2-5第五节 函 数 的 微 分
- 格式:ppt
- 大小:377.51 KB
- 文档页数:18
第五节 函数的微分在理论研究和实际应用中,常常会遇到这样的问题:当自变量x 有微小变化时,求函数)(x f y =的微小改变量)()(x f x x f y -∆+=∆. 这个问题初看起来似乎只要做减法运算就可以了,然而,对于较复杂的函数)(x f ,差值)()(x f x x f -∆+却是一个更复杂的表达式,不易求出其值. 一个想法是:我们设法将y ∆表示成x ∆的线性函数,即线性化,从而把复杂问题化为简单问题. 微分就是实现这种线性化的一种数学模型.分布图示★ 引言★ 问题的提出 ★ 微分的定义 ★ 可微的条件 ★ 例1-2 ★ 基本微分公式 ★ 微分四则运算法则 ★ 例3★ 例4 ★ 微分的几何意义★ 复合函数的微分法★ 例5 ★ 例6 ★ 例7 ★ 例8★ 例9★ 例10★ 微分近似计算公式 ★ 例11 ★ 例12★ 例13 ★ 例14★ 常用函数的近似计算公式★ 例15 ★ 例16★ 误差计算 ★ 例17 ★ 内容小结 ★ 课堂练习 ★ 习题 2- 6内容要点:一、 微分的定义:定义1 设函数)(x f y =在某区间内有定义, 0x 及x x ∆+0在这区间内, 如果函数的增量)()(00x f x x f y -∆+=∆可表示为)(x o x A y ∆+∆⋅=∆ (5.1)其中A 是与x ∆无关的常数, 则称函数)(x f y =在点0x 可微, 并且称x A ∆⋅为函数)(x f y =在点0x 处相应于自变量改变量x ∆的微分, 记作dy , 即x A dy ∆⋅= (5.2)二、函数可微的条件dx x f dy )('= (5.8))(x f dxdy '= (5.9)即,函数的导数等于函数的微分与自变量的微分的商. 因此,导数又称为“微商”.三、 微分的几何意义四、基本初等函数的微分公式与微分运算法则 五、 微分形式不变性:无论u 是自变量还是复合函数的中间变量, 函数)(u f y =的微分形式总是可以按微分定义的形式来写,即有du u f dy )('=这一性质称为微分形式的不变性. 利用这一特性,可以简化微分的有关运算. 六、利用微分进行近似计算: 近似值的计算 误差计算dy y ≈∆. (5.10)例题选讲:微分的定义例1(E01)求函数2x y =当x 由1改变到1.01的微分.解 因为,2xdx dy =由题设条件知 ,1=x 01.0101.1=-=∆=x dx 所以 .02.001.012=⨯⨯=dy例2(E02)求函数3x y =在2=x 处的微分. 解 函数3x y =在2=x 处的微分为 dx x dy x 2'3)(==.12dx =基本初等函数的微分公式与微分运算法则的应用例3(E03)求函数x e x y 23=的微分. 解 因为'23')(xex y =xxex ex 232223+=)23(22x ex x+=所以 dx x e x dx y dy x )23(22'+== 或利用微分形式不变性)()(2332xxed x x d edy +=dx ex dx x e xx232223⋅+⋅=.)23(22dx x ex x+=例4(E04)求函数xx y sin =的微分.解因为''sin ⎪⎭⎫⎝⎛=x x y 2sin cos x x x x -=所以 dx y dy '=.s i n c o s 2dx xxx x -=微分形式的不变性例5(E05)设),12sin(+=x y 求dy . 解 设,sin u y =,12+=x u 则)(sin u d dy =udu cos =)12()12cos(++=x d x dx x 2)12cos(⋅+=.)12cos(2dx x +=注: 与复合函数求导类似, 求复合函数的微分也可不写出中间变量, 这样更加直接和方便.例6 设),1ln(2x e y += 求.dy解 )1l n (2xe d dy +=)1(1122xxed e++=)(11222x d eexx+=x d x eexx2122+=.1222dx exe xx+=例7(E06)设,2sinxe y =求.dy解 应用微分形式不变性, 有 .2sin cos sin 2sin sin 2sin2222sin sinsin2sindx xexdxx ex xd ex d edy xxxx=⋅=⋅==例8(E07)已知,22xey x = 求dy .