简谐振动
- 格式:doc
- 大小:1.67 MB
- 文档页数:28
什么是简谐振动简谐振动是物体在一定条件下的周期性振动,其运动规律可以用正弦或余弦函数来描述。
本文将从简谐振动的定义、特点、数学表达以及应用领域等方面进行探讨,旨在帮助读者全面了解简谐振动。
一、简谐振动的定义简谐振动是指物体在平衡位置附近,受到一个恢复力作用后产生的周期性振动。
这个恢复力与物体偏离平衡位置的位移成正比,方向恢复到平衡位置。
简谐振动系统通常包括弹簧和质点等元素。
二、简谐振动的特点1. 振动是周期性的:简谐振动在某一时间段内会重复相同的运动状态,振动周期保持恒定。
2. 运动轨迹是正弦函数:简谐振动的运动可以用正弦或余弦函数来描述,因此振幅会随时间做正弦或余弦变化。
3. 频率和周期相关:频率是指单位时间内振动的次数,周期是指完成一次完整振动所需要的时间。
它们是互为倒数的量。
4. 振动能量的转化:在简谐振动中,物体在平衡位置附近的振动会不断地在势能和动能之间转化,总能量守恒。
三、简谐振动的数学表达对于简谐振动,我们可以用如下数学表达式来描述:x = A * cos(ωt + φ)其中,x表示物体的位移,A为振幅,ω为角频率,t为时间,φ为初相位。
四、简谐振动的应用简谐振动在各个领域都有广泛应用,如:1. 物理学:简谐振动是研究其他振动的基础,例如机械振动、电磁振动等。
2. 工程学:简谐振动的特性被应用于建筑、桥梁、风力发电等领域,用于分析和设计结构的稳定性。
3. 车辆行驶:车辆在交通流中的运动可以近似地看作是简谐振动,因此简谐振动的相关理论有助于改善车辆的悬挂系统和乘坐舒适性。
4. 生物学:生物体内的各种振动,如心脏的跳动、呼吸等,都可以用简谐振动来描述和研究。
5. 音乐学:音乐中的音调和音色变化也可以用简谐振动的理论来解释。
总结简谐振动是一种周期性的振动,其运动规律可以用正弦或余弦函数来描述。
它具有振动周期恒定、振动能量转化和运动轨迹为正弦函数等特点。
简谐振动在物理学、工程学、车辆行驶、生物学以及音乐学等领域都有广泛的应用。
简谐振动的特性与公式简谐振动是指物体在回复力的作用下,以一个固定的角频率在平衡位置周围做往复运动的现象。
它是力学中的重要概念,广泛应用于物理学、工程学以及其他领域。
本文将探讨简谐振动的特性以及相关的公式。
一、简谐振动的特性1. 平衡位置与位移:简谐振动的平衡位置是物体在无外力作用下所处的位置,位移是物体相对于平衡位置的偏移量。
在简谐振动中,物体在平衡位置附近做往复运动,位移大小与方向随时间变化。
位移可以用矢量表示,方向与偏离平衡位置的方向相反。
2. 振动的周期与频率:简谐振动的周期是完成一次完整往复运动所需的时间,用符号T表示。
频率是单位时间内完成的往复运动次数,用符号f表示。
周期和频率之间存在以下关系:f=1/T。
3. 振幅与最大速度:简谐振动的振幅是位移的最大值,表示振动的幅度大小。
最大速度是物体在振动过程中达到的最大速度,与振幅相关。
振幅越大,最大速度越大。
4. 角频率与周期:角频率是简谐振动中角度随时间变化的快慢程度,用符号ω表示。
角频率与周期之间存在以下关系:ω=2πf=2π/T。
二、简谐振动的公式1. 位移与时间的关系:简谐振动的位移随时间的变化可以用正弦函数来描述。
当物体从平衡位置出发向一个方向运动时,位移的函数关系可以表示为:x(t) = A * sin(ωt),其中x(t)为时间t时刻的位移,A为振幅,ω为角频率。
2. 速度与时间的关系:简谐振动的速度随时间的变化也可以用正弦函数来描述。
速度的函数关系可以表示为:v(t) = A * ω * cos(ωt),其中v(t)为时间t时刻的速度。
3. 加速度与时间的关系:简谐振动的加速度随时间的变化同样可以用正弦函数来描述。
加速度的函数关系可以表示为:a(t) = -A * ω^2 *sin(ωt),其中a(t)为时间t时刻的加速度。
以上公式是简谐振动中最基本的公式,通过它们可以计算出简谐振动过程中任意时刻的位移、速度和加速度。
三、应用举例简谐振动的特性与公式在实际应用中有着广泛的应用。
