中国科学技术大学812概率论与数理统计历年考研试题
- 格式:pdf
- 大小:8.79 MB
- 文档页数:24
概率论与数理统计习题(含解答,答案)概率论与数理统计复习题(1)⼀.填空.1.3.0)(,4.0)(==B P A P 。
若A 与B 独⽴,则=-)(B A P ;若已知B A ,中⾄少有⼀个事件发⽣的概率为6.0,则=-)(B A P 。
2.)()(B A p AB p =且2.0)(=A P ,则=)(B P 。
3.设),(~2σµN X ,且3.0}42{ },2{}2{=<<≥==>}0{X P 。
4.1)()(==X D X E 。
若X 服从泊松分布,则=≠}0{X P ;若X 服从均匀分布,则=≠}0{X P 。
5.设44.1)(,4.2)(),,(~==X D X E p n b X ,则==}{n X P6.,1)(,2)()(,0)()(=====XY E Y D X D Y E X E 则=+-)12(Y X D 。
7.)16,1(~),9,0(~N Y N X ,且X 与Y 独⽴,则=-<-<-}12{Y X P (⽤Φ表⽰),=XY ρ。
8.已知X 的期望为5,⽽均⽅差为2,估计≥<<}82{X P 。
9.设1?θ和2?θ均是未知参数θ的⽆偏估计量,且)?()?(2221θθE E >,则其中的统计量更有效。
10.在实际问题中求某参数的置信区间时,总是希望置信⽔平愈愈好,⽽置信区间的长度愈愈好。
但当增⼤置信⽔平时,则相应的置信区间长度总是。
⼆.假设某地区位于甲、⼄两河流的汇合处,当任⼀河流泛滥时,该地区即遭受⽔灾。
设某时期内甲河流泛滥的概率为0.1;⼄河流泛滥的概率为0.2;当甲河流泛滥时,⼄河流泛滥的概率为0.3,试求:(1)该时期内这个地区遭受⽔灾的概率;(2)当⼄河流泛滥时,甲河流泛滥的概率。
三.⾼射炮向敌机发射三发炮弹(每弹击中与否相互独⽴),每发炮弹击中敌机的概率均为0.3,⼜知若敌机中⼀弹,其坠毁的概率是0.2,若敌机中两弹,其坠毁的概率是0.6,若敌机中三弹则必坠毁。
考研数学二(概率论与数理统计)-试卷6(总分:58.00,做题时间:90分钟)一、选择题(总题数:12,分数:24.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
(分数:2.00)__________________________________________________________________________________________ 解析:2.设A,B,C( )(分数:2.00)A.A∪B.B.A—B.C.AB.√解析:解析:注:化简数学式子主要从两个角度着手,一是简化形式,二是简化结果.注意事件的运算满足交换律、结合律、分配律,德.3.设A和B是任意两个概率不为零的不相容事件,则下列结论中肯定正确的是( )(分数:2.00)C.P(AB)=P(A)P(B).D.P(A一B)=P(A).√解析:解析:由图1—1,显然(A)不成立,由图1一2,选项(B)不成立.又AB=,故P(AB)=0,而P(A)P(B)>0,选项(C)4.对于任意两个随机事件A和B,则( ).(分数:2.00)A.如果A,B一定独立.B.如果A,B有可能独立.√C.如果A,B一定独立.D.如果A,B一定不独立.解析:解析:一般地,随机事件互不相容与相互独立之间没有必然联系,如果 0<P(A)<1,0<P(B)<1,且A和B相互独立,则0<P(AB)=P(A)P(B)<1,则AB≠.反之,如果,P(AB)与P(A)P(B)有可能相等,故应选B.5.设A为随机事件,且P(A)=1,则对于任意的随机事件B,必有( )(分数:2.00)A.P(A∪B)=P(B).B.P(A一B)=P(B).C.P(B一A)=P(B).D.P(AB)=P(B).√解析:解析:因为A A∪B,P(A)=1,从而P(A∪B)=1,而B为任意事件,所以选项(A)不正确;又P(A一B)==1一P(B),所以选项(B)不正确;P(B—=0,而B为任意事件,所以选项(C)不正确;P(AB)=P(A)P(B)=P(B),故应选D.注:如果知道结论“概率为0或1的事件与任意事件相互独立”,则可立刻选出正确选项.6.设随机事件A,B满足( )(分数:2.00)A.A∪B=n.√D.P(A—B)=0.解析:解析:由加法公式P(A∪B)=P(A)+P(B)一P(AB),P(A∪B)=1得P(AB)=0.P(A∪B)=1,不能说明A∪B=Ω,故选项(A)不正确;同样P(AB)=0,也不能说明AB=,故选项(B)不正确;P(A一B)=P(A)一P(AB)=,所以选项(D)不正确;=1—P(AB)=1,故应选C.7.