解 222222)()()(x x d eed x dy xx-=422222xxdxedx ex xx⋅-⋅=.)1(232dx xx ex-=例9(E08)在下列等式的括号中填入适当的函数, 使等式成立.(1) ;cos )(tdt d ω= (2) ).()()(sin 2x d x d = 解 ,cos )(sin tdt t d ωωω= ∴)(s i n 1c o s td t d t ωωω=);sin 1(t d ωω=一般地,有.cos sin 1tdt C t d ωωω=⎪⎭⎫⎝⎛+例10(E09)求由方程32y x e xy +=所确定的隐函数)(x f y =的微分dy . 利用微分进行近似计算解 对方程两边求微分, 得 ),2()(3y x d e d xy +=),()2()(3y d x d xy d exy+= ,32)(2dy y dx xdy ydx e xy +=+于是 .322dx yxeye dy xyxy --=例11(E09) 求x )x (f +=1在0=x 与3=x 处的线性化.解 首先不难求得xx f +='121)( ,则413(21)0(23(1)0(='='==),,),f f f f ,于是,根据上面线性化定义知)(x f 在0=x 处的线性化121)0)(0()0()(+=-'+=x x f f x L ,在3=x 处的线性化为4541)3)(3()3()(+=-'+=x x f f x L))(()()(000x x x f x f x L -'+=示意图见右,故x x 2111+≈+(在x=0处), 45411+≈+x x (在x=3处).例12(E11) 求)x ln()x (f +=1在0=x 的线性化. 解 首先求得)(x f 'x+=11,得1)0(='f ,又0)0(=f ,于是)(x f 在x=0处的线性化x x f f x L =-'+=)0)(0()0()(例13(E12)半径10厘米的金属圆片加热后, 半径伸长了0.05厘米, 问面积增大了多少?解 设,2r A π=10=r (厘米), 05.0=∆r (厘米).∴dA A ≈∆r r ∆⋅=π205.0102⨯⨯=ππ=(厘米2).例14(E13)计算0360cos ' 的近似值.解 设x x f cos )(=⇒,sin )('x x f -=x (为弧度),取,30π=x 360π=∆x⇒,21)3(=πf .23)3('-=πf所以 ⎪⎭⎫⎝⎛+=3603cos 3060cos 'ππ 3603s i n 3c o s πππ⋅-=3602321π⋅-=.4924.0≈例15计算下列各数的近似值.(1) (E14)35.998的近似值. (2) .03.0-e解 (1)335.110005.998-=310005.111000⎪⎭⎫ ⎝⎛-=30015.0110-=⎪⎭⎫ ⎝⎛⨯-=0015.031110.995.9=(2) 03.0103.0-≈-e .97.0=例16(E15) 最后我们来看一个线性近似在质能转换关系中的应用. 我们知道,牛顿的第二运动定律αm F =(α为加速度)中的质量m 是被假定为常数的,但严格说来这是不对的,因为物体的质量随其速度的增长而增长. 在爱因斯坦修正后的公式中,质量为2201c/v m m -=,当v 和c 相比很小时,22c /v 接近于零,从而有⎪⎭⎫ ⎝⎛+=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+≈-=22002202201212111c v m m c v m c/v m m 即 ⎪⎭⎫ ⎝⎛+≈2200121c v m m m , 注意到上式中K v m =2021是物体的动能,整理得)K (m v m v m c )m m (∆=-=≈-202020200212121,或 )K (c )m (∆∆≈2. (1)换言之,物体从速度0到速度v 的动能的变化)K (∆近似等于2c )m (∆. 因为8103⨯=c 米/秒,代入式(1)中,得≈)K (∆90 000 000 000 000 000m ∆焦耳,由此可知,小的质量变化可以创造出大的能量变化.例如,1克质量转换成的能量就相当于爆炸一颗2万吨级的原子弹释放的能量.例17 正方形边长为005.041.2±米, 求出它的面积, 并估计绝对误差与相对误差. 解 设正方形的边长为x ,面积为y ,则.2x y = 当41.2=x 时,).(8081.5)41.2(22m y ==.82.4241.241.2'====x x xy边长的绝对误差为,005.0=x δ ∴面积的绝对误差为).(0241.0005.082.42m x =⨯=δ ∴面积的相对误差为%.4.08081.50241.0≈=yy δ课堂练习1.求函数x x y -=的微分dy .2.因为一元函数)(x f y =在0x 的可微性与可导性是等价的, 所以有人说“微分就是导数, 导数就是微分”,判断这种说法对吗?3.设,0>A 且n A B <||, 证明1-+≈+n n n nAB A B A (A , B 为常数), 并计算101000的近似值.。
