八年级上册数学-1.4分式的加法和减法(1)----同分母分式加减法ppt.
- 格式:ppt
- 大小:1.05 MB
- 文档页数:18
《分式的加法和减法》作业设计方案(第一课时)一、作业目标1. 加深学生对分式概念及性质的理解,巩固分式加法和减法的运算方法。
2. 提高学生的运算能力,增强对数学学习的信心和兴趣。
3. 培养学生的逻辑思维能力和自主学习能力。
二、作业内容作业内容围绕《分式的加法和减法》课程核心内容设计,主要包含以下几个方面:1. 理论回顾:学生需回顾并理解分式的基本概念,包括分式的定义、性质和分类。
2. 基础练习:通过例题和习题,让学生熟练掌握分式加法和减法的计算方法。
(1)例题分析:选取几道典型的分式加法和减法题目,要求学生分析解题步骤和思路。
(2)习题练习:布置适量的习题,包括分式的同分母加法、异分母加法以及减法等,要求学生独立完成。
3. 实际应用:设计一些与实际生活相关的问题,如利用分式解决实际问题等,培养学生的应用能力。
4. 拓展延伸:提供一些拓展题目,供学有余力的学生挑战自我,拓展思维。
三、作业要求1. 准时完成:学生需在规定时间内完成作业,保证作业的时效性。
2. 独立思考:鼓励学生独立完成作业,培养其独立思考的能力。
3. 规范答题:要求学生按照数学规范答题,步骤清晰、条理分明。
4. 细致审题:指导学生认真审题,理解题目要求后再进行作答。
5. 作业书写需保持整洁,不可草率敷衍。
四、作业评价1. 正确性评价:根据学生答案的准确性进行评价,对错误的地方进行纠正和指导。
2. 规范性评价:评价学生答题的规范性,包括步骤的清晰程度和书写的整洁度等。
3. 速度评价:根据学生完成作业的速度进行评价,鼓励提高解题效率。
4. 创新性评价:对学生在拓展题目中的创新思路和方法进行肯定和鼓励。
五、作业反馈1. 老师将根据学生的作业情况进行针对性的反馈,对于出现的问题进行及时指导纠正。
2. 对表现优秀的学生给予表扬和鼓励,激发学生的积极性和自信心。
3. 对于学生的共性问题进行集中讲解,帮助学生共同解决难题。
4. 将学生的优秀作业进行展示,供其他学生学习借鉴。
如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。
——高斯湘教版八年级数学上册知识点总结第1章分式1.1 分式1.2 分式的乘法和除法1.3 整数指数幂1.4 分式的加法和减法1.5 可化为一元一次方程的分式方程本章复习与测试第2章三角形2.1 三角形2.2 命题与证明2.3 等腰三角形2.4 线段的垂直平分线2.5 全等三角形2.6 用尺规作三角形本章复习与测试第3章实数3.1 平方根3.2 立方根3.3 实数第4章一元一次不等式(组)4.1 不等式4.2 不等式的基本性质4.3 一元一次不等式的解法4.4 一元一次不等式的应用4.5 一元一次不等式组本章复习与测试第5章二次根式5.1 二次根式5.2 二次根式的乘法和除法5.3 二次根式的加法和减法本章复习与测试知识点总结第一章:分式一、课前构建:回顾相关知识:认真阅读教材P1-40二、课堂点拨:知识点一:分式的概念★考点1:分式的定义:知识点二:分式的性质★考点4:分式的基本性质:分式的分子与分母都乘,所得分式与原分式相等。
即(其中)分式的分子与分母约去公因式,所得分式与原分式相等。
即(其中)分式的变号法则:分式的分子、分母与分式本身的符号,改变其中的任何两个,分式的值不变。
即。
★考点5:最简分式(1)约分:把一个分式的分子与分母的公因式约去,称为分式的约分。
约分的方法:先把分子与分母因式分解,再约去公因式。
(2)最简分式:分子与分母没有分式,叫做最简分式。
知识点三:分式的运算★考点6:分式的加减法①同分母分式相加减,分母,把分子。
即。
②异分母分式相加减,要先,即把各个分式的分子与分母都乘适当的同一个非零多项式,化为同分母的分式,再加减。
即。
①最简公分母的系数是各分母系数的最小公倍数;②最简公分母的字母和式子是各分母的所有字母和式子。
