同分母的分式加减法
- 格式:doc
- 大小:68.29 KB
- 文档页数:2
第2章 分式运算【知识衔接】————初中知识回顾————(一)分式的运算规律1、加减法 同分母分式加减法:c b a c b c a ±=± 异分母分式加减法:bc bd ac c d b a ±=±2、乘法:bd ac d c b a =⋅3、除法:bc ad c d b a d c b a =⋅=÷4、乘方:n nn ba b a =)( (二)分式的基本性质1、)0(≠=m bm am b a2、)0(≠÷÷=m mb m a b a ————高中知识链接————比例的性质(1)若d c ba=则bc ad = (2)若d c ba =则d d c b b a ±=±(合比性质) (3)若d c ba =(0≠-db )则d b d bc a c a -+=-+(合分比性质) (4)若d c b a ==…=n m ,且0≠+++n d b 则b a n d b m c a =++++++ (等比性质) 分式求解的基本技巧1、分组通分2、拆项添项后通分3、取倒数或利用倒数关系4、换元化简5、局部代入6、整体代入7、引入参数8、运用比例性质【经典题型】初中经典题型1.若代数式4x x -有意义,则实数x 的取值范围是( ) A . x =0 B . x =4 C . x ≠0 D . x ≠4【答案】D【解析】由分式有意义的条件:分母不为0,即x-4≠0,解得x≠4,故选D .2.化简:,结果正确的是( )A . 1B .C .D .【答案】B 【解析】试题分析:原式==.故选B .3.当x =______时,分式523x x -+的值为零. 【答案】5. 【解析】解:由题意得:x ﹣5=0且2x +3≠0,解得:x =5,故答案为:5.4.先化简,再求值: 22121x x x x x x ⎛⎫-÷ ⎪+++⎝⎭,其中x =22. 【答案】21x -,7. 【解析】试题分析:根据分式的减法和除法可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题.试题解析:原式=()22121x x x x x x ++-⋅+=()2211x x x x x +-⋅+=()()2111x x x x x-+⋅+=21x - 当x =22=(2221-=8-1=7.高中经典题型例1:化简232||211x x x x x +-+-- 解:原式=22|)|1()1()1(x x x -+- 当0≥x 且1≠x 时,原式=x +1当0<x 且1-≠x 时,原式=xx +-1)1(2 例2:化简:++++3223bab b a a a 442222223223311b a b a a b b a b ab b a a b -+-+--+-+-例3:计算2)(32222233332222-++÷---++nm m n n m m n n m m n n m m n n m m n 解:设a m n =,b nm =,则1=ab ∴原式=2)(32223322-++÷---++b a b a b a b a b a =ba ab b a b a ab b a ab b a +-+----++2)(32223322=2222232)()()(nm n m b a b a b a b a b a b a -+-=-+=+-⋅-+ 例4:计算abbc ac c b a ac ab bc b a c bc ac ab a c b +---++----+---222 解:既不便于分式通分,又不适合分组通分,试图考察其中一项,从中发现规律ca b a c a b a b a c a c a b a bc bc ac ab a c b ---=-----=--=+---11))(()()())((2 因此不难看出,拆项后通分更容易 ∴原式=))(())(())((b c a c b a a b c b a c c a b a c b ---+------- =))(()()())(()()())(()()(b c a c a c b c a b c b c b a b c a b a b a c a -----+----------- =ac b c a c a b c b c a b a -=---+-+-----2111111 例5:若1=abc ,求111++++++++c ac c b bc b a ab a 解:∵1=abc ,∴bc a 1=,将式中的a 全换成bc1 ∴原式=11111++++++++c bcc c b bc b bc bc b bc =11111=++++++++bc b bc bc b b bc b 例6:已知x z y x y z y x z z y x ++-=+-=-+且0≠xyz ,求分式xyzx z z y y x ))()((+++的值 解:分析:已知条件以连比的形式出现,可引进一个参数来表示这个连比,从而将分式化成整式。