设A和B为随机事件,则P(A—B)=P(A)一P(B)成立的充要条件是( )(分数:2.00).B.A=B.C.P(B一A)=0.√.解析:解析:因为P(A—B)=P(A—AB)=P(A)一P(AB),而P(A—B)=P(A)一P(B),从而P(A—B)=P(A)一P(B)成立的充要条件是P(AB)=P(B).又P(B—A)=P(B—AB)=P(B)一P(AB)=0,可得P(AB)=P(B),因此应选C.8.设A、B是两个随机事件,且P(C|AB)=1,则正确的是( )(分数:2.00)A.P(C)≤P(A)+P(B)一1.B.P(C)=P(AB).C.P(C)=P(A∪B).D.P(C)≥P(A)+P(B)一1.√解析:解析:因为P(C|AB)==1,从而P(ABC)=P(AB),由加法公式P(AB)=P(A)+P(8)一P(A∪B)≥P(A)+P(B)一1,又C,故P(ABC)≤P(C),即P(C)≥P(A)+P(B)一1,因此选(D).9.设0<P(A)<1,0<P(B)<1,P(A|,则( )(分数:2.00)A.事件A和B互不相容.B.事件A和B互相对立.C.事件A和B互不独立.D.事件A和B相互独立.√10.已知A,B,C三个事件中,A与B相互独立,且P(C)=0(分数:2.00)A.相互独立.√B.两两独立,但不一定相互独立.C.不一定两两独立.D.一定不两两独立.解析:解析:P(ABC)=P(AB)P(C)=P(A)P(B)P(C),从而事件A,B,C一定相互独立.11.设A,B,C是三个相互独立的随机事件,且P(A)≠0,0<P(C)<1.则在下列给定的四对事件中不一定相互独立的是(分数:2.00)A.B. √C.D.解析:解析:事实上,,因此应选B.注:由已知条件,只能得到是不一定相互独立的,而不能确定一定不独立,事实上如果)=0或1,则二者就是相互独立的.12.进行一系列独立重复试验,假设每次试验的成功率为p(0<p<1),则在试验成功2次前已经失败3次的概率为( )(分数:2.00)A.4p 2 (1-p) 3.√B.4p(1-p) 3.C.10p 2 (1-p) 3.D.p 2 (1-p) 3.解析:解析:考查独立重复试验事件的概率,事件“在试验成功2次前已经失败3次”是指“试验进行5次,第5次是第2次成功”,相当于事件“第5次成功,前4次成功1次”.由于是独立重复试验,故所求概率为C 41 p(1-p) 3 p=4p 2 (1-p) 3,应选A.二、填空题(总题数:6,分数:12.00)13.已知A,B是任意两个随机事件,则.(分数:2.00)填空项1:__________________ (正确答案:正确答案:[*])解析:解析:本题考查随机事件的概率,关键是综合运用事件的关系和运算律化简事件.14.随机地向半圆0<y<(a>0)内掷一点,点落在半圆内任何区域的概率与区域的面积成正比,则原点与该点的连线与x的概率为 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:[*])解析:解析:设A表示事件“原点与该点的连线与x轴夹角小于”,如图1—4所示,事件A对应图中区域D,则P(A)=15.设两两相互独立的三事件A,B和C满足条件:ABC=,且已知P(A)= 1。
2012中科大统计学考研真题哎呀,说到 2012 中科大统计学考研真题,那可真是让当年的考生们又爱又恨呀!我还记得之前有个学生跟我讲过他准备考中科大统计学研究生的那段经历。
这孩子叫小李,特别勤奋努力。
他决定考研之后,那真是全身心投入,天天泡在图书馆里。
他跟我说,当他第一次拿到 2012 中科大统计学考研真题的时候,心里那叫一个紧张。
他小心翼翼地翻开试卷,就像打开一个神秘的宝藏盒子,不知道里面藏着怎样的挑战。
咱们先来看看这真题里的知识点。
有概率论方面的,那些概率分布的问题,就像是一个个调皮的小精灵,藏在题目里,等着你去发现它们的规律。
比如说,有一道题是关于正态分布的,要求计算某个区间的概率,这可就需要考生对正态分布的特性了如指掌,稍微一迷糊,就容易出错。
还有统计推断的题目,这部分可不好对付。
像假设检验,那一个个假设,就像一道道关卡,你得判断到底是接受还是拒绝,稍有不慎,就可能陷入误区。
记得有一道题,给出了一组数据,让判断在某个置信水平下,能否拒绝原假设。
这可不仅仅是计算的问题,更考验考生对概念的理解和运用。
再说说回归分析的部分。
这部分的真题那真是需要考生有清晰的思路。