③最简公分母的每个字母或式子的指数是它在各分母中次数最高。
例7、计算的结果是。
★考点7:分式的乘除法乘:分式乘分式,把分子乘分子,分母乘分母,分别作为积的分子、分母,然后约去分子与分母的公因式。
分式的加法与减法【要点梳理】要点一:同分母分式的加减★同分母分式相加减,分母不变,把分子相加减;上述法则可用式子表为:. 要点诠释: (1)“把分子相加减”是把各分式的分子的整体相加减,即各个分子都应用括号,当分子是单项式时,括号可以省略;当分子是多项式时,特别是分子相减时,括号不能省,不然,容易导致符号上的错误.(2)分式的加减法运算的结果必须化成最简分式或整式. 【例1】计算:(1); (2); (3); (4)【变式1.1】化简:2221122a a a a a a --+--【变式1.2】化简m 2m−3−9m−3的结果是( )A .m +3B .m ﹣3C .m−3m+3D .m+3m−3【变式1.3】化简x 2x−1+x 1−x的结果是( )A .x +1B .x ﹣1C .﹣xD .x要点二:异分母分式的加减★异分母分式相加减,先通分,变为同分母的分式,再加减.上述法则可用式子表为:. 要点诠释:(1)异分母的分式相加减,先通分是关键.通分后,异分母的分式加减法变成同分母分式的加减法.(2)异分母分式加减法的一般步骤:①通分,②进行同分母分式的加减运算,③把结果化a b a b c c c±±=22222333a b a b a b a b a b a b +--+-222422x x x x x +-+--2111x x x -+--222222222a ab b a b b a a b ++---a c ad bc ad bc b d bd bd bd±±=±=成最简分式. 【例2】计算:(1);(2);(3). 【变式2.1】计算: (1);(2). 【变式2.2】化简4x x 2−4−xx−2的结果是( )A .﹣x 2+2xB .﹣x 2+6xC .−xx+2D .xx−2【变式2.3】计算:aa+2−4a 2+2a= .要点三:分式的混合运算★分式的混和运算顺序:先算乘法,再算乘除,最后算加减,有括号的先算括号里面的. 要点诠释:(1)进行分式的混合运算,可以根据需要合理地运动运算律来简化运算,此时先将分式的乘除法统一成乘法,分式的加减法统一成加法,才能使用乘法运算律、加法运算律简化运算. (2)分式的混合运算的结果要化成最简分式或整式.典型例题题型一:分式的加减法 【练习1.1】化简x 2x−1+11−x的结果是( )A .x +1B .1x+1C .x ﹣1D .xx−1【练习1.2】如图,若x 为正整数,则表示(x+2)2x 2+4x+4−1x+1的值的点落在( )A .段①B .段②C .段③D .段④【练习1.3】化简a 2a−1−1−2a 1−a的结果为( )A .a+1a−1B .a ﹣1C .aD .1【练习1.4】计算a 2a−1−a ﹣1的正确结果是( ) A .−1a−1B .1a−1C .−2a−1a−1D .2a−1a−1【练习1.5】下列运算正确的是( )21132a ab +2312224x x x x +-+--211a a a ---212293m m ---112323x y x y++-A .(2a 2)3=6a 6B .﹣a 2b 2•3ab 3=﹣3a 2b 5C .b a−b+a b−a=−1D .a 2−1a•1a+1=−1【练习1.6】已知:1a−1b =13,则ab b−a的值是( )A .13B .−13C .3D .﹣3【练习1.7】化简1x+1−x +1,得( )A .−x 2x+1B .−x 2+2x x+1C .2﹣x 2D .2−x 2x+1【练习1.8】化简:xx−y−y x+y,结果正确的是( )A .1B .x 2+y 2x 2−y 2C .x−y x+yD .x 2+y 2【练习1.9】化简:a 2+1a+1−2a+1=( )A .a ﹣1B .a +1C .a−1a+1D .1a+1【练习1.10】计算2aa+1+2a+1的结果是( )A .2B .2a +2C .1D .4aa+1【练习1.11】计算x 2+2x+1x 2−1−x x−1的结果为( )A .1B .