第2章 热力学第一定律和第二定律
- 格式:pdf
- 大小:1.59 MB
- 文档页数:49
热力学第一二定律热力学是物理学的一个分支,研究能量的转化和能量之间的关系。
其中,热力学第一定律和热力学第二定律是热力学的两个基本定律。
本文将详细介绍热力学第一定律和热力学第二定律的概念和应用。
热力学第一定律,又称能量守恒定律,表明能量在物理过程中的转化是守恒的。
简单来说,能量既不能被创造也不能被毁灭,只能从一种形式转化为另一种形式。
热力学第一定律的数学表达式为:∆U = Q - W其中,∆U代表系统内能量的变化,Q代表从外界传递给系统的热量,W代表系统对外界做的功。
根据热力学第一定律,一个封闭系统的内能变化等于系统所吸收的热量减去系统所做的功。
热力学第一定律的一个重要应用是热机效率的计算。
根据热力学第一定律,热机工作时,吸收的热量用来产生功和增加系统内能。
热机效率定义为输出功与吸收热量的比值,数学表达式为:η = W/Qh其中,η代表热机效率,W代表输出功,Qh代表吸收的热量。
根据热力学第一定律和热机效率的定义,可以计算出热机的效率。
热力学第二定律是指自然界中热量只能从高温物体传递到低温物体的方向性规律。
热能不可能自发地从低温物体传递到高温物体,这是因为熵增加的原因。
熵是一个衡量系统无序程度的物理量,也可以理解为系统的混乱程度。
热力学第二定律可以用多种方式表达,常见的表达方式之一是克劳修斯表达式:ΔS ≥ Q/T其中,ΔS代表系统的熵变,Q代表系统吸收的热量,T代表系统的温度。
根据热力学第二定律,系统的熵在吸收热量的情况下只能增加或者不变,但绝不会减少。
热力学第二定律的应用之一是热力学循环的研究。
热力学循环是指热机、制冷机等设备在工作中所经历的一系列热量和功的转化过程。
根据热力学第二定律,热力学循环的效率不可能达到100%,存在一个理论上的极限值,即卡诺循环效率。
卡诺循环效率由热机工作温度的比值决定,只有在温度无限接近的情况下,热机的效率才能无限接近卡诺循环效率。
总结起来,热力学第一定律和热力学第二定律是热力学的两个基本定律。
热力学第一定律与第二定律热力学是研究能量与热的转化和传递规律的科学,它是自然科学中重要的分支之一。
在热力学中,第一定律和第二定律是两个基本的定律,它们定义了能量守恒和能量转化的方向,对于理解热力学系统的行为和实际应用具有重要意义。
1. 热力学第一定律热力学第一定律,也称为能量守恒定律,表明能量在系统与环境之间的传递和转化后总量保持不变。
它可以通过下式表达:ΔU = Q - W其中,ΔU表示系统内能的变化,Q表示系统吸收的热量,W表示系统对外界做的功。
根据热力学第一定律,一个封闭系统的能量是守恒的,能量既不能被创造也不能被销毁,只能从一种形式转化为另一种形式。
热力学第一定律还可以用来推导出热机效率的表达式。
在一个热机中,根据热力学第一定律,系统吸收的热量等于系统对外界做的功加上系统内能的变化。
根据这个原理,我们可以得到热机效率的公式:η = 1 - Qc/Qh其中,η表示热机的效率,Qc表示热机向冷源放出的热量,Qh表示热机从热源吸收的热量。
这个公式表明,在一个热机中,不能把吸收的热量完全转化为功,一部分热量必须放出到冷源中,效率小于1。
2. 热力学第二定律热力学第二定律是热力学中最重要的定律之一,它表明热量不能自发地从低温物体传递到高温物体,而是自发地从高温物体传递到低温物体。
热力学第二定律有多种等效的表述方式,其中最常见的是克劳修斯表述和开尔文表述。
克劳修斯表述中,热量不会自发地从冷热源传递到热热源,即不存在一个热机,它只从一个热源吸热,然后完全转化为功,再把一部分热量放到冷热源上,不对环境产生任何影响。