比如说,有一道题是关于多元线性回归的,要求分析各个自变量对因变量的影响。
这就像是在解一个复杂的谜题,你得找出每个线索之间的关系,才能得出正确的答案。
小李当时做这些真题的时候,那是抓耳挠腮啊。
有时候一道题想半天也想不出来,急得他直跺脚。
但是他也不放弃,一遍一遍地看教材,找相关的例题,一点点地琢磨。
我跟你们说,数学统计的真题里,还会有一些实际应用的题目。
就像让你根据一组市场调查的数据,进行分析和预测。
这就要求考生不仅要掌握理论知识,还得能把它们运用到实际中去。
这可难倒了不少同学呢。
总的来说,2012 中科大统计学考研真题真的是对考生综合能力的一次大考。
它既考查了基础知识的掌握程度,又检验了考生运用知识解决实际问题的能力。
就像小李,经过不断地努力和钻研,最终在考场上发挥出了自己的水平。
考研数学一(概率论与数理统计)历年真题试卷汇编2(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.(16年)设随机变量X~N(μ,σ2)(σ>0),记p=P{X≤μ+σ2},则A.p随着μ的增加而增加.B.p随着σ的增加而增加.C.p随着μ的增加而减少.D.p随着σ的增加而减少.正确答案:B 涉及知识点:概率论与数理统计2.(97年)设两个相互独立的随机变量X和Y的方差分别为4和2,则随机变量3X一2Y的方差是A.8B.16C.28D.44正确答案:D 涉及知识点:概率论与数理统计3.(00年)设二维随机变量(X,Y)服从二维正态分布,则随机变量ξ=X+Y 与η=X—Y不相关的充分必要条件为A.E(X)=E(Y)B.E(X2)一[E(X)]2=E(Y2)一[E(Y)]2C.E(X2)=E(Y2)D.E(X2)+[E(X)]2=E(Y2)+[E(Y)]2正确答案:B 涉及知识点:概率论与数理统计4.(01年)将一枚硬币重复掷n次,以X和Y分别表示正面向上和反面向上的次数,则X和Y的相关系数等于A.一1B.0C.D.1正确答案:A 涉及知识点:概率论与数理统计5.(04年)设随机变量X1,X2,…,Xn(n>1)独立同分布,且其方差σ2>0,令Y=,则A.B.C.D.正确答案:A 涉及知识点:概率论与数理统计6.(07年)设随机变N(X,Y)服从二维正态分布,且X与Y不相关,fX(x),fY(y)分别表示X,Y的概率密度,则在Y=y的条件下,X的条件概率密度fX Y(x|y)为A.fX(x).B.fY(y).C.fX(x)fY(y).D.正确答案:A 涉及知识点:概率论与数理统计7.(08年)设随机变量X~N(0,1),Y~N(1,4),且相关系数ρXY=1,则A.P{Y=一2X—1}=1B.P{Y=2X一1}=1C.P{Y=一2X+1}=1D.P{Y=2X+1}=1正确答案:D 涉及知识点:概率论与数理统计8.(09年)设随机变量X的分布函数为F(x)=0.3φ(x)+其中φ(x)为标准正态分布的分布函数,则EX=A.0.B.0.3.C.0.7.D.1.正确答案:C 涉及知识点:概率论与数理统计9.(11年)设随机变量X与Y相互独立,且EX与EY存在,记U=max{X,Y),V=min{X,Y),则E(UV)=A.EU.EV.B.EX.EY.C.EU.EY.D.EX.EV.正确答案:B 涉及知识点:概率论与数理统计填空题10.(87年)已知连续型随机变量X的概率密度为则EX=______,DX=________.正确答案:1;涉及知识点:概率论与数理统计11.(90年)已知随机变量X服从参数为2的泊松分布,且随机变量Z=3X 一2,则EZ=______.正确答案:4.涉及知识点:概率论与数理统计12.(91年)设随机变量X服从均值为2、方差为σ2的正态分布,且P{2<X<4}=0.3,则P{X<0}=_______.正确答案:0.2.涉及知识点:概率论与数理统计13.(92年)设随机变量X服从参数为1的指数分布,则E(X+e-2X)=__________.正确答案:涉及知识点:概率论与数理统计14.(95年)设X表示10次独立重复射击命中目标的次数,每次射中目标的概率为0.4,则E(X2)=_______正确答案:18.4.涉及知识点:概率论与数理统计15.(96年)设ξ和η是两个相互独立且均服从正态分布N(0,)的随机变量,则E(|ξ-η|)=________正确答案:涉及知识点:概率论与数理统计16.(04年)设随机变量X服从参数为λ的指数分布,则=_______.正确答案:涉及知识点:概率论与数理统计17.(08年)设随机变量服从参数为1的泊松分布,则P{X=EX2}=_____.正确答案:涉及知识点:概率论与数理统计18.(10年)设随机变量X的概率分布为P{X=k}=k=0,1,2,…,则EX2=_________.正确答案:2 涉及知识点:概率论与数理统计19.(11年)设二维随机变量(X,Y)服从正态分布N(μ,μ;σ2,σ2;0),则E(XY2)=______.正确答案:μ3+μσ2.涉及知识点:概率论与数理统计解答题解答应写出文字说明、证明过程或演算步骤。
