电子技术基础1
- 格式:doc
- 大小:351.00 KB
- 文档页数:21
电子技术基础1复习题一、电压放大1、放大电路如图所示,已知三极管β=50,U BEQ=0.7V,r bb’=200Ω。
电路中各参数标示图中。
(1)试估算电路的静态工作点I CQ、U CEQ;(3)求电压放大倍数A u、输入电阻R i和输出电阻R O;(4)若信号源内阻R S=600Ω,求源电压放大倍数A us。
(5)若去掉旁路电容,则A u、R i和R O如何变化?2、放大电路如图所示,已知三极管β=50,U BEQ=0.7V,r bb’=200Ω。
电路中各参数标示图中。
(1)估算静态工作点I CQ、U CEQ;(2)估算电压放大倍数A u;(3)求输入电阻和输出电阻;(4)若C E断开,电压放大倍数将有何变化?CC o二、功放1、OTL功率放大器如图所示,试回答:(1)静态时,A点的电位应是多少?(2)若两管子的饱和压降均为2V,计算最大不失真输出功率P omax和效率η;(3)分析VD1、VD2的作用。
2、OCL功率放大器如图所示,试回答:(1)静态时,A点电位是多少?(2)若两管子的饱和压降均为3V,计算最大不失真输出功率P omax和效率η;(3)说明图中VD1、VD2的作用。
ccu Su ou o-+o三、运算电路1、运算电路如下图所示,(1)A1组成何种运算电路,有何特点?(2)当u i=1V,计算输出电压u o1值和u o值。
2、运算电路如下图所示,(1)A1、A2分别组成何种运算电路?(2)当u i1=0.1V,u i2=2V,试计算输出电压u o1值和u o 值。
四、深度负反馈的近似计算1、负反馈放大电路如下图所示,试:(1)判断反馈类型,说明该负反馈稳定输出电压还是稳定输出电流?分析其反馈类型对电路输入电阻、输出电阻的影响;(2)估算在深度负反馈条件下,闭环电压放大倍数A uf。
(3)指出运放的反相输入端是否为虚地端。
2、1、(14分)负反馈放大电路如下图所示,试:(1)判断反馈类型,说明该负反馈稳定输出电压还是稳定输出电流?分析此反馈类型对电路输入电阻、输出电阻的影响;(2)估算在深度负反馈条件下,闭环电压放大倍数A uf。
《电子技术基础(一)》期终考试试题 (A 卷)适用专业:题号 一 二 三 四 五 六 总分 积分人 分数一、名词解释:(每小题2分,共10分)1、半导体三极管2、射极输出器3、电压传输特性4、整流电路5、稳压管二、填空题(每空档0.5分,共20分)1、二极管的类型按材料分有 和 两类。
2、2CW 是 材料的 二极管。
3、三极管有 、 和放大三种工作状态。
4、半导体是一种导电能力介于 与 之间的物质。
5、在放大电路中,静态工作点过高易出现 ,静态工作点过低易出现 。
6、三极管实现电流放大的外部条件是: , 。
7、对于一个放大电路来说,一般希望其输入电阻要 些,以减轻信号 源的负担,输出电阻要 些,以提高带负载的能力。
8、功放电路中,为了不失真地输出最大功率,功放管常采用 放大,功放电路是 电路。
9、放大电路级与级之间的连接方式有: 、 和直接耦合。
10、电压负反馈是稳定,反馈信号与成正比。
11、解决零点漂移最有效的办法是采用。
12、非线性比较器有和两种。
13、减法运算电路利用可以进行减法运算。
14、和运放工作在电压传输特性的非线性区,即。
15、差分放大电路中的差模输入信号表示加在两个输入端的信号电压、。
16、OTL电路中的输出电容代替OCL电路中的。
17、深度电压负反馈运放工作在电压传输特性的。
18、单相桥式整流电路中,若变压器二次侧电压U2=100V,则负载两端电压为V;若接入滤波电容,则负载两端电压为V。
19、常用的滤波电路有、和π形滤波。
20、桥式整流二极管中,若某个二极管虚焊,则输出只有。
21、常用的小功率直流稳压电源由电源变压器、、和稳压电路四部分组成。
22、W78M05输出电压为,输出电流为。
三、判断题(正确的打“√”,错误的打“×”)(每题1分,共12分)1、三极管的发射结正偏时,它必处于放大状态。
()2、如果输入信号本身已是一个失真的正弦波,引入负反馈后不能改善失真波形。