简谐振动理论概述简谐振动是物理学中一种基本的振动形式,广泛应用于机械、电子、光学等领域。
本文将概述简谐振动的理论基础及相关特性。
一、简谐振动的定义与基本特性简谐振动是指在恢复力作用下,物体围绕平衡位置做往复振动的一种运动形式。
它具有以下几个基本特性:1. 平衡位置:简谐振动的平衡位置是物体受到恢复力时的位置,也是物体运动的稳定状态。
2. 往复运动:物体在简谐振动中以一定的频率围绕平衡位置做往复运动,即向远离平衡位置的方向运动,然后再回到平衡位置。
3. 振幅:振幅是简谐振动的最大偏离平衡位置的距离,它决定了振动的强度。
4. 周期与频率:简谐振动的周期是物体完成一次完整振动所需的时间,频率是单位时间内振动的次数。
它们之间存在着倒数关系,即周期等于频率的倒数。
二、简谐振动的数学表示简谐振动可以通过数学函数来描述。
其中,最常用的是正弦函数和余弦函数。
简谐振动的数学表示形式如下:x(t) = A * sin(ωt + φ)其中,x(t)表示时间t时物体离平衡位置的距离;A表示振幅;ω表示角频率,与振动的周期和频率有关;φ表示相位,描述振动的初始时刻。
三、简谐振动的力学模型简谐振动的力学模型通常可以使用弹簧振子来描述。
弹簧振子由弹簧和质点组成,在无阻尼情况下可以实现简谐振动。
根据胡克定律,弹簧振子的恢复力与质点的位移成正比,可以通过以下公式表示:F = -kx其中,F表示恢复力的大小;k表示弹簧的劲度系数;x表示质点相对平衡位置的位移。
四、简谐振动的能量在简谐振动中,系统的总能量保持不变,由动能和势能组成。
质点的动能和势能在振动过程中相互转换。
动能和势能可以通过以下公式表示:动能 K = 1/2 * m * v^2势能 U = 1/2 * k * x^2其中,m表示质点的质量;v表示质点的速度;k表示弹簧的劲度系数;x表示质点相对平衡位置的位移。
五、简谐振动的应用简谐振动在各个领域都有重要的应用。
以下是一些常见的应用场景:1. 机械振动:简谐振动广泛应用于机械系统中,如弹簧振子、钟摆等。
一、简谐运动1.定义。
物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动,叫简谐运动。
表达式为:F= -kx⑴简谐运动的位移必须是指偏离平衡位置的位移。
也就是说,在研究简谐运动时所说的位移的起点都必须在平衡位置处。
⑵回复力是一种效果力。
是振动物体在沿振动方向上所受的合力。
⑶“平衡位置”不等于“平衡状态”。
平衡位置是指回复力为零的位置,物体在该位置所受的合外力不一定为零。
(如单摆摆到最低点时,沿振动方向的合力为零,但在指向悬点方向上的合力却不等于零,所以不处于平衡状态)⑷F= -kx是判断一个振动是不是简谐运动的充分必要条件。
凡是简谐运动沿振动方向的合力必须满足该条件;反之,只要沿振动方向的合力满足该条件,那么该振动一定是简谐运动。
2.熟练掌握做简谐运动的物体在某一时刻(或某一位置)的位移x、回复力F、加速度a、速度v这四个矢量的相互关系。
⑴由定义知:F∝x,方向相反。
⑵由牛顿第二定律知:F∝a,方向相同。
⑶由以上两条可知:a∝x,方向相反。
⑷v和x、F、a的关系最复杂:当v、a同向(既 v、F同向,也就是v、x反向)时v一定增大;当v、a反向(既 v、F反向,也就是v、x同向)时,v一定减小。
3.从总体上描述简谐运动的物理量。
振动的最大特点是往复性或者说是周期性。
因此振动物体在空间的运动有一定的运动范围,用振幅A来描述;在时间上用周期T来描述完成一次全振动所须的时间。
⑴振幅A是描述振动强弱的物理量。
(注意一定要将振幅跟位移相区别,在简谐运动的振动过程中,振幅是不变的而位移是时刻在改变的)⑵周期T是描述振动快慢的物理量。
(频率f=1/T也是描述振动快慢的物理量)周期由振动系统本身的因素决定,叫固有周期。
对任何简谐振动有共同的周期公式:(其中m是振动物体的质量,k是回复力系数,既振动是简谐运动的判定式F= -kx中的比例系数,对于弹簧振子k就是弹簧的劲度,对其它简谐运动它就不再是弹簧的劲度了)。
简谐振动的特征简谐振动是一种重要的物理现象,广泛应用于各个领域。