第五节 复合函数微分法与隐函数微分法在一元函数的复合求导中,有所谓的“链式法则”,这一法则可以推广到多元复合函数的情形. 下面分几种情况来讨论.分布图示★ 链式法则(1) ★ 链式法则(2) ★ 链式法则(3)★ 例1 ★ 例2 ★ 例3 ★ 例4 ★ 例5 ★ 例6★ 例7 ★ 全微分形式的不变性★ 例 8 ★ 例 9 ★ 例 10 ★ 例 11 ★ 隐函数微分法(1)★ 例12 ★ 例13 ★ 隐函数微分法(2)★ 例14 ★ 例15 ★ 例16★ 例17★ 例18★ 内容小结★ 课堂练习 ★ 习题6-5内容要点一、多元复合函数微分法1.复合函数的中间变量为一元函数的情形设函数),(v u f z =,)(t u u =,)(t v v =构成复合函数)](),([t v t u f z =.dtdvv z dt du u z dt dz ∂∂+∂∂= (5.1) 公式(5.1)中的导数dtdz称为全导数. 2、复合函数的中间变量为多元函数的情形设),,(v u f z =),,(y x u u =),(y x v v =构成复合函数)],,(),,([y x v y x u f z =,xv v z x u u z x z ∂∂∂∂+∂∂∂∂=∂∂ (5.3) ,yv v z y u u z y z ∂∂∂∂+∂∂∂∂=∂∂ (5.4) 3、复合函数的中间变量既有一元也有为多元函数的情形定理3 如果函数),(y x u u =在点),(y x 具有对x 及对y 的偏导数, 函数)(y v v =在点y 可导,函数),(v u f z =在对应点),(v u 具有连续偏导数, 则复合函数)](),,([y v y x u f z =在对应点),(y x 的两个偏导数存在, 且有,xu u z x z ∂∂∂∂=∂∂ (5.7) .dydv v z y u u z y z ∂∂+∂∂∂∂=∂∂ (5.8) 注:这里x z ∂∂与x f ∂∂是不同的,x z ∂∂是把复合函数],),,([y x y x u f z =中的y 看作不变而对x 的偏导数,x f ∂∂是把函数),,(y x u f z =中的u 及y 看作不变而对x 的偏导数. y z ∂∂与yf∂∂也有类似的区别.在多元函数的复合求导中,为了简便起见,常采用以下记号:,),(1u v u f f ∂∂=' ,),(2v v u f f ∂∂='vu v u f f ∂∂∂=''),(212 ,这里下标1表示对第一个变量u 求偏导数,下标2表示对第二个变量v 求偏导数,同理有2211,f f '''' , 等等.二、全微分形式的不变性根据复合函数求导的链式法则,可得到重要的全微分形式不变性. 以二元函数为例,设),(v u f z =, ),(),,(y x v v y x u u ==是可微函数,则由全微分定义和链式法则,有dy y z dx x z dz ∂∂+∂∂=dy y v v z y u u z dx x v v z x u u z ⎪⎪⎭⎫ ⎝⎛∂∂⋅∂∂+∂∂⋅∂∂+⎪⎭⎫⎝⎛∂∂⋅∂∂+∂∂⋅∂∂= ⎪⎪⎭⎫⎝⎛∂∂+∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∂∂=dy y v dx x v v z dy y u dx x u u z .dv vz du u z ∂∂+∂∂=由此可见,尽管现在的u 、v 是中间变量,但全微分dz 与x 、y 是自变量时的表达式在形式上完全一致. 这个性质称为全微分形式不变性. 适当应用这个性质,会收到很好的效果.三、 隐函数微分法在一元微分学中,我们曾引入了隐函数的概念,并介绍了不经过显化而直接由方程0),(=y x F (5.11)来求它所确定的隐函数的导数的方法. 