《分式的加减》◆教材分析教学对象是八年级学生,从知识的角度看,在学习本章前,学生已经掌握了用字母表示数、列简单代数式,会把一些简单的实际问题中的数量关系用代数式表示出来,并会进行分式的乘除运算,基本掌握通分,能够确定几个分式的最简公分母;从数学活动经验、思维特征、学习习惯看,通过对分式的前期研究,运用类比分数的有关概念及性质、运算联想引申出分式的有关概念及性质、运算得习惯已基本形成。
通过第三学段三个学期的学习,思维水平也有了进一步地提升,理性思考能力明显提高,具备类比分数的加减运算法则探究出分式加减运算法则的能力。
但经验性思维依然占主导地位,部分学生的学习积极性、主动性不强,加之经历分数运算、因式分解的两次分流,分式加减运算既是前面代数运算的综合,又是分式概念及运算的难点内容之一,因此,对异分母分式加减和运用分式加减法则运算法则之后所涉及的诸如正确进行整式运算、分式化简等易出现差错,教学中应通过训练加以强化。
◆教学目标【知识与能力目标】1.熟练掌握同分母分式的加减运算2.掌握异分母分式的加减法则及通分的过程与方法.3. 会进行简单的分式的四则混合运算.【过程与方法目标】1、体验知识的化归,提高思维的灵活性,培养学生整体思考和分析问题的能力.2、经历分式混合运算法则的探究过程,进一步领会类比的数学思想.【情感态度价值观目标】让学生充分参与到数学学习的过程中来,使学生在整体思考中开阔视野,养成良好品格,渗透化归对立统一的辩证观点. 【教学重点】1.分式的加减法.2.熟练地进行分式的混合运算.【教学难点】1.异分母分式的加减法及简单的分式混合运算.2.熟练地进行分式的混合运算.一、引入新课(课件展示)问题1:甲工程队完成一项工程需n 天,乙工程队要比甲工程队多用3天才能完成这项工程,两队共同工作一天完成这项工程的几分之几?一个工程问题,题意比较简单,只是用字母n 天来表示甲工程队完成一项工程的时间,乙工程队完成这一项工程的时间可表示为n+3天,两队共同工作一天完成这项工程的311++n n .这样引出分式的加减法的实际背景 问题2:2010年,2011年,2012年某地的森林面积(单位:公顷)分别是S1,S2,S3,2012年与2011年相比,森林面积增长率提高了多少?问题2的目的与问题1一样,从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运算.让学生回忆分数的加减法法则,类比分数的加减法,分式的加减法的实质与分数的加减法相同,请学生自己说出分式的加减法法则.分式的加减法的实质与分数的加减法相同,你能说出分式的加减法法则?请同学们说出2243291,31,21xy y x y x 的最简公分母是什么?你能说出最简公分母的确定方法吗?二、讲授新课分式的加减法法则:同分母分式相加减,分母不变,把分子相加减。
分式的运算【知识精读】1. 分式的乘除法法则;当分子、分母是多项式时,先进行因式分解再约分。
2. 分式的加减法(1)通分的根据是分式的基本性质,且取各分式分母的最简公分母。
求最简公分母是通分的关键,它的法则是:①取各分母系数的最小公倍数;②凡出现的字母(或含有字母的式子)为底的幂的因式都要取;③相同字母(或含有字母的式子)的幂的因式取指数最高的。
(2)同分母的分式加减法法则(3)异分母的分式加减法法则是先通分,变为同分母的分式,然后再加减。
3. 分式乘方的法则(n为正整数)4. 分式的运算是初中数学的重要内容之一,在分式方程,求代数式的值,函数等方面有重要应用。
学习时应注意以下几个问题:(1)注意运算顺序及解题步骤,把好符号关;(2)整式与分式的运算,根据题目特点,可将整式化为分母为“1”的分式;(3)运算中及时约分、化简;(4)注意运算律的正确使用;(5)结果应为最简分式或整式。
下面我们一起来学习分式的四则运算。
【分类解析】例1:计算的结果是()A. B. C. D.分析:原式故选C说明:先将分子、分母分解因式,再约分。
例2:已知,求的值。
分析:若先通分,计算就复杂了,我们可以用替换待求式中的“1”,将三个分式化成同分母,运算就简单了。
解:原式例3:已知:,求下式的值:分析:本题先化简,然后代入求值。
化简时在每个括号内通分,除号改乘号,除式的分子、分母颠倒过来,再约分、整理。
最后将条件等式变形,用一个字母的代数式来表示另一个字母,带入化简后的式子求值。
这是解决条件求值问题的一般方法。
解:故原式例4:已知a、b、c为实数,且,那么的值是多少?分析:已知条件是一个复杂的三元二次方程组,不容易求解,可取倒数,进行简化。
解:由已知条件得:所以即又因为所以例5:化简:解一:原式解二:原式说明:解法一是一般方法,但遇到的问题是通分后分式加法的结果中分子是一个四次多项式,而它的分解需要拆、添项,比较麻烦;解法二则运用了乘法分配律,避免了上述问题。