第一章电子技术入门基础1.基本概念与规律1.1电路: 由金属导线和电气,电子部件组成的导电回路.(直流电路和交流电路)1.2电路图: 用电路元件符号表示电路连接的图.1.3电流:导体中的自由电荷在电场力的作用下做有规则的定向运动就形成了电流. 用I表示,单位为安A/mA/uA1.4电流计算公式: I=Q/T Q导体横截面的电荷量, T电荷通过导体的时间.1.5电阻: 导体对电流的阻碍称为该导体的电阻.用字母R表示.单位:欧姆Ω,KΩ千欧MΩ兆欧.1.6电阻计算机公式: R=ρ*l/S. ρ导体固有的电阻率. L导体长度, S导体的横截面积.1.7电位:又称电势,处于电场中某个位置的单位电荷所具有的电势能.1.8电压:电流形成的原因(电荷才会从高电势向低电势流动).中国电压220V.1.9电动势:反映电源把其他形式的能转换成电能的本领的物理量.电动势使电源两端产生电压(电源消耗能量在两极建立的电位差称为电动势)1.9.1化学电动势:干电池,锂电池,蓄电池1.9.2感生/动生电动势:电动机1.9.3光生电动势:1.9.4压电电动势:1.9.5温差电动势:1.10通路:电路导通,有正常电流流过负载,负载正常工作.1.11开路:电路断开,无电流流过负载,负载不工作.1.12短路:电路中电源正负极间没有负载而是直接接通叫做短路.1.13接地: 接地是为保证电工设备正常工作和人身安全而采取的一种用电安全措施,通过金属导线与接地装置连接来实现,常用的有保护接地、工作接地、防雷接地、屏蔽接地、防静电接地等。
1.14屏蔽:为防止某些元器件和电路工作时受到干扰,对这些元器件和电路采取隔离措施,称为屏蔽。
屏蔽的具体做法就是用金属材料(屏蔽罩)将元器或电路封闭起来,再将屏蔽罩接地。
1.15欧姆定律: 在同一电路中,导体中的电流跟导体两端的电压成正比,跟导体的电阻成反比.I=U/R1.16电功:电流做的功称为电功.W电功=UIT(U电压,I电流,T表示时间) W单位为J(焦)1.17电功率:单位时间内电流做的功叫电功率.用来表示消耗电能的快慢.P=UI,单位为W(瓦)1.18焦耳定律:说明传导电流将电能转换为热能的定律.电流通过导体产生的热量跟电流的二次方成正比,跟导体的电阻成正比,跟通电时间成正比.Q=I²RT Q指热量,单位为焦耳J. (电热器:电炉,电烙铁,电钣锅,电熨斗) 2.电阻的连接方式(串联等流分压,并联等压分流.)1.1电阻的串联: 两个或两个以上的电阻头尾接连在电路中,称为电阻的串联.1.1.1串联电阻的电流相同。
《电子技术基础》课程设计总结报告篮球比赛计时器指导教师:万星设计人员:张馨月学号:10240305班级:电气3班日期:2012-6-25目录⑴设计任务与基本要求①设计任务篮球比赛计时器是一种体育比赛计时装置,经过改造可满足多种要求和场合。
利用中小规模集成电路设计一个数字显示的简易篮球比赛计时器。
②基本要求●篮球比赛上下半场四节制,每节12 min,要求能随时暂停,启动后继续计时,一节比赛结束后应可清零。
●按篮球比赛规则,进攻方有24 s为倒计时。
要求进攻方得到发球权后,必须在24 s内完成一次进攻,否则将球权判给对方,因此需要一个具有24 s的倒计时功能。
●“分”、“秒”显示用LED数码管,应配用相应译码器。
●用扭子开关控制计时器的启动/暂停。
●24s计时时间到、每节结束和全场结束能自动音响提示。
(2)设计框图及整体概述篮球比赛计时器实际上是一种多功能倒计时装置,它包括12 min、24 s倒计时,按键启停功能和自动音响提示等,其组成原理框图如上图所示。
该电路主要由秒信号发生电路、启停电路、声响电路、门控电路、显示电路和计数电路等组成。
一旦发球,启停电路启动,计时器开始工作,即12 min、24 s倒计时同时工作。
当发球权交给对方时,24 s倒计重新开始计时,而12 min倒计时继续工作。
当启停电路暂停时,12 min、24 s倒计器保持原来的数据不变,等到重新启动开始工作。
(3)设计思路篮球比赛计时器的主要功能包括:12分钟倒计时,进攻方24秒倒计时暂停,重新开启和结束提示。
该计时系统由以下四个电路模块组成:1秒时集产生器:这部分利用32.768KHz需要通过分频器,最终产生1Hz的电信号,驱动整个电路的运作。
这一模块主要是利用CD4060分频功能和74LS73D触发器来实现。
