解: (2)证明:∵四边形 ABCD 是菱形,
BD 交于点 O,∠ABC∶∠BAD=1∶2,BE∥AC,CE∥BD.
∴∠BOC=90°.
(2)求证:四边形 OBEC 是矩形.
∵BE∥AC,CE∥BD,
∴∠OBE=∠BOC=∠OCE=90°,
∴四边形 OBEC 是矩形.
图 21-8
第十六页,共三十一页。
∴MN∥BC,∴∠CBN=∠MNB,∵∠PNB=3∠CBN,∴∠PNM=2∠CBN.
第十一页,共三十一页。
图21-6
高频考向探究
2.[2015·云南 22 题] 如图 21-6,在矩形 ABCD 中,AB=4,AD=6,M,N 分别是 AB,CD 的中点,P 是 AD 上的点,且
∠PNB=3∠CBN.
③若 AE=AF,则平行四边形 ABCD 是菱形;
图21-7
④若平行四边形 ABCD 是菱形,则 AE=AF,其中,结论正确的是
第十三页,共三十一页。
(只需填写正确结论的序号).
高频考向探究
[答案] ①③④
[解析] ①由等边三角形的性质得出∠EAF=60°,AE=AF,求出∠C=120°,由平行四边形的性质得出 AB∥CD,得出
1
1
2
2
④由菱形的性质得出 BC=CD,由面积相等得出 BC·AE= CD·AF,得出 AE=AF,④正确;即可得出结论.
[方法模型] 判定一个四边形是矩形或菱形时,一般先判定它是平行四边形.若要判定是矩形,则再通过找角或对角线
的关系进一步证明是矩形;若要判定是菱形,则进一步说明邻边相等或对角线互相垂直.
2
∴∠ABC+∠BAD=180°.
又∵∠ABC∶∠BAD=1∶2,