If one day I have money or I am completely out of money, I will start wandering.整合汇编简单易用(页眉可删)初中数学分式的加减知识点分式加减法法则(rule of addition and subtraction of fraction)是分式的运算法则之一。
下面是初中数学分式的加减知识点,快来看看吧!初中数学知识点总结:分式的加减法则以下是对分式的加减知识点的总结学习,同学们认真记录笔记。
法则:同分母的分式相加减,分母不变,把分子相加减。
用式子表示为:b(a)±b(c)=b(a±c)法则:异分母的分式相加减,先通分,转化为同分母分式,然后再加减。
用式子表示为:b(a)±d(c)=bd(ad)±bd(bc)=bd (ad±bc)注意:(1)“把分子相加减”是把各个分子的整体相加减,即各个分子应先加上括号后再加减,分子是单项式时括号可以省略;(2)异分母分式相加减,“先通分”是关键,最简公分母确定后再通分,计算时要注意分式中符号的处理,特别是分子相减,要注意分子的整体性;(3)运算时顺序合理、步骤清晰;(4)运算结果必须化成最简分式或整式。
希望上面对分式的加减知识点的总结内容,同学们都能很好的掌握,并在考试中取得理想的成绩。
初中数学知识点总结:平面直角坐标系下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。
平面直角坐标系平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的`数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面;②两条数轴;③互相垂直;④原点重合。
三个规定:①正方向的规定横轴取向右为正方向,纵轴取向上为正方向。
②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
第五章分式与分式方程
5.3、同分母分式的加减法
本节课的学习目标为:
1、类比同分数加减法的法则归纳出同分母分式的加减法法则。
2、理解同分母的分式加减法的运算法则,能进行同分母的分式加减及分母互为相反式的分式加减法运算。
重点:同分母的分式加减法;
难点:分式的分子是多项式时的分式的加减法。
第一环节 情景引入
活动内容
做一做:
=+3231 =-7271 =+8381 =-12
5127 猜一猜
=+a a 21 =-x x 12 =+b b 2523 =-y y 3437 归纳运算法则:同分母的分式相加减,分母不变,把分子相加减. 用式子表示为:a
c b a c a b
±=± 活动目的:通过人人都可以入手的做一做,让学生回答,可以使学生很快进入状态又不觉得困难。
而后两个运算后要约分,学生极有可能报出没有约分的答案。
因此,类比时注意引导学生,正确猜想,约分是分数的必要步骤哦,使法则的提出顺理成章,也为后面的学习做好铺垫。
第二环节 同分母分式加减
1、预习自测(比一比,看谁做的快又准!)
a a 52-= =-x
b x b 3 a
21+= =+++b
a b b a a =+a b a b 232 =+-+y x y y x x 2
2 2、探究一(先独立完成,再小组交流答案)
(1)ab
b a ab b a -++; (2)2422---x x x ;
(3)n m n m n m n m ++++-522; (4) 1
31112+-++--++x x x x x x 活动目的:通过4道题的演练巩固,让学生对同分母分式的加减法有更好的认识与掌握。
注意事项:在进行运算时若分子是多项式的,分子要先带括号,再去括号后合并同类项;运算结果也类比分数加减法的结果,要化成最简形式,即约去分子与分母的公因式——化简。
3、探究二(分母互为相反数)
(1)
x
y y y x x -+-; (2)x y y x y x y x 2722-+---
(3)a b b b a a 222-+-; (4)x x x --+-1112 活动目的:这是一组分母互为相反式的分式加减的题目,实则是简单的异分母分式的加减法,解答时只要将后一分母前的运算符号变为相反,即可按同分母分式的加减法法则进行运算。
旨在初现异分母分式加减的运算,实则化成同分母的分式,这要求学生能够熟练掌握,。
为下节课一般的异分母加减做好准备。
小结
1、同分母分式加减法法则:同分母分式相加,分母不变,把分子相加减;
2、学会用转化的思想将分母互为相反式的分式加减运算转化成同分母分式的加减法;
3、分子是多项式时,一定要记得添加括号后再进行加减运算。
第三环节 自我检测
(1)n
m n m n n m ----9695 (2) y x y x y x y x +--+-2 (3)a a a a ----12112 (4)m
n n n m n m n n m ---+-+22
第四环节 布置作业 (习题5.4)。