−1x−1C .x x−1D .1x−1【练习1.12】计算a 2a−1−a +1的正确结果是( ) A .2a−1a−1B .−2a−1a−1C .1a−1D .−1a−1【练习1.13】已知1m−1n=1,则代数式2m−mn−2n m+2mn−n的值为( )A .3B .1C .﹣1D .﹣3【练习1.14】已知m 2﹣n 2=mn ,则n m−m n的值等于( )A .1B .0C .﹣1D .−14【练习1.15】如果记y =x 21+x 2=f (x ),并且f (1)表示当x =1时y 的值,即f (1)=121+12=12;f (12)表示当x =12时y 的值,即f (12)=(12)21+(12)2=15,那么f (1)+f (2)+f (12)+f (3)+f (13)+…+f (n )+f (1n)= .(结果用含n 的代数式表示,n 为正整数).【练习1.16】已知a −1a =3,那么a 2+1a 2= . 【练习1.17】已知1a +1b=3,求5a+7ab+5b a−6ab+b= .【练习1.18】若m +n =1,mn =2,则1m+1n的值为 .【练习1.19】计算:x 2x+1−1x+1= .【练习1.20】已知1x −1y=3,则代数式2x−14xy−2y x−2xy−y的值为 .【练习1.21】化简:x 2+4x+4x 2−4−x x−2= .【练习1.22】计算m m 2−1−11−m 2的结果是 . 【练习1.23】计算:6a 2−9−1a−3= .【练习1.24】已知实数a 、b 、c 满足a +b =ab =c ,有下列结论: ①若c ≠0,则1a +1b=1;②若a =3,则b +c =9;③若a 、b 、c 中只有两个数相等,则a +b +c =8.其中正确的是 . (把所有正确结论的序号都填上) 【练习1.25】化简:x+1x−1x = . 【练习1.26】计算2m−2+m2−m 的结果是 . 【练习1.27】计算:2a a−2+42−a = . 【练习1.28】计算:x x−1+11−x= .【练习1.29】已知1a−1b =3,则分式2a+3ab−2b a−ab−b = .【练习1.30】已知2x+1(x−1)(x+2)=A x−1+B x+2,求A 、B 的值.【练习1.31】计算: (1)x+2x+1−x−1x+1;(2)2a+1a 2−1•a 2−2a+1a 2−a−1a+1.【练习1.32】分式中,在分子、分母都是整式的情况下,如果分子的次数低于分母的次数,称这样的分式为真分式,例如:分式4x+2,3x 2x 3−4x是真分式.如果分子的次数不低于分母的次数,称这样的分式为假分式.例如,分式x+1x−1,x 2x+1是假分式,一个假分式可以化为一个整式与一个真分式的和. 例如:x+1x−1=(x−1)+2x−1=1+2x−1(1)将假分式4x−32x+1化为一个整数与一个真分式的和;(2)利用上述方法解决问题:若x 是整数,且分式x 2x−3的值为正整数,求x 的值.【练习1.33】已知分式A =(a +1−3a−1)÷a 2−4a+4a−1. (1)化简这个分式;(2)当a >2时,把分式A 化简结果的分子与分母同时加上3后得到分式B ,问:分式B 的值较原来分式A 的值是变大了还是变小了?试说明理由.(3)若A 的值是整数,且a 也为整数,求出符合条件的所有a 值的和. 【练习1.34】计算:(1)(m ﹣2)(m +1)﹣(m +2)2. (2)4a 2−4a+1a 2−1+(2+1a−1).【练习1.35】计算: (1)x 2x−2−4x−4x−2;(2)x 2x+1−x +1.