律,能理清水速、船速之间的关系
2、过程与方法:经历应用问题的解决,掌握流水行程问题的基本解决方法和步骤,学会用画图等方法解决问题
3、情感态度价值观:经历问题解决的步骤,加强逻辑能力和思维水平,增加学生思维的挑战,引发学生的兴趣。
二、教学重点:船速、水速和顺水、逆水的等量关系式
教学难点:理解问题的解决方法
三、教学过程
(一)展示例题,指出关键
已知一艘轮船顺水行48千米需4小时,逆水行48千米需6小时.现在轮船从上游A 港到下游B港.已知两港间的水路长为72千米,开船时一旅客从窗口扔到水里一块木板,问船到B港时,木块离B港还有多远?
1、理解信息。
请学生从中找出关键词和所了解到的信息,说说如何理解
2、集思广益。
根据你了解到的信息,如何解决现在的问题
3、教师展示思路:
分析:顺水行速度为:48÷4=12(千米),逆水行速度为:48÷6=8(千米).
因为顺水速度是比船的速度多了水的速度,而逆水速度是船的速度再减去水的速度,因此顺水速度和逆水速度之间相差的是“两个水的速度”,因此可求出水的速度为:(12-8)÷2=2(千米).
现条件为到下游,因此是顺水行驶,从A到B所用时间为:72÷12=6(小时).
木板从开始到结束所用时间与船相同,木板随水而飘,所以行驶的速度就是水的速度,可求出6小时木板的路程为:
6×2=12(千米);与船所到达的B地距离还差:72-12=60(千米).
解:顺水行速度为:48÷4=12(千米),
逆水行速度为:48÷6=8(千米),
水的速度为:(12-8)÷2=2(千米),
从A到B所用时间为:72÷12=6(小时),
6小时木板的路程为:6×2=12(千米),
与船所到达的B地距离还差:72-12=60(千米).
答:船到B港时,木块离B港还有60米.
此题运用了关系式:(顺水速度-逆水速度)÷2=水速
(二)训练拓展,巩固思维
根据学生所学到的关系式进行进一步推理。
已知:(顺水速度-逆水速度)÷2=水速
可得:(顺水速度+逆水速度)÷2=船速
船速+水速=顺水速度
船速-水速=逆水速度
静水中的速度=船速
(三)习题精讲精练
1、轮船在静水中的速度是每小时21千米,轮船自甲港逆水航行8小时,到达相距144千米的乙港,再从乙港返回甲港需要多少小时?
2、一艘轮船从甲港开往乙港,顺水而行每小时28千米,返回甲港时逆水而行用了6小时,已知水速是每小时4千米,甲、乙两港相距多少千米?
3、一艘轮船顺流航行140千米,逆流航行80千米,共用了15小时;后来顺流航行60其千米,逆流航行120千米,也用了15小时。
求水流的速度。
4、甲乙两个码头相距112千米,一只船从乙码头逆水而上,行了8小时到达甲码头。
已知船速是水速的15倍,这只船从甲码头返回乙码头需要几小时?
5、一艘轮船往返于相距240千米的甲乙两港之间,逆水速度是每小时18千米,顺水的速度是每小时26千米。
一艘汽艇的速度是每小时20千米,这艘汽艇往返于两港之间共需多少小时
(四)课后反思,归纳总结
这一讲我们学到了什么,在进行练习时需要注意什么。