概率考研试题
- 格式:ppt
- 大小:730.04 KB
- 文档页数:26
概率论与数理统计练习1一、选择题:1、设随机事件A 与B 满足A B ⊃,则( )成立。
A.()()P A B P A +=B.()()P AB P A =C.()()P B A P B =D.()()()P B A P B P A -=-2、甲、乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5,则目标被击中的概率为( B )。
A.0.5B.0.8C.0.55D.0.63、连续型随机变量X 的密度函数()f x 必满足条件( D )。
A.0()1f x ≤≤B.()f x 为偶函数C.()f x 单调不减D. ()1f x dx +∞-∞=⎰4、设12,,,n X X X 是来自正态总体2(,)N μσ 的样本,则22μσ+的矩估计量是( D )。
A. 211()n i i X X n =-∑ B. 211()1n i i X X n =--∑ C. 221()n i i X n X =-∑ D. 211n i i X n =∑ 5、设总体(,1)X N μ ,123,,X X X 为总体X 的一个样本,若^1231123X X CX μ=++为未知参数μ的无偏估计量,则常数C =( ) A.12 B. 13 C. 15 D. 16二、填空题:1、袋子中装有50个乒乓球,其中20个黄的,30个白的,现有两人依次随机地从袋中各取一球,取后不放回,则第二人取得黄球的概率是 0.42、设A ,B 为两个随机事件,()0.6P A =,()0.2P A B -=,则()P AB = 0.63、已知二维随机向量(,)X Y 的联合分布为则= 0.34、设总体X 服从正态分布2(2,)N σ,1216,,,X X X 是来自总体X 的一个样本,且161116i i X X ==∑,则48X σ-服从 5、若(,)X Y 服从区域22{(,)4}G x y x y =+≤上的均匀分布,则(,)X Y 的联合密度函数为三、计算题:1、设A ,B 为随机事件,且()P A p =,()()P AB P A B =,求()P B 。
历年考研概率真题集锦(2000-2019) ——对应茆诗松高教出版社“概率论与数理统计”第一章§1.11、(2001数学四)(4)对于任意二事件A 和B ,与A B B ⋃=不等价的是( ) A 、A B ⊂ B 、B A ⊂ C 、AB =Φ D 、AB =Φ2、(2000数学三、四)(5)在电炉上安装4 个温控器,其显示温度的误差是随机的,在使用过程中,只要有两个温控器显示的温度不低于临界温度0t ,电炉就断电。
以E 表示事件“电炉断电”,而(1)(2)(3)(4)T T T T ≤≤≤为4 个温控器显示的按递增顺序排列的温度值,则事件E 等于( )(A ) {}(1)0T t ≥ (B ) {}(2)0T t ≥ (C ) {}(3)0T t ≥ (D ) {}(4)0T t ≥ §1.21、(2007数学一、三)(16)在区间(0,1)中随机地取两个数,这两数之差的绝对值小于12的概率为________. §1.31、(2009数学三)(7)设事件A 与事件B 互不相容,则( ) (A )()0P AB = (B )()()()P AB P A P B =(C )()1()P A P B =-(D )()1P A B ⋃=2、(2015数学一、三)(7) 若A ,B 为任意两个随机事件,则( ) (A ) ()()()≤P AB P A P B (B ) ()()()≥P AB P A P B (C ) ()()()+2≤P A P B P AB (D ) ()()()+2≥P A P B P AB3、(2019数学一、三)(7)设A 、B 为随机事件,则()()P A P B =的充分必要条件是( ) (A )()()()P AB P A P B =+ (B ) ()()()P AB P A P B =(C )()()P AB P B A = (D )()()P AB P AB = §1.41、(2005数学一、三)(6)从数1,2,3,4中任取一个数,记为X , 再从X ,,2,1 中任取一个数,记为Y ,则}2{=Y P =____________.2、(2006数学一)(13) 设,A B 为随机事件,且()0,(|)1P B P A B >=,则必有( ) (A )()()P A B P A ⋃>(B )()()P A B P B ⋃> (C )()()P A B P A ⋃= (D )()()P A B P B ⋃=3、(2012数学一、三)(14)设A ,B ,C 是随机变量,A 与C 互不相容,()()()11,,23p AB P C p AB C === 。
概率论考研真题概率论是数学的一个分支,研究的是事件发生的可能性。
概率论在现实生活和科学研究中具有广泛应用。
考研概率论真题是考生备战考研的重要资料,通过研究和解答真题,可以提高对概率论知识的理解和应用能力。