【练习1.36】化简下列各式: (1)(2a ﹣1)2﹣4(a +1)(a ﹣1) (2)(x +1−4x−5x−1)÷(1x −1x 2−x ) 【练习1.37】阅读下列资料,解决问题:定义:在分式中,对于只含有一个字母的分式,当分子的次数小于分母的次数时,我们称之为“真分式”,如:4x+1,x+1x 2,这样的分式就是真分式;当分子的次数大于或等于分母的次数时,我们称之为“假分式”,如:x+2x−1,x 2−12x+1这样的分式就是假分式,假分式也可以化为带分式(即:整式与真分式的和的形式). 如:x+2x−1=(x−1)+3x−1=1+3x−1.(1)分式x 22x是 (填“真分式”或“假分式”);(2)将假分式3x+1x−1、x 2+3x+2分别化为带分式;(3)如果分式2x 2+3x−6x+3的值为整数,求所有符合条件的整数x 的值.【练习1.38】计算: (1)8x 2y 3÷(−4x 3y3) (2)2m 2−1−1m−1题型二:分式的混合运算【练习2.1】下列等式成立的是( ) A .1a +2b=3a+b B .22a+b =1a+bC .abab−b 2=aa−bD .a−a+b=−a a+b【练习2.2】化简(1a+1b)÷(1a 2−1b 2)•ab ,其结果是( ) A .a 2b 2a−bB .a 2b 2b−aC .1a−bD .1b−a【练习2.3】下列代数式变形正确的是( ) A .x−y x 2−y 2=1x−y B .−x+y2=−x+y2C .1xy÷(1x+1y)=1y +1x D .x−y x+y=x 2−y 2(x+y)2【练习2.4】若分式x 2x−1□xx−1运算结果为x ,则在“□”中添加的运算符号为( )A .+B .﹣C .+或×D .﹣或÷【练习2.5】老师在黑板上写了一个代数式的正确计算结果,随后用手遮住了原代数式的一部分,如图:则被遮住的部分是( ) A .x−12x+1B .2x−1x−1 C .x−12x−1D .2x+1x−1【练习2.6】化简(a −1b )÷(b −1a )的结果是( ) A .1B .baC .abD .−a b【练习2.7】小明的练习本上有如下四道题目,其中只有一道题他做对了,这道题目是( )A .(2y 3x )2=4y 23x 2B .1x−y −1y−x=2x−yC .(−x 2y )3=−x 6x3D .13x+13y=x+y 3y【练习2.8】下列计算正确的是( ) A .3b x+b x=2b xB .aa−b−a b−a=0C .bc a 2⋅2ab 2c=2abD .(a 2−a)÷aa−1=a 2【练习2.9】如图,图①,图②中阴影部分的面积为S 1,S 2,a >b >0,设k =S 1S 2,则有( )A .0<k <12B .12<k <1C .1<k <2D .k >2【练习2.10】如图,“优选1号”水稻的实验田是边长为am (a >1)的正方形去掉一个边长为1m 的正方形水池后余下的部分;“优选2号”水稻的实验田是边长为(a ﹣1)m 的正方形,若两块试验田的水稻都收了600kg .则对于这两种水稻的单位面积产量说法正确的是( )A .优选1号单位面积产量高B .优选2号单位面积产量高C .两种水稻单位面积产量相等D .优选1号单位面积产量不大于优选2号单位面积产量 【练习2.11】下列计算正确的是( ) A .b •(a 4b )3=a 7b 4B .x ﹣2y ﹣(2x +y )=﹣x ﹣yC .(a ﹣5)2=a 2﹣25D .(1−2x+1)÷1x 2−1=(x −1)2 【练习2.12】下列计算正确的是( ) A .1+1a =2a B .1a−b−1b−a=0C .a ÷b •1b =aD .−a−b a+b=−1【练习2.13】下列运算结果为a ﹣1的是( ) A .a 2−1a ⋅a a+1B .1−1a C .a+1a÷a a−1D .a 2+2a+1a+1【练习2.14】计算(1+1x−1)÷(1+1x 2−1)的结果为( ) A .1B .x +1C .x+1xD .1x−1【练习2.15】下列计算正确的是( )A .