本文将探讨简谐振动的特征和相关概念。
一、简谐振动的定义简谐振动是指一个物体在恢复力作用下,沿一条直线或围绕一个平衡位置作周期性的往复运动。
简谐振动的周期与振动频率是一个常数,且振幅保持不变。
二、简谐振动的特征1. 平衡位置:简谐振动存在一个平衡位置,当物体位于该位置时,不受外力的作用,保持静止。
2. 振幅:振幅指的是简谐振动中物体运动的最大位移距离。
振幅越大,物体运动的幅度越大。
3. 周期:简谐振动完成一个往复运动所需要的时间称为周期。
周期与振动频率成反比,且周期保持不变。
4. 频率:简谐振动的频率是指单位时间内所完成的往复运动的次数。
频率与周期成反比,单位为赫兹。
5. 振动方向:简谐振动沿一条直线往复运动,振动的方向与物体运动的方向一致。
三、简谐振动的数学表达简谐振动可以使用函数来进行数学表达,常见的简谐振动方程为:x = A*cos(ωt+φ),其中x表示位移,A表示振幅,ω表示角频率,t表示时间,φ表示初相位。
四、简谐振动的应用简谐振动在各个领域都有广泛应用,以下列举几个例子:1. 机械振动:机械钟摆、弹簧振子等都是简谐振动的典型例子。
利用简谐振动的特性可以设计制造出精确的计时设备和振动传感器。
2. 电路振荡:电路中的LC振荡器、RC振荡器等也是基于简谐振动原理工作的。
这些振荡器广泛应用于通信设备、无线电设备等。
3. 光学振动:光学领域中的激光器和光纤传感器等也利用了简谐振动的特性。
通过控制光学振动频率和振幅可以实现光学信号的调制和传输。
4. 环境监测:利用简谐振动的特性可以设计制造出各种传感器,用于环境监测、地震预警等领域,提供重要的科学数据支持。
五、简谐振动的影响因素简谐振动的特征受到几个重要因素的影响:1. 恢复力:恢复力的大小和方向决定了简谐振动的特征。
恢复力越大,振幅越小;恢复力方向不同,振动方向也不同。
2. 质量:物体的质量越大,简谐振动的周期越长。
简谐振动的特性与公式推导简谐振动是指一个物体在受到一个恢复力作用下,沿着某一方向以往复运动的现象。
下面将介绍简谐振动的特性以及相关的公式推导。
1. 简谐振动的定义及特性简谐振动的定义是指物体的运动是沿着某一方向,且回复力与物体的位移成正比的振动。
它具有以下几个特性:(1)周期性:简谐振动的运动是周期性的,即物体的位移随时间呈现一定的重复模式。
(2)恢复力的方向:简谐振动的恢复力与物体的位移方向相反。
当物体偏离平衡位置时,恢复力将会把物体拉回到平衡位置。
(3)振幅和频率:振幅是指物体在振动过程中偏离平衡位置的最大位移量;频率是指单位时间内振动的次数。
振幅和频率决定了简谐振动的振动幅度大小和快慢。
2. 简谐振动的数学描述简谐振动可以用一个数学函数来描述,即正弦函数或余弦函数。
设物体的位移为x,时间为t,振动的周期为T,振幅为A,则简谐振动可以用以下函数表示:x = A*cos(2πt/T)这个函数描述了物体随时间变化的位移。
振幅A决定了物体振动的最大位移量,而周期T决定了振动完成一次的时间。
3. 简谐振动的运动方程简谐振动的运动方程可以通过牛顿第二定律推导得到。
设物体的质量为m,受到的恢复力与位移成正比,比例常数为k,则根据牛顿第二定律可以得到如下的运动方程:F = -kx其中,F 表示恢复力, x 表示位移。
由于恢复力与位移方向相反,所以加了负号。
结合牛顿第二定律 F = ma,可以得到:ma = -kx进一步化简为:m(d²x/dt²) = -kx这是简谐振动的运动方程。
4. 简谐振动的周期和频率由于简谐振动的运动方程是一个二阶微分方程,其通解为 x =A*cos(ωt + φ),其中ω = √(k/m) 是角频率,φ 是初相位。
根据周期的定义,我们可以得到简谐振动的周期与角频率的关系:T = 2π/ω而频率 f 是周期的倒数,即:f = 1/T = ω/2π这个公式表明,角频率和频率由弹性系数 k 和质量 m 决定,而与振幅 A 无关。
简谐振动的基本概念与公式简谐振动是物理学中重要的概念,广泛应用于各个领域。
本文将介绍简谐振动的基本概念、公式以及相关应用。
一、简谐振动的基本概念简谐振动是指物体在一个稳定平衡位置附近以往复性质作振动的现象。