这里将进一步从理论上阐明隐函数的存在性,并通过多元复合函数求导的链式法则建立隐函数的求导公式,给出一套所谓的“隐式”求导法.定理4 设函数),(y x F 在点),(00y x P 的某一邻域内具有连续的偏导数, 且,0),(00≠y x F y ,0),(00=y x F 则方程0),(=y x F 在点),(00y x P 的某一邻域内恒能唯一确定一个连续且具有连续导数的函数),(x f y = 它满足),(00x f y = 并有.yx F Fdx dy -= (5.12) 定理5 设函数),,(z y x F 在点),,(000z y x P 的某一邻域内有连续的偏导数, 且,0),,(,0),,(000000≠=z y x F z y x F z则方程0),,(=z y x F 在点),,(000z y x P 的某一邻域内恒能唯一确定一个连续且具有连续偏导数的函数),(y x f z =, 它满足条件),(000y x f z =,并有.,zy zx F F y zF F x z -=∂∂-=∂∂ (5.14)例题选讲多元复合函数微分法例1 (E01) 设,sin t uv z +=而,cos ,t v e u t == 求导数.dtdz 解dt dz tzdt dv v z dt du u z ∂∂+⋅∂∂+⋅∂∂=t t u ve t cos sin +-= t t e t e t t cos sin cos +-=.cos )sin (cos t t t e t +-=例2 (E02) 设,sin v e z u =而,,y x v xy u +== 求x z ∂∂和.yz ∂∂ 解x z ∂∂xvv z x u u z ∂∂⋅∂∂+∂∂⋅∂∂=1c o s s i n ⋅+⋅=v e y v e u u )cos sin (v v y e u +=)],cos()sin([y x y x y e xy +++= y z ∂∂yv v z y u u z ∂∂⋅∂∂+∂∂⋅∂∂=1cos sin ⋅+⋅=v e x v e u u )cos sin (v v x e u +=)].cos()sin([y x y x x e xy +++=例3 求y x y x z 2422)3(++=的偏导数.解 设,322y x u +=,24y x v +=则.v u z = 可得,1-⋅=∂∂v u v u z ,ln u u vz v ⋅=∂∂ ,6x x u =∂∂,2y y u =∂∂,4=∂∂xv2=∂∂y v 则x z ∂∂xvv z x u u z ∂∂∂∂+∂∂∂∂=4ln 61⋅⋅+⋅⋅=-u u x u v v v 12422)3)(24(6-+++=y x y x y x x )3ln()3(4222422y x y x y x ++++ y z ∂∂yv v z y u u z ∂∂∂∂+∂∂∂∂=2ln 21⋅⋅+⋅⋅=-u u y u v v v 12422)3)(24(2-+++=y x y x y x y ).3ln()3(2222422y x y x y x ++++例4 设,sin ,),,(2222y x z e z y x f u z y x ===++ 求xu∂∂和.y u ∂∂ 解x u ∂∂xzz f x f ∂∂∂∂+∂∂=y x ze xe z y x z y x sin 222222222⋅+=++++ ,)sin 21(22422sin 22yx y xe y x x +++=y u ∂∂yzz f y f ∂∂∂∂+∂∂=y x ze ye z y x z y x cos 222222222⋅+=++++ .yx y xe y y x y 2422sin 4)cos sin (2+++=例5 (E03) 设),,(,y x u u xy z ϕ=+= 求.,,222yx zx z x z ∂∂∂∂∂∂∂ 解),,(y x y xu y x z x ϕ+=∂∂+=∂∂ ),,(2222y x x u x u y x x z x x z xx ϕ=∂∂=⎪⎭⎫ ⎝⎛∂∂+∂∂=⎪⎭⎫ ⎝⎛∂∂∂∂=∂∂).,(1122y x yx ux u y y x z y y x z xy ϕ+=∂∂∂+=⎪⎭⎫ ⎝⎛∂∂+∂∂=⎪⎭⎫ ⎝⎛∂∂∂∂=∂∂∂例6 设),,(22y x e f z xy-= 其中),(ηξf 有连续的二阶偏导数, 求.,22yz y z ∂∂∂∂解 设,xy e =ξ,22y x -=η则xz ∂∂x f x f ∂∂⋅∂∂+∂∂⋅∂∂=ηηξξξ∂∂=f ye xy η∂∂+f x 2 y x z ∂∂∂2⎪⎪⎭⎫ ⎝⎛∂∂∂∂=ξf ye y xy ⎪⎪⎭⎫⎝⎛∂∂∂∂+ηf x y 2 ξ∂∂=f exyξ∂∂+f xye xy 22ξ∂∂+f xye xy ηξ∂∂∂-f e y xy 222ηξ∂∂∂+f e x xy 222224η∂∂-f xy ξ∂∂+=f xy e xy)1(222ξ∂∂+f xye xy 例7 (E04) 设),,(xyz z y x f w ++= 其中函数f 有二阶连续偏导数,求x w∂∂和zx w ∂∂∂2.