(y2x)2=y 22x 2B .b a−b+a b−a=−1C .(−14)﹣2+(﹣1000)0=1016D .(y6x2)2÷(−y 24x )2=4x 29y 2【练习2.16】已知x −1x=3,则4﹣x 2+3x 的值为( ) A .1B .2C .3D .4【练习2.17】下列计算正确的是( ) A .m 2−2m 4−m 2=m 2+mB .(−yx2)﹣3=−x 6y 3C .a 2a−1+11−a =a ﹣1D .3x 2y +x 32y =32x 5【练习2.18】x +1x=3,则x 2+1x 2= . 【练习2.19】计算:(1−1x−1)÷x−2x 2−1= . 【练习2.20】化简:2x−6x−2÷(5x−2−x −2)= .【练习2.21】计算(1−1x+1)(x +1)的结果是 .【练习2.22】(a +9−4a a−2)÷a 2−9a−2= .【练习2.23】化简(1x−1y)⋅xyx 2−y 2的结果是.【练习2.24】化简:(3x−1+1x+1)•(x 2﹣1)= . 【练习2.25】化简xx 2+2x+1÷(1−1x+1)的结果为 .【练习2.26】已知:a 2﹣3a +1=0,则a +1a−2的值为 . 【练习2.27】计算:(1−1a )•a a 2−1=【练习2.28】化简x 2+xx 2−2x+1÷(2x−1−1x)的结果是 .【练习2.29】计算:x x+3−69−x 2÷2x−3= .【练习2.30】计算:(3a−1−a −1)÷a 2−4a+4a−1= .【练习 2.31】已知m >n >0,分式n m的分子分母都加上1得到分式n+1m+1,则分式n+1m+1n m.(填“<、>或=”)【练习2.32】已知2+23=22×23,3+38=32×38,4+415=42×415,…10+a b =102×ab(a ,b 为正整数),则b ﹣a = .【练习2.33】已知x +x ﹣1=3,则x 2+x ﹣2= ;x 4+x ﹣4=【练习2.34】计算: ①(−3n2m )2= ; ②b a−b−a a−b= .【练习2.35】已知x ,y ,z ,a ,b 均为非零实数,且满足xy x+y=1a 3−b3,yz y+z=1a3,xz x+z=1a 3+b3,xyz xy+yz+zx=281,则a 的值为 .【练习2.36】计算:(x+8x 2−4−2x−2)÷x−4x 2−4x+4.【练习2.37】对x ,y 定义一种新运算T ,规定:T (x ,y )=ax+by2x+y (其中a 、b 均为非零常数),这里等式右边是通常的四则运算,例如:T (0,1)=a×0+b×12×0+1=b .(1)已知T (1,﹣1)=﹣2,T (4,2)=1. ①求a ,b 的值;②若关于m 的不等式组{T(2m ,5−4m)≤4T(m ,3−2m)>p 恰好有3个整数解,求实数p 的取值范围;(2)若T (x ,y )=T (y ,x )对任意实数x ,y 都成立(这里T (x ,y )和T (y ,x )均有意义),则a ,b 应满足怎样的关系式? 【练习2.38】计算:(a +2−5a−2)•2a−43−a. 【练习2.39】化简:(2x−1x+1−x +1)÷x−2x 2+2x+1.【练习2.40】化简:(x 2x−1−x +1)÷4x 2−4x+11−x. 【练习2.41】化简(3a+2+a ﹣2)÷a 2−2a+1a+2.【练习2.42】计算:(x+2x 2−2x−x−1x 2−4x+4)÷x−4x .【练习2.43】化简:1a−1−1a 2+a ÷a 2−1a 2+2a+1【练习2.44】计算:ba 2−b 2÷(aa−b−1).题型三:分式的化简求值【练习3.1】已知:a ,b ,c 三个数满足ab a+b=13,bc b+c=14,ca c+a=15,则abcab+bc+ca的值为( ) A .16B .112C .215D .120【练习3.2】如果a 、b 、c 是非零实数,且a +b +c =0,那么a |a|+b |b|+c |c|+abc|abc|的所有可能的值为( ) A .0B .1或﹣1C .2或﹣2D .0或﹣2【练习3.3】如果a +b =2,那么代数(a −b2a )•a a−b的值是( )A .2B .