这相当于说,在一个封闭系统中,不存在一个循环过程,使得系统对外界做的功等于输入的热量。
这个等效表述被称为克劳修斯表述。
开尔文表述中,不可能制造一个只从一个热源吸热,然后完全转化为功的热机,而不对环境产生任何影响。
这相当于说,在一个封闭系统中,不存在一个循环过程,使得系统吸收的热量完全转化为功,不放出热量到冷热源。
热力学第一定律与热力学第二定律的联系与区别热力学第一定律和热力学第二定律是热力学的两个基本定律,描述了热力学系统的动态过程和平衡状态。
热力学第一定律指出,在一个封闭系统中,热量总是从高温物体流向低温物体,直到系统达平衡状态,即温度保持不变。
这意味着热量不能自由流动,必须有外力强制它流动。
热力学第二定律则指出,热量不可能自发地从低温物体流向高温物体,即热量的总供应量等于总需求。
这意味着热量的流动必须是有方向的,并且热量的分配必须遵守热力学第二定律。
联系:
热力学第一定律和热力学第二定律都是关于热量流动的规律,它们都强调了热量在系统中的平衡和流动是有方向的。
区别:
1. 解释不同:热力学第一定律强调的是热量的流动方向,而热力学第二定律强调的是热量的流动必须遵守一定的规律。
2. 适用范围不同:热力学第一定律适用于任何可逆热力学过程,而热力学第二定律仅适用于封闭的系统。
3. 限制条件不同:热力学第一定律没有限制热量的供应量或需求,而热力学第二定律则规定了热量的总供应量必须等于总需求,从而限制了热量的流动。
热力学第一定律和第二定律热力学第一定律1. 内容:一般情况下,如果物体跟外界同时发生做功和热传递的过程,那么外界对物体做的功W,与物体从外界吸收的热量Q之和,等于物体的内能的增加量2. 数学表达式:W+Q=ΔU(1)Q取决于温度变化:温度升高,Q>0;温度降低,Q<0.(2)W取决于体积变化:V增大时,气体对外做功,W<0;V减小时,外界对气体做功,W>0.(3)特例:如果气体向真空扩散,那么W=0.(4)绝热过程Q=0,关键词是“绝热材料”或“变化迅速”。
3. 热力学第1定律的理解(1)做功改变物体的内能:外界对物体做功,物体内能增加;物体对外做功,物体内能减少。
在绝热过程,物体做多少功,改变多少内能。
(2)热传递改变物体的内能:外界向物体传递热量,即物体吸热,物体的内能增加;物体向外界传递热量,即物体放热,物体的内能减少。
传递多少热量,内能就改变多少。
(3)做功和热传递的实质,做功改变内能是能量的变化,用功的数值来度量;热传递改变内能是能量的转移,用热量来度量。
热力学第二定律1.热传导的方向性:热传导的过程可以自发地由高温物体向低温物体进行,但相反方向却不能自发地进行,即热传导具有方向性,是一个不可逆过程。
2.补充说明:(1)“自发地”过程就是不受外界干扰的条件下进行的自然过程;(2)热量可以自发地从高温物体向低温物体传递,却不能自发的从低温物体传向高温物体;(2)热力学第二定律的能量守恒表达式:ds≥δQ/T(3)热量可以从低温物体传向高温物体,必须有“外界的影响或帮助”,就是要由外界对其做功才能完成。
3.热力学第二定律的两种表述(1)克劳修斯表述:热量不能自发地从低温物体传向高温物体。
(2)开尔文表述:不可能从单一热源吸收热量,使之完全变为有用功,而不引起其他变化。
热力学第一定律和热力学第二定律通过我们对物理及热力学的学习发现了这样的规律:凡是牵涉到热现象的一切过程都有一定的方向性和不可逆性,例如热量总是从高温物体自发地传向低温物体,而从未看到热量自发地从低温物体传向高温物体,例如当我们拥有一杯热水可以通过等待热水向周围空气散热得到一杯凉水,可是当我们需要这杯凉水重新变成热水时,单纯等待散失到周围空气的热量重新回来却不可能。