解 令,z y x u ++=,xyz v =记,),(1uv u f f ∂∂=',),(212v u v u f f ∂∂∂='' 同理记,2f ',11f '',22f ''. x w ∂∂xvv f x u u f ∂∂⋅∂∂+∂∂⋅∂∂=;21f yz f '+'= z x w ∂∂∂2)(21f yz f z '+'∂∂=;221z f yz f y z f ∂'∂+'+∂'∂= z f ∂'∂1zvv f z u u f ∂∂⋅∂'∂+∂∂⋅∂'∂=11;1211f xy f ''+''= z f ∂'∂2zvv f z u u f ∂∂⋅∂'∂+∂∂⋅∂'∂=22;2221f xy f ''+''= zx w∂∂∂2)(222121211f xyf f yz f y f xy f ''+''+'+''+''=.)(22221211f y f z xy f z x y f '+''+''++''=例8 利用全微分形式不变性解本节的例2.设,sin v e z u = 而,xy u = ,y x v += 求x z 和.y z解 dz )s i n (v e d u =,c o s s i nv d v e v d u e u u+= 因du )(xy d =,xdy ydx +=dv )(y x d +=,dy dx +=代入后归并含dx 及dy 的项,得dz dx v e y v e u u )cos sin (+⋅=,)cos sin (dy v e x v e u u +⋅+即dy yzdx x z ∂∂+∂∂dx y x y x y e xy )]cos()sin([+++=.)]cos()sin([dy y x y x x e xy ++++ 比较上式两边的dx 、dy 的系数,得x z )],cos()sin([y x y x y e xy +++=y z )].cos()sin([y x y x x e xy +++=它们与例2的结果一样.全微分形式的不变性例9 (E05) 利用一阶全微分形式的不变性求函数222z y x xu ++=的偏导数.解du =2222222222)()()(z y x z y x xd dx z y x ++++-++2222222)()222()(z y x zdz ydy xdx x dx z y x ++++-++= .)(22)(2222222z y x xzdzxydy dx x z y ++---+=所以 x u ∂∂,)(2222222z y x x z y ++-+=y u ∂∂,)(22222z y x xy ++-=z u∂∂.)(22222z y x xz ++-=例10 求函数xyyx z -+=1arctan的全微分. 解 设,y x u +=,1xy v -=则,arctan vuz =于是dz dv v z du u z ∂∂+∂∂=du v v u 1)(112⋅+=dv v u vu ⎪⎭⎫⎝⎛-++22)(11).(122udv vdu v u -⋅+= 由,y x u +=,1xy v -=,dy dx du +=),(xdy ydx dv +-=代入上式,得 =dz22)1()(1xy y x -++[)1(xy -)(dy dx +)(y x ++)(xdy ydx +].1122y dyx dx +++=例11 (E06) 已知,02=+--z xy e z e 求x z ∂∂和yz∂∂. 解 ,0)2(=+--z xy e z e d∴,02)(=+---dz e dz xy d e z xydz e z )2(-),(ydx xdy e xy +=- dz .)2()2(dy e xe dx e ye z xyz xy -+-=--故所求偏导数x z∂∂,2-=-z xy e ye y z ∂∂.2-=-z xy e xe隐函数微分法例12 (E07) 验证方程0122=-+y x 在点(0, 1)的某邻域内能唯一确定一个有连续导 数、当0=x 时1=y 的隐函数)(x f y =,求这函数的一阶和二阶导数在0=x 的值.