下面将简要介绍几道考研概率论真题,并给出相应的解答。
【真题一】设 X 和 Y 为两个相互独立的随机变量,它们的数学期望和方差均为 1,则随机变量 Z = 2X + 3Y 的方差为多少?【解答一】由于 X 和 Y 是相互独立的随机变量,所以可以使用方差的性质进行计算。
首先计算 Z = 2X + 3Y 的数学期望:E(Z) = E(2X + 3Y) = 2E(X) + 3E(Y) = 2 × 1 + 3 × 1 = 5接下来计算 Z 的方差:Var(Z) = Var(2X + 3Y) = Var(2X) + Var(3Y) (由于 X 和 Y 相互独立,所以协方差为 0)= 4Var(X) + 9Var(Y) = 4 × 1 + 9 × 1 = 13因此,随机变量 Z = 2X + 3Y 的方差为 13。
【真题二】设 X 与 Y 为两个相互独立的随机变量,它们都服从正态分布 N(0, 1),试求随机变量 Z = X + Y 的概率密度函数。
【解答二】首先,由于 X 和 Y 是相互独立的随机变量,所以可以考虑它们的特征函数。
对于正态分布N(μ, σ^2),其特征函数为exp(ιtx - (σ^2t^2)/2)。
所以,X 和 Y 的特征函数分别为 exp(-t^2/2)。
设随机变量 Z = X + Y,则其特征函数为 exp(-t^2)。
由特征函数和概率密度函数的关系,可知 Z 的概率密度函数为标准正态分布的密度函数,即f(z) = (1/√(2π)) × exp(-z^2/2)。
【真题三】某电视节目的收视率符合泊松分布,已知每分钟收视人数的平均值为 10。
考研概率面试题目及答案题目:某工厂生产一种零件,该零件在生产过程中出现次品的概率为0.01,若生产出次品,则该次品被误检为正品的概率为0.05。
现在从这批零件中随机抽取一个进行检查,结果被检查为正品,请根据这些信息回答以下问题:1. 该零件实际上是次品的概率是多少?2. 该零件实际上是正品的概率是多少?答案:1. 要求该零件实际上是次品的概率,我们可以利用全概率公式来解决这个问题。
设事件A表示零件是次品,事件B表示零件被检查为正品。
根据题意,我们有:- P(A) = 0.01,即零件是次品的概率为0.01。
- P(B|A) = 0.05,即零件是次品但被误检为正品的概率为0.05。
由于零件如果不是次品,那么它被正确检查为正品的概率为1,我们可以计算出零件实际上是次品且被检查为正品的概率为:\( P(B|A) = P(A) \times P(B|A) = 0.01 \times 0.05 = 0.0005 \)接下来,我们需要计算零件实际上是次品的概率,即P(A|B),根据贝叶斯定理:\( P(A|B) = \frac{P(B|A) \times P(A)}{P(B)} \)其中,P(B)是零件被检查为正品的总概率,可以通过全概率公式计算:\( P(B) = P(B|A) \times P(A) + P(B|\overline{A}) \times P(\overline{A}) \)其中,P(B|\overline{A})是零件如果不是次品(即是正品)被正确检查为正品的概率,这个概率是1,P(\overline{A})是零件是正品的概率,即1 - P(A) = 1 - 0.01 = 0.99。
代入计算得:\( P(B) = 0.01 \times 0.05 + 1 \times 0.99 = 0.9995 \)现在我们可以计算P(A|B):\( P(A|B) = \frac{0.0005}{0.9995} \approx 0.0005005 \)所以,该零件实际上是次品的概率约为0.0005%。
94年(1)已知A 、B 两个事件满足条件P (AB )=P (A B ),且P (A )=p ,则P (B )=。
(3分)(2)设相互独立的两个随机变量,X Y 具有同一分布律,且X 的分布律为则随机变量{}max ,z X Y =的分布律为 。
(3分)(3)已知随机变量,X Y 分别服从正态分布22(1,3),(0,4)N N ,且,X Y 的相关系数12xy ρ=-,设32X Yz =+,(1)求Z 的数学期望EZ 和方差DZ ;(2)求X 与Z 的相关系数xz ρ;(3)问X 与Z 是否相互独立?为什么?(满分6分)95年(1)设X 表示10次独立重复射击命中目标的次数,每次射中目标的概率为0.4,则2X 的数学期望2()E X = 。
(2)设,X Y 为两个随机变量,且{}{}{}340,0,0077P X Y P X P Y ≥≥=≥=≥=,则{}max(,)0P X Y ≥= 。
(3) 设随机变量X 的概率密度为⎩⎨⎧<≥=-0,00)(x x e x f xX求随机变量Xe Y =的概率密度)(yf Y 。
(6分)96年1. 设工厂A 和工厂B 的产品的次品率分别为1%和2%,现从由A 厂和B 厂的产品分别占60%和40%的一批产品中随机抽取一件,发现是次品,则该次品是A 厂生产的概率是 。
(3分)2. 设,ξη是两个相互独立且均服从正态分布N (0,21)的随机变量,则=-|)(|ηξE。