12分钟倒计时:这部分电路完成12分钟倒计时的功能,比赛准备开始时,屏幕显示12:00,然后利用74LS192的减计数的功能,从12:00变化到00:00.攻方24秒倒计时:这部分电路与12分钟倒计时功能类似,当比赛开始时,屏幕上显示24秒字样,当比赛开始后,倒计时从24逐秒倒数到00.这一模块也是利用双向计数器74LS192来实现。
节数计次:四个LED分别表示四场节次,根据比赛场次的转变,用适当的方法使这四个LED依次自动指示四场节次。
音响控制电路:用TTL的功率门或OC门可以直接驱动小功率喇叭发声。
CP是周期1S的矩形波,则会产生响一下停一下,响停共一秒的声音。
总体电路说明:倒计时功能主要是利用192计数芯片来实现,同时利用反馈和置数实现进制的转换,以适合分和秒的不同需要。
又要该系统特殊的需要,到计时器到零时,通过停止控制电路是计时器停止计数并用音响控制电路发出声音。
(4).各单元电路的设计方案及原理说明 1秒时集产生器:利用555芯片得到1HZ 的脉冲信号。
R 4D C7Q 3GND1VCC 8T R 2T H 6C V 5U7555R310MR250MC20.01uF C10.01uF 12分钟倒计时:1、计数器件74LS192是双时钟方式的十进制可逆计数器。
下面介绍74LS 192的引脚图和74LS192的功能表。
◆ CPU为加计数时钟输入端,CPD为减计数时钟输入端。
◆ LD(PL)为预置输入控制端,异步预置。
◆ CR(MR)为复位输入端,高电平有效,异步清除。
◆ CO(TCU)为进位输出:1001状态后负脉冲输出,◆ BO(TCD)为借位输出:0000状态后负脉冲输出。
74LS192引脚图可以根据74LS192的引脚图来实现硬件连接,图2中P0、P1、P2、P3分别为D0、D1、D2、D3,可以通过LD=0,给这四个引脚接高电平或低电平来实现置数,Q0、Q1、Q2、Q3为74LS192的输出端,可以直接接七段数码显示译码器。
CR LD CPU CPD D3 D2 D1 D0 Q3 Q2 Q1 Q0 CR LD CPU CPD D3 D2 D1 D0 Q3 Q2 Q1 Q0 1 ×××××××0 0 0 00 0 ×× D C B A D C B A O 1 ↑ 1 ××××加计数0 1 1 ↑××××减计数74LS192功能表根据74LS192的功能表,当LD=1,CR=0,CPD=1时,如果有时钟脉冲加到CPU端,则计数器在预置数的基础上进行加法计数,当计到9(1001)时,CO端输出进位下降沿跳变脉冲;当LD=1,CR=0,CPU=1时,如果有时钟脉冲加到CPD端,则计数器在预置数的基础上进行减法计数,当计到0(0000)时,BO端输出借位下降沿跳变脉冲。
2、置数实现器件74LS192是6非门(反相器)他的工作电压5V,他的内部含有6个coms反相器,74LS192的作用就是反相把1变成0,把0变成1。
下面是芯片的管脚图74LS192管脚图由两块MSI计数器构成,低位是十进制,高位可为一个任意进制,再利用置。
分计数器:初始值“12”来实现十二进制。
分计数的置数(其中UP对应引脚CPU加计数时钟输人端,DOWN对应引脚CPD减计数时钟输入端,LOAD对应引脚PL预置数输入端,CLR对应引脚CR复位输入端,异步清0。
)由74LS192D的功能表知,要完成减计数功能需要将UP置为1,LOAD置为1,CLR置为0,给DOWN一个脉冲,在脉冲上升沿时,芯片完成减数功能。
用74LS192的LD完成分计数的置数和减计数功能,给U14的数据输入为1(0001),U12的数据输入为2(0010)。
按空格开关闭合,此时是接地,为低电平,LD=0,实现置数功能,显示12分。
按空格开关打开后,此时为高电平,LD=1,当脉冲来时,做减计数。
秒计数器:秒信号经秒、分计数器后分别得到“秒”个位、十位,“分”个位、十位的计时输出信号,然后输出到译码显示电路。
“秒”计数器应为60进制,而“分”计数器可为大于等于12的任意进制。
(1)秒计数器:六十进制计数器可以由两块MSI计数器构成,一块十进制,一块六进制,组合起来就构成六十进制计数器。
74LS192是十进制同步加法/减法计数器,具有直接清零、异步置数功能。
由篮球比赛的特点,计时器可以设计成距离比赛结束的时间,因此这种方案需用减法计数器,而对每一节的计数实现的又是加法计数器,而74LS192既可以实现加法计数,也可以实现减法计数。