证 令,1),(22-+=y x y x F 则x F ,2x =y F ,2y =)1,0(x F ,0=)1,0(y F 2=,0≠依定理知方程0122=-+y x 在点)1,0(的某领域内能唯一确定一个有连续导数,当0=x 时1=y 的隐函数),(x f y =函数的一阶和二阶导数为dx dy yxF F =,y x -=0=x dx dy ,0= 22dx y d 2y y x y '-=2)(yyx x y --=,13y -=022=x dx y d .1-=例13 求由方程0=+-y x e e xy 所确定的隐函数y 的导数.,0=x dxdydx dy解 此题在第二章第六节采用两边求导的方法做过,这里我们直接用公式求之. 令,y x e e xy F +-=则x F ,x e y -=y F ,ye x +=dxdy y x F F -=,y x e x y e +-=由原方程知0=x 时,,0=y 所以0=x dx dy 00==+-=y x yx e x y e .1=例14 (E08) 求由方程y z z x ln =所确定的隐函数),(y x f z =的偏导数.,yz x z ∂∂∂∂ 解 设,ln ),,(yzz x z y x F -=则,0),,(=z y x F 且.1,1,1222z zx y z y z x z F y y z z y y F z x F +-=⋅--=∂∂=⎪⎪⎭⎫ ⎝⎛--=∂∂=∂∂ 利用隐函数求导公式,得.)(,2z x y z F F y z z x z F F x z z y z x +=-=∂∂+=-=∂∂例15 求由方程a a xyz z (333=-是常数)所确定的隐函数),(y x f z =的偏导数xz ∂∂和.yz ∂∂ 解 令,3),,(33a xyz z z y x F --=则x F ',3yz -=y F ',3xz -=z F '.332xy z -=显然都是连续.所以,当z F 'xy z 332-=0≠时,由隐函数存在定理得x z ∂∂zx F F ''=xy z yz 3332---=,2xy z yz -=y z ∂∂z y F F ''=xy z xz 3332---=.2xyz xz -=例16 (E09) 设,04222=-++z z y x 求 .22x z∂∂ 解 令,4),,(222z z y x z y x F -++=则x F ,2x =z F ,42-=z∴xz ∂∂z x F F -=,2z x -=22x z ∂∂2)2()2(z x z xz -∂∂+-=2)2(2)2(z z xx z --⋅+-=.)2()2(322z x z -+-=注:在实际应用中,求方程所确定的多元函数的偏导数时,不一定非得套公式,尤其在方程中含有抽象函数时,利用求偏导或求微分的过程则更为清楚.例17 设),,(xyz z y x f z ++= 求.,,zy y x x z ∂∂∂∂∂∂ 解 z 看成y x ,的函数对x 求偏导数得x z∂∂⎪⎭⎫ ⎝⎛∂∂+⋅+⎪⎭⎫ ⎝⎛∂∂+⋅=x z xy yz f x z f v u 1x z ∂∂,1vu v u xyf f yzf f --+= 把x 看成y z ,的函数对y 求偏导数得0⎪⎪⎭⎫⎝⎛∂∂+⋅+⎪⎪⎭⎫ ⎝⎛+∂∂⋅=y x yz xz f y x f v u 1y x∂∂,v u v u y z ff x z f f ++= 把y 看成z x ,的函数对z 求偏导数得1⎪⎭⎫ ⎝⎛∂∂+⋅+⎪⎭⎫⎝⎛+∂∂⋅=z y xz xy f z y f v u 1zy ∂∂.1v u vu x z f f xyf f +--=例18 设方程ze z y x =++确定了隐函数),,(y x z z =求.,,22222y zy x z x z ∂∂∂∂∂∂∂解 方程两边分别对x 求偏导和对y 求偏导,得,1xze x z z ∂∂=∂∂+.1x z e y z z ∂∂=∂∂+ 所以,11-=∂∂z e x z .11-=∂∂z e y z 22x z ∂∂⎪⎭⎫ ⎝⎛∂∂∂∂=x z x x z e e z z ∂∂⋅-=2)1(111)1(2-⋅--=z z z e e e .)1(3--=z z e e 同理 22y z∂∂.)1(3--=z z e e课堂练习1.设),(xyz xy x f w ++= 求.,,zw y w x w ∂∂∂∂∂∂ 2.设),sin (sin sin x y F x u -+=其中F 是可微函数, 证明.cos cos cos cos y x x yuy x u ⋅=∂∂+∂∂ 3.设,⎪⎭⎫⎝⎛=z y z x ϕ其中ϕ为可微函数, 求y z y x z x ∂∂+∂∂.。