它的特点是周期性、对称性和线性,具有恢复力和惯性力的相互作用。
二、描述简谐振动的公式1. 位移与时间的关系简谐振动的位移与时间的关系可以用正弦函数来描述:x(t) = A * sin(ωt + φ)其中,x(t)表示某一时刻的位移,A表示振幅,ω表示角频率,t表示时间,φ表示初相位。
2. 速度与时间的关系速度与时间的关系可以通过位移对时间的导数来表示:v(t) = A * ω * cos(ωt + φ)其中,v(t)表示某一时刻的速度。
3. 加速度与时间的关系加速度与时间的关系可以通过速度对时间的导数来表示:a(t) = -A * ω^2 * sin(ωt + φ)其中,a(t)表示某一时刻的加速度。
三、简谐振动的重要性简谐振动在物理学的许多领域中都有广泛的应用。
以下是其中几个重要的应用:1. 机械振动简谐振动理论被广泛应用于机械振动领域,如弹簧振子、摆锤等。
通过分析系统的位移、速度和加速度,可以预测系统的动态行为,为设计和优化机械系统提供基础。
2. 声学声波的传播可以通过简谐振动的模型进行描述。
例如,音叉的振动可以看作一个简谐振动系统,通过调整频率和振幅可以产生不同的音调。
3. 电路振荡电路中的振荡器常常采用简谐振动的原理。
例如,由电感、电容和电阻构成的LCR电路可以通过调整元件的参数实现简谐振荡,产生稳定的电信号。
4. 分子振动在化学领域,简谐振动理论被用于描述分子的振动模式。
通过分析分子的谐振频率和振幅,可以预测分子的振动能级和光谱特性。
结论简谐振动作为物理学中的基本概念,具有重要的理论和实际应用价值。
通过上述公式和相关实例的介绍,我们可以更加深入地理解简谐振动的基本特性和应用领域。
在实际问题的研究和应用中,我们可以利用简谐振动的理论框架,对系统的动态行为进行分析和优化。
简谐振动的特征与简谐振动的公式简谐振动是物理学中常见的一种振动方式,它具有许多特征和可以用公式进行描述。
本文将介绍简谐振动的特征以及常用的简谐振动公式。
1. 特征描述简谐振动是指物体在回复力的作用下,沿某一直线方向上做连续、周期性的往复运动。
简谐振动具有以下几个特征:(1) 幅度恒定:在简谐振动中,物体的振幅是恒定的,即振动的最大偏离位置。
(2) 频率恒定:简谐振动的频率是恒定的,即单位时间内的振动周期数。
(3) 相位差恒定:简谐振动中,不同物体的振动状态可以用相位角来描述,相位差的差别决定了振动状态的差异。
2. 简谐振动公式简谐振动的运动可以用以下公式进行描述:x = A*sin(ωt + φ)其中,x是物体的位移,A是振幅,ω是角频率,t是时间,φ是初始相位。
振幅A表示物体从平衡位置最大的位移距离,角频率ω表示单位时间内完成的往复运动的周期数,并且与振动的频率f有以下关系:ω = 2πf,其中π是圆周率。
初始相位φ表示物体在某一时刻位于位移最大的正方向上的位置。
3. 简谐振动的特殊情况除了上述一般情况的简谐振动公式,还存在几种特殊情况:(1) 无初相位差的简谐振动:当两个物体的简谐振动的振动频率相同且初相位差为0时,它们的振动状态完全一致。
(2) 反向偏移的简谐振动:若两个物体的简谐振动的振幅相等,振动频率相同,但初相位差为π或180°时,它们的位移与时间的关系将呈现反向的偏移。
(3) 超前偏移的简谐振动:若两个物体的简谐振动的振幅相等,振动频率相同,但初相位差为π/2或90°时,它们的位移与时间的关系将呈现超前的偏移。
4. 应用举例简谐振动广泛应用于许多物理学和工程学的领域,例如:(1) 机械振动:对于工程结构的振动现象,可以通过简谐振动公式进行分析和计算。
(2) 光学领域:光的波动也可以描述为简谐振动,例如光的干涉、衍射和偏振现象等。
(3) 电路中的交流电信号:电路中的交流电信号也可以用简谐振动的公式进行描述和分析。
分析简谐振动的几个概念简谐振动是物理学中一种重要的振动模式,它在许多自然界和工程应用中都有广泛的应用。
本文将对简谐振动的几个概念进行详细的分析。
1. 简谐振动的定义:简谐振动是指一个物体在给定的恢复力作用下,沿着一条直线或者围绕某个平衡位置作往复运动的振动。