﹣2C .12D .−12【练习3.4】如果a ﹣3b =0,那么代数式(a −2ab−b 2a )÷a 2−b2a的值是( )A .12B .−12C .14D .1【练习3.5】若a +2b =0,则分式(2a+ba 2−ab+1a)÷a a 2−b2的值为() A .32B .92C .−3b 2D .﹣3b【练习3.6】已知1a−1b=12,则aba−b的值是( )A .12B .−12C .2D .﹣2 【练习3.7】若非零实数m ,n 满足m (m ﹣4n )=0,则分式m 2+1m 2−2mn−12mn的值为( )A .12B .1C .2D .13【练习3.8】若a +b =5,则代数式(b 2a−a )÷(a−b a)的值为( )A .5B .﹣5C .−15D .15【练习3.9】如果m 2+2m ﹣2=0,那么代数式(m +4m+4m )•m2m+2的值是( )A .﹣2B .﹣1C .2D .3【练习3.10】已知x −1x =2,则x 2+1x 2的值为( ) A .2B .4C .6D .8【练习3.11】如果a 2+3a ﹣2=0,那么代数式(3a 2−9+1a+3)⋅a−3a 2的值为( ) A .1B .12C .13D .14【练习3.12】已知1a −1b=4,则a−2ab−b2a−2b+7ab= .【练习3.13】已知aba−b=13,则代数式2a+3ab−2b a−2ab−b的值是 .【练习3.14】若a =2b ≠0,则a 2−b 2a 2−ab的值为 .【练习3.15】已知1a +12b=3,则代数式2a−5ab+4b 4ab−3a−6b的值为 .【练习3.16】若a +b ﹣3ab =0,则1a+1b = .【练习3.17】已知x 为整数,且2x+3+23−x+2x+18x 2−9为整数,则所有符合条件的x 值的和为 .【练习3.18】若a +b =5,ab =3,则a b+ba的值是 .【练习3.19】已知x 2﹣5x +1=0,那么x 2+1x 2= . 【练习3.20】如果x +y =5,那么代数式(1+yx−y )÷xx 2−y 2的值是 .【练习3.21】已知x 2−1x=3,那么x 2+1x 2−2的值为 . 【练习3.22】已知x 2+y 2=3,xy =12,则(1x −1y)÷x 2−y 2xy 的值为 .【练习3.23】如果x 2+x ﹣5=0,那么代数式(1+2x )÷x+2x 3+x 2的值是 . 【练习3.24】已知x 2﹣4x +1=0,则x 2+1x 2= . 【练习3.25】化简分式3a−3b (a−b)2的结果是 .【练习3.26】已知1a +1b=1a+b,则ba+ab的值等于 .【练习3.27】如果a 2﹣a ﹣1=0,那么代数式(1−2a−1a 2)÷a−1a 3的值是 . 【练习3.28】如果2a 2+4a ﹣1=0,那么代数式(a −4a )÷2−aa 2的值是 . 【练习3.29】先化简,再求值:(x 2−2x+4x−1+2﹣x )÷x 2+4x+41−x,其中x 满足x 2﹣4x +3=0.【练习3.30】先化简:(3a+1−a +1)÷a 2−4a+4a+1,并从0,﹣1,2中选一个合适的数作为a 的值代入求值.【练习3.31】先化简,再求值:(x ﹣2+8x x−2)÷x+22x−4,其中x =−12. 【练习3.32】先化简:(3a+1−a +1)÷a 2−4a+4a+1,并从0,﹣1,2中选一个合适的数作为a 的值代入求值.。