又如机械能可以通过摩擦无条件地完全地转化为热量,但是热能无法在单一热源下自发地转换为机械能。
这种自然规律虽然有时候不能如我们所愿,但它对我们意义重大。
可以说是人类在地球上赖以生存的基础。
我们却难以设想传热方向未知状态下的混乱。
我们不知道传热的方向,从而会不知道一杯热水放在环境中会变凉还是会继续升温,何时才能变凉,我们把凉水放在炉子上加热却不知道热量是从凉水传向炉子,还是从炉子传向凉水。
我们会得到热水还是更凉的凉水。
从这个意义上说正如交通红绿灯是交通畅通无阻的保证传热方向规律是自然界热领域中的红绿灯。
热不可能自发地不付代价地从低温物体传至高温物体,这就是克劳修斯说的热力学第二定律不可能制造出从单一热源吸热使之全部转化成为功而不留下其他任何变化的热力发动机这就是开尔文说的热力学第二定律总结热力学第二定律的两种说法的自然过程总是使系统趋于平衡能量从高位趋于低位,存在着不平衡的自然界,无时无刻不发生着这种变化——机械运动产生热量高温物体将热量传向低温物体。
高温物体将热量传向低温物体的过程中又可能产生机械运动。
生命过程、化学过程、核反应过程都伴随着热过程的发生,自然界的运动变化中热现象担任着重要的角色。
生活常识告诉我们冬天冷玻璃杯遇开水会破裂,这些都是物质表现出来的各种热湿现象,由于地球不停地运动和变化,经过漫长的地质年代逐渐在地壳内部积累了巨大的能量。
形成了巨大的应力作用,当大地构造应力或热应力使地壳某些脆弱的地带承受不了,时发生错位或断裂以波的形式传到地面就形成了地震研究火山的学者认为;热是各种地质作用的原始驱动力,火山活动是地球内部热的不均匀性的地表,反映海底的地震和火山喷发可能引起海水中形成巨大的海浪并向外传播。
热力学第一定律和第二定律热力学是研究能量转化和传递的科学领域,其中热力学第一定律和第二定律是热力学基本定律。
本文将探讨这两个定律的含义和应用。
热力学第一定律,也被称为能量守恒定律,表明能量在系统中的转化和传递是受限的。
简单来说,能量既不能被创造也不能被毁灭,只能从一种形式转化为另一种形式。
这个定律告诉我们,能量是一个宝贵的资源,我们需要合理利用它。
以汽车为例,当我们踩下油门时,汽车的燃料被燃烧产生热能,这些热能被发动机转化为机械能,推动汽车前进。
然而,这个过程并不是百分之百有效的,因为能量会以其他形式散失,如摩擦产生的热量和废气的排放。
热力学第一定律提醒我们,我们需要减少能量的浪费,提高能量利用效率。
热力学第二定律则涉及到能量转化的方向性。
它指出,自然界中能量会倾向于从高温物体流向低温物体,而不会自发地从低温物体流向高温物体。
这个定律也被称为熵增定律,熵是一个衡量系统无序程度的物理量。
以热传导为例,当我们将一个热杯放在室温下,热量会从热杯流向周围的环境,直到两者达到热平衡。
这是因为热杯的温度高于室温,根据热力学第二定律,热量会自发地从高温物体流向低温物体,以增加系统的无序程度。
熵增定律还可以解释为什么一杯热咖啡会自然冷却。
当我们将热咖啡放在桌子上,热量会通过辐射、传导和对流的方式从咖啡中散失到周围的环境。
这个过程会导致咖啡的温度降低,直到与室温达到热平衡。
根据热力学第二定律,热量会自发地从高温物体流向低温物体,增加系统的无序程度,也就是熵增。
热力学第二定律在工程和自然科学中有着广泛的应用。
例如,在能源领域,我们需要设计高效的能源转换系统,以最大程度地减少能量的浪费。
在化学反应中,我们需要考虑反应的方向性和热力学平衡,以确定最适合的条件和催化剂。
此外,热力学第二定律还与环境保护和可持续发展密切相关。
我们需要合理利用能源资源,减少能量的消耗和废弃物的排放,以降低系统的熵增。
这对于保护环境和维持地球的可持续发展至关重要。