简谐振动的特点是周期性、恢复力的大小与物体偏离平衡位置的距离成正比,且与物体的质量无关。
2. 简谐振动的公式:简谐振动的运动方程可以通过牛顿第二定律推导得到,在不考虑阻尼和扰动力的情况下,运动方程可以表示为:mx'' + kx = 0,其中m为物体的质量,k为恢复力的常数,x为物体相对于平衡位置的位移,x''为加速度。
3. 简谐运动的特征:简谐振动有几个重要的特征:振动频率、周期、角频率、振幅和相位。
振动频率指的是单位时间内完成的振动次数,它与振动周期的倒数成反比。
振动周期是指完成一个完整的往复运动所需要的时间。
角频率是振动频率的2π倍,通常用符号ω来表示。
振幅是指振动物体离开平衡位置的最大位移。
相位是指振动物体位移相对于某一参考点的位置,可以用角度或时间来表示。
4. 简谐振动的能量:简谐振动的能量包括动能和势能两部分。
在振动的过程中,当物体处于平衡位置时,动能为零,势能最大;当物体处于最大振幅位置时,势能为零,动能最大。
根据机械能守恒定律,物体的总能量在振动过程中保持不变。
5. 简谐振动的叠加原理:叠加原理是指当系统中有多个简谐振动同时存在时,每个振动的叠加效果不影响其他振动的情况下,系统的振动可以看作是这些简谐振动的叠加。
这是因为简谐振动是线性的,可用叠加原理表示。
6. 简谐振动的应用:简谐振动在日常生活和科学研究中有广泛的应用。
钟摆的摆动、弹簧的振动、电路中的交流电振荡等都可以看作是简谐振动。
通过研究简谐振动的特性,可以推导出更复杂振动模式的行为,如非线性振动和混沌振动等。
简谐振动是物理学中一种重要的振动模式,它具有周期性、恢复力与位移成正比等特点。
简谐振动理论简谐振动是物理学中一个重要的概念,它在很多领域都有广泛的应用。
本文将从理论层面介绍简谐振动的基本概念、特点以及相关公式,并通过实例分析来加深对简谐振动的理解。
一、简谐振动的基本概念简谐振动是指一个物体在某一平衡位置附近,受到一个与位移成正比且方向相反的恢复力作用下,以往复的方式运动的现象。
在简谐振动中,物体的运动是沿着一个固定的轴线,且振动幅度相对较小。
二、简谐振动的特点1. 周期性:简谐振动是周期性的,即物体在一个周期内完成一次往复运动。
周期的倒数称为频率,用符号f表示,频率与周期的关系为f=1/T,其中T为振动的周期。
2. 等幅性:简谐振动的振幅保持不变,即在合适的条件下,振动的振幅始终保持恒定。
3. 相位差:简谐振动中,若有两个物体同时进行振动,则它们之间存在相位差。
相位差表示两个物体振动的状态之间的差异。
三、简谐振动的数学描述简谐振动可以通过一个周期函数来描述,即正弦函数或余弦函数。
振动的数学表达式可以表示为x=Acos(ωt+φ),其中x为物体的位移,A为振幅,ω为角频率,t为时间,φ为初相位。
在简谐振动中,角频率和频率之间的关系为ω=2πf,其中2π为一个周期。
四、简谐振动的应用简谐振动在物理学中有广泛的应用,以下列举几个常见的领域:1. 机械振动:在机械工程中,简谐振动理论广泛应用于弹簧振子、摆锤等机械系统的分析与设计中。
2. 电路振荡:在电路中,简谐振动理论被应用于振荡电路的设计与分析,如LC振荡电路、谐振电路等。
3. 波动现象:光波、声波等波动现象可以用简谐振动理论进行描述和分析,进一步帮助我们了解波动的性质和行为。
4. 分子振动:分子在化学反应中的振动行为也可以通过简谐振动理论进行研究,有助于我们理解分子结构和化学反应机制。
五、实例分析以弹簧振子为例来实际分析简谐振动。
弹簧振子由一个质量为m的物体通过弹簧连接于固定支点,在没有外力作用下,物体将沿着弹簧的轴线进行振动。
什么是简谐振动介绍简谐振动的特性与应用知识点:简谐振动的概念与特性简谐振动是一种基本的振动形式,它是指物体在恢复力作用下,沿着固定轴线进行的往复运动。
在简谐振动中,物体的加速度与位移成正比,且方向相反。
这种振动具有以下特性:1.周期性:简谐振动的运动规律具有周期性,即物体完成一个完整的往复运动所需的时间是固定的。
这个周期被称为振动周期,用T表示。
2.振幅:简谐振动的最大位移称为振幅,用A表示。
振幅反映了振动的强度,即物体从平衡位置偏离的最大距离。