74LS192本身就是十进制,所以图3中U4直接利用借位输出端BO,一旦有借位则BO给U3一个上升沿,U3就开始减计数,从而秒的个位实现十进制。
图4 十进制电路图要想实现六十进制,则一开始要将U3置成六,必须使LD=0,才能置数;但要实现减计数,又必须使LD=1。
所以我使用了CR的清零功能,总开关闭合时,CR=1,此时显示为0,总开关断开时,CR=0,减计数开始,U4上BO输出借位为0,LD 接BO=0,给U3置数,下一瞬间,BO=1,LD=1,则U3从六开始递减。
U4有借位输出,U3则减1,如此递减,直到U3、U4全减为0,U12的LD和U3的BO相连,U12减1,U3置为六。
一直循环形成六十进制。
六十进制计数器节计数器:四进制加法计数器由一块74LS192构成,使数据输入为“0001”,当低电平有效信号控制其置数端时,便实现置1。
同理,按空格键开关闭合,LD=0,U15置数为1,开始节计数,如图;开关断开后(即使LD=1),CPD=1,当分十位有借位输出时,便给CPU一个脉冲,U15便开始加1,实现节计数。
节计数的置数节计数的加法控制电路由两片74LS192组成,用74LS192来控制计数器12分00秒的递减计时,在控制电路中用A和空格分别来控制电路的启动、暂停/连续或是停止工作。
在这当中CR的作用也是不同的,当A和空格为“1”时,CR经非门为0,LD为1,电路开始计时,当A为“0”时,CR=1,有清零功能,LD=0,有置数功能,电路不工作并置数,显示器就为“1”“2”“0”“0”。
当空格置为“0”时,计时器暂停工作,则CR停止工作。
当空格为“1”时,CR 继续工作。
显示器直接用仿真和硬件上的七段数码显示译码器。
置数和计数的开关控制刚开始按下开关,要求计时器显示12分00秒,再按开关后,计时器开始计时。
置数时,要求LD全部为0,计数时,要求LD为1,但74LS192是十进制,秒计时要求是六十进制,即要求在显示六十秒时,置为00,LD在计数和置数上矛盾,所以我用总的开关来控制六进制的清零端CR,同时控制其余的LD端,使其可以用一个开关来控制置数和计时。
实现时,CR=1清零,LD=0开始置数,所以可以用一个非门来同时实现。
其开关的设置如下页所示,开关闭合时,为低电平,LD 实现置数,CR经反相器为高电平,开始清零;开关断开,为高电平,LD=1,CR=0,开始计时。
开关闭合断开时会出现抖动,即会有高低电平不稳的状况,这就需要有防抖动开关来使其稳定。
防抖动开关和节结束开关的实现是由我的同组者来设计。
图10 开关控制计数五、总体设计电路图图11 总体设计电路图在总电路图中,当开关A接右时,经防抖动开关输出为低电平,经过与门,仍为低电平,则LD=0,实现置数;开关A接左时,输出为高电平,从左往右,第二片74LS192上没有借位输出,BO=1,经与门后,输出为高电平,经过脉冲,则实现减计数。
暂停/连续开关由空格键控制,当接右时,经防抖动开关输出为1,BO无借位时输出为1,有脉冲时为1,经三输入的与非门为0,再经与非门为1,所以能正常工作;当开关接左时,经防抖动开关后为0,经两个与非门仍为0,实现暂停计时。
24S进攻倒计时由裁判按下,喇叭响,表示进攻开始。
然后计数器从24S 减到00S时,裁判又按下开关,喇叭响,表示进攻结束。
其原理和12min倒计时相同,先对两块芯片进行置数,即“2”“4”,开关断开后,192芯片开始进行减数。
倒计时装置的秒脉冲发生器是由555芯片和两个电阻,两个电容组成。
其中调节电阻阻值可改变脉冲发生器的频率,从而改变从24S变到00S的时间,所以电阻参数的设定非常重要。
下图为利用ISIS仿真24S倒计时的截图:D015Q03D11Q12D210Q26D39Q37UP 5TCU 12DN 4TCD13PL 11MR 14U174LS192D015Q03D11Q12D210Q26D39Q37UP 5TCU 12DN 4TCD13PL 11MR 14U274LS192R110kSW1SW-SPSTVCCVCCR4D C7Q 3GND1VCC 8T R2T H6C V5U7555R310MR250MC20.01uFC10.01uFVCCLS1SPEAKERR410k实验结果及分析(一)实验结果1、 将五片74LS192中的 LD 置为低电平,将第四片CR 信号接为高电平,实现了置数“12分00秒”。