(3分)3.设,ξη是相互独立且服从同一分布的两个随机变量,已知ξ的分布律为1(),1,2,3,max(,),min(,).3P i i X Y ξξηξη=====又设(1) 写出二维随机变量(X ,Y )的分布律;(2) 求EX 。
(共6分)97年1. 袋中有50个乒乓球,其中20个是黄球,30个是白球。
今有两人依次随机地从袋中各取一球,取后不放回,则第2个人取得黄球的概率是 。
(3分)2.设两个相互独立的随机变量X 和Y 的方差分别为4和2,则随机变量3X -2Y 的方差是( ) (A )8 (B )16 (C )28 (D )44 [3分]3. 从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是52。
第一章 随机事件与概率一、选择题。
1、设,A B 为随机事件,且()0,(|)1P B P A B >=,则必有( ) (A )()()P A B P A > (B )()()P A B P B > (C )()()P AB P A = (D )()()P A B P B =2、将一枚硬币独立地掷两次,引进事件:1A ={掷第一次出现正面},2A ={掷第二次出现正面}3A ={正、反面各出现一次}, 4A ={正面出现两次},则事件有( )(A )123,,A A A 相互独立 (B )234,,A A A 相互独立 (C )123,,A A A 两两独立 (D )234,,A A A 两两独立 3、对于任意二事件A 和B ,则( )(A )若AB ≠Φ,则,A B 一定独立 (B )若AB ≠Φ,则,A B 有可能独立 (C )若AB =Φ,则,A B 一定独立 (D )若AB =Φ,则,A B 一定不独立 4、A ,B 是两随机事件,当A ,B 发生时事件C 发生,则以下正确的是( )A )、)()(C P AB P ≥ B )、)()()(AB PC P AB C P -=- C )、)()(C P B A P ≤⋃D )、)()(C P B A P ≥⋃5、A ,B ,C 是三个随机事件,其中1)(),(),(0<<C P B P A P ,且已知)|()|()|(C B P C A P C B A P +=⋃,则以下正确的是( )A )、)|()|()|(CB PC A P C B A P +=⋃ B )、)()()(AB P AC P AB AC P +=⋃ C )、)()()(B P A P B A P +=⋃D )、)|()()|()()(B C P B P A C P A P C P += 6、A ,B ,C 是三个随机事件,设以下条件概率均有意义,则以下不正确的是( )A )、)|(1)|(C A P C A P -=B )、1)|()|(=+C A P C A P C )、)|()|()|()|(C AB P C B P C A P C B A P -+=⋃D )、)|()|()|()|()|(C B A P C B P BC A P C B P C A P +=7、A ,B 是两个随机事件,其中0)(,0)(≠≠B P A P ,则以下正确的是( )A )、φ≠AB ,A ,B 一定独立 B )、φ≠AB ,A ,B 不一定独立C )、φ=AB ,A ,B 一定独立D )、φ=AB ,A ,B 不一定独立8、甲袋中有2个白球3个黑球,乙袋中全是白球,今从甲袋中任取2球,从乙袋中任取1球混合后,从中任取1球为白球的概率()A 15 ()B 25()C35()D459、10台洗衣机中有3台二等品,现已售出1台,在余下的9台中任取2台发现均为一等品,则原先售出1台为二等品的概率为()A 310()B28 ()C 210()D3810、若A,B 为任意两个随机事件,则 ( )(A) ()()()P AB P A P B ≤ (B) ()()()PAB P A P B ≥(C) ()()()2P A P B P AB +≤ (D) ()()()2P A P B P AB +≥11、某人向同一目标独立重复射击,每次射击命中目标的概率为,则此人第4次射击恰好第2次命中目标的概率为 ( )(A)(B)(C)(D)12、设是两个随机事件,且则必有( )(A)(B) (C) (D)二、填空题1、A ,B 是两随机事件,5.0)(=A P ,7.0)(=B P ,则 ≤≤)(AB P 。
概率第二章历年考研真题(数学一、三、四)第二章随机变量及其分布数学一:1(88,2分)设随机变量X 服从均值为10,均方差为0.02的正态分布上。
已知,9938.0)5.2(,21)(22=Φ=Φ-∞-?du ex u xπ则X 落在区间(9.95, 10.05)内的概率为。
2(88,6分)设随机变量X 的概率密度函数为)1(1)(2x x f X +=π,求随机变量Y=1-3X 的概率密度函数)(y f Y 。
3(89,2分)设随机变量ξ在区间(1,6)上服从均匀分布,则方程012=++x x ξ有实根的概率是。
4(90,2分)已知随机变量X 的概率密度函数||21)(x e x f -=,+∞<<∞-x ,则X 的概率分布函数F (x )=。