3.频率:简谐振动的频率f是指单位时间内完成的振动次数,它与振动周期T的关系为:f = 1/T。
频率的单位是赫兹(Hz)。
4.角频率:简谐振动的角频率ω是指物体在单位时间内沿圆周运动的弧度数,它与振动周期T的关系为:ω = 2πf。
角频率的单位是弧度每秒(rad/s)。
5.相位:简谐振动的不同时刻,物体所处的位置和速度状态称为相位。
相位差反映了两个简谐振动之间的相对位置关系。
6.谐波:简谐振动可以看作是无数个谐波(正弦或余弦波)叠加而成。
谐波是指振动方程中的频率为整数倍的角频率的振动分量。
知识点:简谐振动的应用简谐振动在生活和科学研究中具有广泛的应用,以下是一些常见的应用领域:1.机械振动:简谐振动在机械领域中具有重要意义,如桥梁、建筑物的抗震设计,以及各种振动机械的研究和制造。
2.声学:声波是一种常见的简谐振动,它在生活中应用于音乐、语音传播等方面。
声学的研究有助于提高音质和降低噪声污染。
3.电磁学:电磁波也是一种简谐振动,它在无线电、电视、手机等通信技术中发挥着重要作用。
4.物理学:简谐振动在物理学中具有基础地位,如弹簧振子、单摆等实验模型,它们有助于研究物体运动的规律。
5.生物学:生物体内外的许多振动现象都可以看作是简谐振动,如人的呼吸、心跳等。
研究简谐振动有助于了解生物体的生理功能和生态平衡。
6.控制工程:在控制工程领域,简谐振动用于分析和设计各种振动控制系统,以提高系统的稳定性和性能。
一. 教学内容:第十一章机械振动本章知识复习归纳二. 重点、难点解析(一)机械振动物体(质点)在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力。
回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力。
产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用。
b、阻力足够小。
(二)简谐振动1. 定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。
简谐振动是最简单,最基本的振动。
研究简谐振动物体的位置,常常建立以中心位置(平衡位置)为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。
因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即F=-k x,其中“-”号表示力方向跟位移方向相反。
2. 简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比,方向跟位移方向相反的回复力作用。
3. 简谐振动是一种机械运动,有关机械运动的概念和规律都适用,简谐振动的特点在于它是一种周期性运动,它的位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能)都随时间做周期性变化。
(三)描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入下面几个物理量。
1. 振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“A”表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒。
2. 周期和频率,周期是振子完成一次全振动的时间,频率是一秒钟内振子完成全振动的次数。
振动的周期T跟频率f之间是倒数关系,即T=1/f。
振动的周期和频率都是描述振动快慢的物理量,简谐振动的周期和频率是由振动物体本身性质决定的,与振幅无关,所以又叫固有周期和固有频率。
(四)单摆:摆角小于5°的单摆是典型的简谐振动。
细线的一端固定在悬点,另一端拴一个小球,忽略线的伸缩和质量,球的直径远小于悬线长度的装置叫单摆。
单摆做简谐振动的条件是:最大摆角小于5°,单摆的回复力F是重力在圆弧切线方向的分力。
单摆的周期公式是T=。