湘教版八年级数学上册知识点总结湘教版八年级数学上册知识点总结第一章:分式1.1 分式1.2 分式的乘法和除法1.3 整数指数幂1.4 分式的加法和减法1.5 可化为一元一次方程的分式方程本章复与测试第二章:三角形2.1 三角形2.2 命题与证明2.3 等腰三角形2.4 线段的垂直平分线2.5 全等三角形2.6 用尺规作三角形本章复与测试第三章:实数3.1 平方根3.2 立方根3.3 实数第四章:一元一次不等式(组)4.1 不等式4.2 不等式的基本性质4.3 一元一次不等式的解法4.4 一元一次不等式的应用4.5 一元一次不等式组本章复与测试第五章:二次根式5.1 二次根式5.2 二次根式的乘法和除法5.3 二次根式的加法和减法本章复与测试知识点总结第一章:分式1.构建前的回顾在阅读教材P1-40之前,我们需要回顾一下相关的知识点。
2.分式的概念分式是指以分数形式表示的代数式,其中分母不为零。
3.分式的性质分式有以下基本性质:分式的分子与分母都乘以同一个非零数,所得分式与原分式相等。
分式的分子与分母约去公因式,所得分式与原分式相等。
分式的符号可以通过改变分子、分母或分式本身的符号来改变,但分式的值不变。
最简分式是指分子与分母没有公因式的分式。
4.分式的运算分式的加减法:同分母分式相加减,分子相加减,分母不变;异分母分式相加减,先找到它们的最简公分母,然后将分子相加减,分母不变。
分式的乘除法:分式乘法就是将分子和分母分别相乘,然后约分;分式除法就是将除式的分子和分母颠倒位置,然后与被除式相乘。
5.分式方程分式方程是指含有分式的方程,可以通过将分式化为一元一次方程来解决。
第二章:三角形本章介绍了三角形的基本概念、命题与证明、等腰三角形、线段的垂直平分线、全等三角形和用尺规作三角形等知识点。
第三章:实数本章介绍了实数的概念,以及平方根和立方根的计算方法。
第四章:一元一次不等式(组)本章介绍了不等式的基本性质、一元一次不等式的解法和应用,以及一元一次不等式组的解法。
1.4 分式的加法和减法 1.4.1 同分母的分式加、减法(第10课时)教学目标1类比同分母分数加减法的法则得出同分母分式加减法则。
2 会进行同分母分式加减法的运算。
重点、难点:重 点:同分母分式加、减运算 难 点:同分母分式加减运算的结果的处理。
教学过程一 创设情境,导入新课 做一做大约公元250年前后,希腊数学家丢番图在研究一个数学问题时,解出了两个分数:161255、,欲知丢番图在研究什么问题,请你先计算:22161255⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭等于多少?(学生完成,一个学生黑板上板演)221612256144256144400165525252525+⎛⎫⎛⎫+=+=== ⎪ ⎪⎝⎭⎝⎭由于16=24,原来丢番图在研究把24写成两个数的平方和的形式即:2224x y =+,他求得了一组解:165125x y ⎧=⎪⎪⎨⎪=⎪⎩还有没有其他的解呢?如果同学们感兴趣,可以在课后探索。
下面我们来看看:2561442561444001625252525++===用到了什么法则?同分母分数相加的法则:同分母分数相加减,分母不变,分子相加减同分母的分式相加减的法则和同分母分数相加减的法则一样。
这节课我们来学习-----同分母的分式加、减法二 合作交流,探究新知1 同分母分式加减法的法则: 同分母分式相加减,分母不变,分子相加减。
2 法则的应用例1 计算:233x xyx y x y+++ 解:2233333()3x xy x xy x x y x x y x y x y x y+++===++++ 强调:把分子相加后,如果能分解因式要分解因式,与分母约分。
例2 计算:22222222x y x xy y x xy y--+-+ 解:()22222222222()()222x y x y x y x y x yx xy y x xy y x xy y x y x y -+-+-===-+-+-+-- 例3 计算:f fg g -+ 解:(00f f f f g g g g-+-+===)从上式可以看出:ff gg -与是一对互为相反数,所以:f f g g -=-,又f fg g-=-,所以:f f fg g g-==--。