5(93,3分)设随机变量X 服从(0,2)上的均匀分布,则随机变量2X Y =在(0,4)内的概率分布密度=)(y f Y。
6(95,6分)设随机变量X 的概率密度为<≥=-0,00)(x x e x f xX 求随机变量Xe Y =的概率密度)(yf Y 。
7(02,3分)设随机变量X 服从正态分布)0)(,(2>σσμN ,且二次方程042=++X y y 无实根的概率为21,则=μ。
8(04,4分)设随机变量X 服从正态分布N(0,1),对给定的)10(<<αα,数αu 满足αα=>}{u X P ,若α=<}{x X P ,则x 等于(A) 2αu . (B) 21α-u. (C) 21α-u . (D) α-1u . [ ]9(06,4分)设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ,且12{||1}{||1},P X P Y μμ-<>-<(A )1 2.σσ< (B )1 2.σσ> (C )1 2.μμ<(D )1 2.μμ>10(10年,4分)设随机变量X 的分布函数()F x =00101,21e 2x x x x -<≤≤->则{1}P X == (A)0 (B)1(C)11e 2--(D)11e --11(10年,4分)设1()f x 为标准正态分布的概率密度2,()f x 为[1,3]-上均匀分布的概率密度,()f x =12()()af x bf xx x ≤> (0,0)a b >> 为概率密度,则,a b 应满足(A)234a b += (B)324a b +=(C)1a b +=(D)2a b +=12(11,4分)13(13,4分)设123,,X X X 是随机变量,且1(0,1)X N ,22(0,2)X N ,23(5,3)X N ,{}122(1,2,3)i P P X i =-≤≤=,则() A.123P P P >> B.213P P P >> C.322P P P >>D 132P P P >>14(13,4分)设随机变量Y 服从参数为1的指数分布,a 为常数且大于零,则P{Y ≤a+1|Y >a}=数学三:1(87,2分)(是非题)连续型随机变量取任何给定实数值的概率都等于0。
概率论考研题目及答案解析题目:设随机变量 \( X \) 服从参数为 \( \lambda \) 的泊松分布,求 \( X \) 的期望值和方差,并证明 \( X \) 的分布律。
答案解析:首先,我们知道泊松分布的概率质量函数(probability mass function, PMF)为:\[ P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!} \]其中 \( k = 0, 1, 2, \ldots \)。
求期望值:期望值 \( E(X) \) 定义为:\[ E(X) = \sum_{k=0}^{\infty} k \cdot P(X = k) \]将泊松分布的 PMF 代入上式,得到:\[ E(X) = \sum_{k=1}^{\infty} k \cdot \frac{e^{-\lambda}\lambda^k}{k!} \]\[ = \lambda e^{-\lambda} \sum_{k=1}^{\infty}\frac{\lambda^{k-1}}{(k-1)!} \]\[ = \lambda e^{-\lambda} \sum_{j=0}^{\infty}\frac{\lambda^j}{j!} \]\[ = \lambda e^{-\lambda} e^{\lambda} \]\[ = \lambda \]求方差:方差 \( Var(X) \) 定义为 \( E(X^2) \) 减去 \( (E(X))^2 \):\[ Var(X) = E(X^2) - (E(X))^2 \]计算 \( E(X^2) \):\[ E(X^2) = \sum_{k=0}^{\infty} k^2 \cdot P(X = k) \]\[ = \sum_{k=1}^{\infty} k^2 \cdot \frac{e^{-\lambda}\lambda^k}{k!} \]\[ = \lambda^2 e^{-\lambda} \sum_{k=1}^{\infty}\frac{\lambda^{k-2} k^2}{(k-2)!} \]\[ = \lambda^2 e^{-\lambda} \sum_{j=0}^{\infty}\frac{\lambda^j j^2}{j!} \]\[ = \lambda^2 \left( 1 + \lambda \right) \]代入 \( E(X) \) 的结果,得到方差:\[ Var(X) = \lambda^2 (1 + \lambda) - \lambda^2 \]\[ = \lambda \]证明泊松分布律:我们已经知道 \( E(X) = \lambda \) 和 \( Var(X) = \lambda \)。