由公式可知单摆做简谐振动的固有周期与振幅,摆球质量无关,只与L 和g有关,其中L是摆长,是悬点到摆球球心的距离。
g是单摆所在处的重力加速度,在有加速度的系统中(如悬挂在升降机中的单摆)其g应为等效加速度。
(五)振动图象。
简谐振动的图象是振子振动的位移随时间变化的函数图象。
所建坐标系中横轴表示时间,纵轴表示位移。
图象是正弦或余弦函数图象,它直观地反映出简谐振动的位移随时间作周期性变化的规律。
要把质点的振动过程和振动图象联系起来,从图象可以得到振子在不同时刻或不同位置时位移、速度、加速度,回复力等的变化情况。
(六)阻尼振动、受迫振动、共振。
简谐振动是一种理想化的振动,当外界给系统一定能量以后,如将振子拉离开平衡位置,放开后,振子将一直振动下去,振子在做简谐振动的图象中,振幅是恒定的,表明系统机械能不变,实际的振动总是存在着阻力,振动能量总要有所耗散,因此振动系统的机械能总要减小,其振幅也要逐渐减小,直到停下来。
振幅逐渐减小的振动叫阻尼振动,阻尼振动虽然振幅越来越小,但振动周期不变,振幅保持不变的振动叫无阻尼振动。
振动物体如果在周期性外力──策动力作用下振动,那么它做受迫振动,受迫振动达到稳定时其振动周期和频率等于策动力的周期和频率,而与振动物体的固有周期或频率无关。
物体做受迫振动的振幅与策动力的周期(频率)和物体的固有周期(频率)有关,二者相差越小,物体受迫振动的振幅越大,当策动力的周期或频率等于物体固有周期或频率时,受迫振动的振幅最大,叫共振。
【典型例题】[例1] 一弹簧振子在一条直线上做简谐运动,第一次先后经过M、N两点时速度v(v≠0)相同,那么,下列说法正确的是()A. 振子在M、N两点受回复力相同B. 振子在M、N两点对平衡位置的位移相同C. 振子在M、N两点加速度大小相等D. 从M点到N点,振子先做匀加速运动,后做匀减速运动解析:建立弹簧振子模型如图所示,由题意知,振子第一次先后经过M、N两点时速度v相同,那么,可以在振子运动路径上确定M、N两点,M、N两点应关于平衡位置O对称,且由M运动到N,振子是从左侧释放开始运动的(若M点定在O点右侧,则振子是从右侧释放的)。
建立起这样的物理模型,这时问题就明朗化了。
因位移、速度、加速度和回复力都是矢量,它们要相同必须大小相等、方向相同。
M、N两点关于O 点对称,振子回复力应大小相等、方向相反,振子位移也是大小相等,方向相反。
由此可知,A、B选项错误。
振子在M、N两点的加速度虽然方向相反,但大小相等,故C选项正确。
振子由M→O速度越来越大,但加速度越来越小,振子做加速运动,但不是匀加速运动。
振子由O→N速度越来越小,但加速度越来越大,振子做减速运动,但不是匀减速运动,故D选项错误,由以上分析可知,该题的正确答案为C。
点评:(1)认真审题,抓住关键词语。
本题的关键是抓住“第一次先后经过M、N两点时速度v相同”。
(2)要注意简谐运动的周期性和对称性,由此判定振子可能的路径,从而确定各物理量及其变化情况。
(3)要重视将物理问题模型化,画出物理过程的草图,这有利于问题的解决。
[例2] 一质点在平衡位置O附近做简谐运动,从它经过平衡位置起开始计时,经0.13 s质点第一次通过M 点,再经0.1 s第二次通过M点,则质点振动周期的可能值为多大?解析:将物理过程模型化,画出具体的图景如图1所示。
设质点从平衡位置O向右运动到M点,那么质点从O到M运动时间为0.13 s,再由M经最右端A返回M经历时间为0. 1 s;如图2所示。
另有一种可能就是M点在O点左方,如图3所示,质点由O点经最右方A点后向左经过O点到达M 点历时0.13 s,再由M向左经最左端A,点返回M历时0.1 s。
根据以上分析,质点振动周期共存在两种可能性。
如图2所示,可以看出O→M→A历时0.18 s,根据简谐运动的对称性,可得到T1=4×0.18 s=0.72 s。
另一种可能如图3所示,由O→A→M历时t l=0.13 s,由M→A’历时t2=0.05 s设M→O历时t,则4(t+t2)=t1+2t2+t,解得t=0. 01 s,则T2=4(t+t2)=0.24 s所以周期的可能值为0.72 s和0.24 s说明:(1)本题涉及的知识有:简谐运动周期、简谐运动的对称性。