考研概率论试题及答案一、选择题(每题5分,共20分)1. 设随机变量X服从标准正态分布,则P(X > 1)的值是:A. 0.1587B. 0.8413C. 0.3446D. 0.5000答案:B2. 设随机变量X服从参数为λ的泊松分布,若P(X=1)=0.2,则λ的值是:A. 0.5B. 1C. 2D. 5答案:A3. 设随机变量X服从二项分布B(n,p),其中n=10,p=0.3,则E(X)的值是:A. 3B. 2.1C. 2.7D. 3.3答案:B4. 设随机变量X服从均匀分布U(0,θ),若P(X > θ/2)=1/4,则θ的值是:A. 2B. 4C. 8D. 16答案:B二、填空题(每题5分,共20分)1. 设随机变量X服从正态分布N(μ,σ^2),若P(X >μ+2σ)=0.0228,则P(X < μ-2σ)=_________。
答案:0.02282. 设随机变量X服从二项分布B(n,p),若n=20,p=0.4,则P(X ≥ 10)=_________。
答案:0.95123. 设随机变量X服从指数分布,其概率密度函数为f(x;λ)=λe^(-λx),x≥0,则E(X)=_________。
答案:1/λ4. 设随机变量X服从几何分布,其概率质量函数为P(X=k)=p(1-p)^(k-1),k=1,2,...,若p=0.3,则P(X=3)=_________。
答案:0.0243三、计算题(每题10分,共20分)1. 设随机变量X服从参数为λ的泊松分布,已知P(X=2)=0.3456,求λ的值。
答案:λ=32. 设随机变量X服从参数为θ的均匀分布U(0,θ),已知P(X >θ/3)=1/6,求θ的值。
答案:θ=3四、解答题(每题15分,共30分)1. 设随机变量X服从二项分布B(n,p),已知n=30,p=0.2,求P(X ≥ 5)。
答案:P(X ≥ 5) = 1 - P(X ≤ 4) = 1 - (C(30,0)*0.2^0*0.8^30 + C(30,1)*0.2^1*0.8^29 + C(30,2)*0.2^2*0.8^28 +C(30,3)*0.2^3*0.8^27 + C(30,4)*0.2^4*0.8^26) ≈ 0.84682. 设随机变量X服从正态分布N(μ,σ^2),已知μ=50,σ=10,求P(40 < X < 60)。
概率与数理统计历届考研真题(数⼀、数三、数四)概率与数理统计历届真题第⼀章随机事件和概率数学⼀:15(99,3分)设两两相互独⽴的三事件A ,B 和C 满⾜条件;ABC =Ф,P (A )=P (B )=P (C )<21,且已知169)(=C B A P ,则P (A )= 。
16(00,3分)设两个相互独⽴的事件A 和B 都不发⽣的概率为91,A 发⽣B 不发⽣的概率与B 发⽣A 不发⽣的概率相等,则P (A )=。
17(06,4分)设,A B 为随机事件,且()0,(|)1P B P A B >=,则必有(A )()().P A B P A ?> (B )()().P A B P B ?>(C )()().P A B P A ?=(D )()().P A B P B ?=数学三:19(00,3分)在电炉上安装了4个温控器,其显⽰温度的误差是随机的。
在使⽤过程中,只要有两个温控器显⽰的温度不低于临界温度t 0,电炉就断电。
以E 表⽰事件“电炉断电”,⽽)4()3()2()1(T T T T ≤≤≤为4个温控器显⽰的按递增顺序排列的温度值,则事件E 等于(A )}{0)1(t T ≥ (B )}{0)2(t T ≥ (C )}{0)3(t T ≥(D )}{0)4(t T ≥[]20(03,4分)将⼀枚硬币独⽴地掷两次,引进事件:1A ={掷第⼀次出现正⾯},2A ={掷第⼆次出现正⾯},3A ={正、反⾯各出现⼀次},4A ={正⾯出现两次},则事件(A )321,,A A A 相互独⽴。
(B )432,,A A A 相互独⽴。
(C )321,,A A A 两两独⽴。
(D )432,,A A A 两两独⽴。
第⼆章随机变量及其分布数学⼀:7(02,3分)设随机变量X 服从正态分布)0)(,(2>σσµN ,且⼆次⽅程042=++X y y ⽆实根的概率为21。