第一章液体的表面性质
- 格式:ppt
- 大小:1.08 MB
- 文档页数:36
第一章气-液界面性质1.1液体的表面1.1.1表面张力和表面自由能1.1.2表面热力学基础1.1.3弯曲液体表面的一些现象1.1.4液体表面张力的测定方法1.2溶液的表面1.2.1溶液的表面张力1.2.2溶液的表面吸附引言表面和界面(s u r f a c e a n d i n t e r f a c e)常见的界面有:1.气-液界面2.气-固界面3.液-液界面4.固-固界面1.1液体的表面1.1.1表面张力和表面自由能表面张力液体表面具有自动收缩表面的趋势。
当无外力影响时,一滴液体总是自发地趋向于球形。
而体积一定的几何形体中球体的面积最小。
故一定量的液体由其它形状变为球形时总伴随着面积的缩小。
因为液体表面分子与液体内部分子所处环境不同(所受力不同)考虑一种液体与蒸汽平衡的体系,在液体内部每个分子所受周围分子的吸引是各向同性的,彼此互相抵消。
故处于溶液内部的分子可自由运动无需做功。
而处于表面上的分子则不同,由于气相密度小,表面分子受液体内部的吸引力要大于外部气体分子对它的引力,所以表面层分子受到一指向内部的合力:F=2γl其中γ代表液体的表面张力系数,即垂直通过液体表面上任一单位长度与液面相切的力。
简称表面张力(s u r f a c e t e n s i o n)是液体基本物化性质之一,通常以m N/m 为单位。
表面(过剩)自由能当分子从液体内部移向表面时,须克服此力作用做功。
使表面分子能量要高于内部分子能量。
于是当液体表面积增加(即把一定数量液体内部分子转变为表面上分子)体系总能量将随体系表面积增大而增大。
表面(过剩)自由能:对一定量的液体,在恒定T,P下,体系增加单位表面积外界所做的功。
即增加单位表面积体系自由能的增加。
d G=-S d T+V d P+γd A注重:表面自由能并非表面分子总能量,而是表面分子比内部分子自由能的增加。
在恒温恒压条件下:d G=γd Aγ=△G/A故表面张力γ:为恒温恒压下增加单位表面积时体系G i b b s自由能的增量,称其为比表面自由能,简称表面自由能。
第一章绪论§1—1流体力学及其任务1、流体力学的任务:研究流体的宏观平衡、宏观机械运动规律及其在工程实际中的应用的一门学科。
研究对象:流体,包括液体和气体。
2、流体力学定义:研究流体平衡和运动的力学规律、流体与固体之间的相互作用及其在工程技术中的应用.3、研究对象:流体(包括气体和液体)。
4、特性:•流动(flow)性,流体在一个微小的剪切力作用下能够连续不断地变形,只有在外力停止作用后,变形才能停止。
•液体具有自由(free surface)表面,不能承受拉力承受剪切力( shear stress)。
•气体不能承受拉力,静止时不能承受剪切力,具有明显的压缩性,不具有一定的体积,可充满整个容器。
流体作为物质的一种基本形态,必须遵循自然界一切物质运动的普遍,如牛顿的力学定律、质量守恒定律和能量守恒定律等。
5、易流动性:处于静止状态的流体不能承受剪切力,即使在很小的剪切力的作用下也将发生连续不断的变形,直到剪切力消失为止。
这也是它便于用管道进行输送,适宜于做供热、制冷等工作介质的主要原因.流体也不能承受拉力,它只能承受压力.利用蒸汽压力推动气轮机来发电,利用液压、气压传动各种机械等,都是流体抗压能力和易流动性的应用.没有固定的形状,取决于约束边界形状,不同的边界必将产生不同的流动。
6、流体的连续介质模型流体微团——是使流体具有宏观特性的允许的最小体积。
这样的微团,称为流体质点。
流体微团:宏观上足够大,微观上足够小。
流体的连续介质模型为:流体是由连续分布的流体质点所组成,每一空间点都被确定的流体质点所占据,其中没有间隙,流体的任一物理量可以表达成空间坐标及时间的连续函数,而且是单值连续可微函数。
7流体力学应用:航空、造船、机械、冶金、建筑、水利、化工、石油输送、环境保护、交通运输等等也都遇到不少流体力学问题。
例如,结构工程:钢结构,钢混结构等.船舶结构;梁结构等要考虑风致振动以及水动力问题;海洋工程如石油钻井平台防波堤受到的外力除了风的作用力还有波浪、潮夕的作用力等,高层建筑的设计要考虑抗风能力;船闸的设计直接与水动力有关等等。