(2)本题的关键是:分析周期性,弄清物理图景,判断各种可能性。
(3)解题方法:将物理过程模型化、分段分析、讨论。
[例3] 甲、乙两弹簧振子,振动图象如图所示,则可知()A. 两弹簧振子完全相同B. 两弹簧振子所受回复力最大值之比F甲∶F乙=2∶1C. 振子甲速度为零时,振子乙速度最大D. 振子的振动频率之比f甲∶f乙=1∶2解析:从图象中可以看出,两弹簧振子周期之比T甲∶T乙=2∶1,得频率之比f甲∶f乙=1∶2,D正确。
弹簧振子周期与振子质量、弹簧劲度系数k有关,周期不同,说明两弹簧振子不同,A错误。
由于弹簧的劲度系数k不一定相同,所以两振子受回复力(F=kx)的最大值之比F甲∶F乙不一定为2∶1,所以B错误,对简谐运动进行分析可知,在振子到达平衡位置时位移为零,速度最大;在振子到达最大位移处时,速度为零,从图象中可以看出,在振子甲到达最大位移处时,振子乙恰到达平衡位置,所以C正确。
答案为C、D。
点评:(1)图象法是物理问题中常见的解题方法之一,是用数学手段解决物理问题能力的重要体现。
应用图象法解物理问题要明确图象的数学意义,再结合物理模型弄清图象描述的物理意义,两者结合,才能全面地分析问题。
(2)本题中涉及知识点有:振幅、周期、频率、影响周期的因素、简谐运动在特殊点的速度、回复力、简谐运动的对称性等。
(3)分析本题的主要方法是数与形的结合(即图象与模型相结合)分析方法。
[例4] 在海平面校准的摆钟,拿到某高山山顶,经过t时间,发现表的示数为t′,若地球半径为R,求山的高度h(不考虑温度对摆长的影响)。
解析:由钟表显示时间的快慢程度可以推知表摆振动周期的变化,而这种变化是由于重力加速度的变化引起的,所以,可以得知由于高度的变化引起的重力加速度的变化,再根据万有引力公式计算出高度的变化,从而得出山的高度。
一般山的高度都不是很高(与地球半径相比较),所以,由于地球自转引起的向心力的变化可以不考虑,而认为物体所受向心力不变且都很小,物体所受万有引力近似等于物体的重力。
(1)设在地面上钟摆摆长l,周期为T0,地面附近重力加速度g,拿到高山上,摆振动周期为T′,重力加速度为g′,应有从而(2)在地面上的物体应有在高山上的物体应有得点评:(1)本题涉及知识点:单摆的周期及公式,影响单摆周期的因素,万有引力及公式,地面附近重力与万有引力关系等。
(2)解题关键:抓住影响单摆周期的因素g,找出g的变化与t变化的关系,再根据万有引力知识,推出g变化与高度变化关系,从而顺利求解。
[例5] 在光滑水平面上,用两根劲度系数分别为k1、k2的轻弹簧系住一个质量为m的小球。
开始时,两弹簧均处于原长,后使小球向左偏离x后放手,可以看到小球将在水平面上作往复振动。
试问小球是否作简谐运动?解析:为了判断小球的运动性质,需要根据小球的受力情况,找出回复力,确定它能否写成F=-kx 的形式。
以小球为研究对象,竖直方向处于力平衡状态,水平方向受到两根弹簧的弹力作用。
设小球位于平衡位置O左方某处时,偏离平衡位置的位移为x,则左方弹簧受压,对小球的弹力大小为f1=k1x,方向向右。
右方弹簧被拉伸,对小球的弹力大小为f2=k2x,方向向右。
小球所受的回复力等于两个弹力的合力,其大小为F=f1+f2=(k1+k2)x,方向向右。
令k=k1+k2,上式可写成F=kx。
由于小球所受回复力的方向与位移x的方向相反,考虑方向后,上式可表示为F=-kx。
所以,小球将在两根弹簧的作用下,沿水平面作简谐运动。
点评:由本题可归纳出判断物体是否作简谐运动的一般步骤:确定研究对象(整个物体或某一部分)→分析受力情况→找出回复力→表示成F=-kx的形式(可以先确定F的大小与x的关系,再定性判断方向)。
[例6] 如图所示,一轻质弹簧竖直放置,下端固定在水平面上,上端处于a位置,当一重球放在弹簧上端静止时,弹簧上端被压缩到b位置。
现将重球(视为质点)从高于a位置的c位置沿弹簧中轴线自由下落,弹簧被重球压缩到最低位置d。
以下关于重球运动过程的正确说法应是()A. 重球下落压缩弹簧由a至d的过程中,重球做减速运动。