课题:1.4.1 分式的加法和减法(一)【教学目标】1、在熟悉分数的加减法则基础上,理解同分母分式加法和减法的运算法则,会进行同分母分式的加减运算;2、培养学生乐于探究,合作学习的习惯,提升学生迁移类推能力。
【教学重点】同分母分式的加、减运算【教学难点】同分母分式的加、减运算及结果的化简【教学过程】一、情境引入1、计算: 1355+= 8299-= 7588+= 751212-= 2、思考:同分母分数的加减法则是什么?3、类比同分母分类的加减法,同分母分式的加减又如何计算?二、自主探索1、尝试解决下列问题(1)738x x x +- (2)233x xy x y x y+++ 2、归纳:同分母分式相加减,分母不变,把分子相加减,即f h f hg g g+±= 三、典例精析例1:计算: (1);y x y y x x +++ (2) .332yx xy y x x --- 让学生自主归纳方法,提醒学生按法则进行分子的加减后,一定要求结果化为最简;例2:计算:a b bc b a ac -+-归纳:分式的分子、分母和分式本身各有一个符号,这三个符号可以同时改变两个符号,即 f f f g g g-==-- 变式练习:计算(1)2111x x x -+-- (2)2551x x x x---在第(2)中,可以让学生先判断,是否属于同分母分式运算。
四、归纳总结1、同分母分式加减计算法则是什么?2、在具体计算时要注意什么问题?五、巩固练习1、化简2111x x x+--的结果是( ) A.1x + B. 11x + C.1x - D.1x x- 2、下列运算正确的是( ) A .(2a 2)3=6a 6B .-a 2b 2•3ab 3=-3a 2b 5 C. 1b a a b b a +=--- D. 21111a a a -•=-+ 3、计算:(1) 222232a b a a b a b +-=-- ; (2)211a a a-+= ; 4、先化简再求值:2111121x x x x x x +⎛⎫+÷ ⎪---+⎝⎭,其中2x =-。
湘教版八年级数学上册知识点总结第1章分式1.1 分式1.2 分式的乘法和除法1.3 整数指数幂1.4 分式的加法和减法1.5 可化为一元一次方程的分式方程】本章复习与测试第2章三角形2.1 三角形2.2 命题与证明2.3 等腰三角形2.4 线段的垂直平分线2.5 全等三角形2.6 用尺规作三角形-本章复习与测试第3章实数3.1 平方根3.2 立方根3.3 实数第4章一元一次不等式(组)4.1 不等式4.2 不等式的基本性质(4.3 一元一次不等式的解法4.4 一元一次不等式的应用4.5 一元一次不等式组本章复习与测试第5章二次根式5.1 二次根式5.2 二次根式的乘法和除法5.3 二次根式的加法和减法…本章复习与测试知识点总结第一章:分式一、课前构建:回顾相关知识:认真阅读教材P1-40二、课堂点拨:知识点一:分式的概念.★考点1:分式的定义:知识点二:分式的性质★考点4:分式的基本性质:分式的分子与分母都乘,所得分式与原分式相等。
即(其中)分式的分子与分母约去公因式,所得分式与原分式相等。
即(其中)分式的变号法则:分式的分子、分母与分式本身的符号,改变其中的任何两个,分式的值不变。
即。
…★考点5:最简分式(1)约分:把一个分式的分子与分母的公因式约去,称为分式的约分。
约分的方法:先把分子与分母因式分解,再约去公因式。
(2)最简分式:分子与分母没有分式,叫做最简分式。
.知识点三:分式的运算★考点6:分式的加减法①同分母分式相加减,分母,把分子。
即。
②异分母分式相加减,要先,即把各个分式的分子与分母都乘适当的同一个非零多项式,化为同分母的分式,再加减。
即。
①最简公分母的系数是各分母系数的最小公倍数;—②最简公分母的字母和式子是各分母的所有字母和式子。
③最简公分母的每个字母或式子的指数是它在各分母中次数最高。
例7、计算的结果是。
★考点7:分式的乘除法乘:分式乘分式,把分子乘分子,分母乘分母,分别作为积的分子、分母,然后约去分子与分母的公因式。