第五节 二次函数与幂函数时间:45分钟 分值:75分一、选择题(本大题共6小题,每小题5分,共30分)1.已知幂函数f (x )=x α的图象经过点⎝⎛⎭⎪⎫2,22,则f (4)的值为( )A .16 B.116 C.12D .2解析 由已知,得22=2α,即2α=2-12,∴α=-12.∴f (x )=x -12.∴f (4)=4-12=12.答案 C2.函数y =x13的图象是( )A. B.C. D.解析 由幂函数的性质知:①图象过(1,1)点,可排除A 、D ;②当指数0<α<1时为增速较缓的增函数,故可排除C ,从而选B.答案 B3.(2013·重庆卷)(3-a )(a +6)(-6≤a ≤3)的最大值为( ) A .9 B.92 C .3 D.322解析(3-a )(a +6)=-a 2-3a +18=-(a +32)2+814,当a =-32时,(3-a )(a +6)取得最大值92. 答案 B4.(2014·陕西榆林期末)设b >0,二次函数y =ax 2+bx +a 2-1的图象为下列之一,则a 的值为( )A .1B .-1 C.-1-52D.-1+52解析 由b >0,排除图象①②;若a >0,则-b2a <0,排除图象④;由图象③得⎩⎪⎨⎪⎧a <0,a 2-1=0,即a =-1.故选B.答案 B5.(2014·江南十校联考)已知函数f (x )=⎩⎪⎨⎪⎧x 2+4x ,x ≥0,4x -x 2,x <0.若f (2-a 2)>f (a ),则实数a 的取值范围是( )A .(-∞,-1)∪(2,+∞)B .(-1,2)C .(-2,1)D .(-∞,-2)∪(1,+∞)解析 函数f (x )=⎩⎪⎨⎪⎧x 2+4x ,x ≥0,4x -x 2,x <0的图象如图.知f (x )在R 上为增函数. 故f (2-a 2)>f (a ),即2-a 2>a . 解得-2<a <1. 答案 C6.(2013·安徽卷)“a ≤0”是“函数f (x )=|(ax -1)x |在区间(0,+∞)内单调递增”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析 由二次函数的图象和性质知f (x )=|(ax -1)x |在(0,+∞)内单调递增只需f (x )的图象在(0,+∞)上与x 轴无交点,即a =0或1a <0,整理得a ≤0,而当a ≤0时结合图象可知f (x )在(0,+∞)上为增函数,故a ≤0是f (x )在(0,+∞)上单调递增的充要条件.故选C.答案 C二、填空题(本大题共3小题,每小题5分,共15分)7.(2014·西城模拟)若二次函数f (x )满足f (2+x )=f (2-x ),且f (a )≤f (0)<f (1),则实数a 的取值范围是________.解析 由题意知,抛物线f (x )开口向下,对称轴为x =2,又f (0)=f (4),∴a ≤0或a ≥4.答案 (-∞,0]∪[4,+∞)8.若二次函数y =ax 2+bx +c 的图象与x 轴交于A (-2,0),B (4,0)且函数的最大值为9,则这个二次函数的表达式是________.解析 设y =a (x +2)(x -4),对称轴为x =1, 当x =1时,y max =-9a =9,∴a =-1, ∴y =-(x +2)(x -4)=-x 2+2x +8. 答案 y =-x 2+2x +89.(2013·江苏卷)在平面直角坐标系xOy 中,设定点A (a ,a ),P 是函数y =1x (x >0)图象上一动点.若点P ,A 之间的最短距离为22,则满足条件的实数a 的所有值为________.解析 设P (t ,1t ),其中t >0,P A 2=(t -a )2+(1t -a )2=t 2+1t 2-2a (t +1t )+2a 2,即P A 2=(t +1t )2-2a (t +1t )+2a 2-2,令m =t +1t ≥2,所以P A 2=m 2-2am +2a 2-2=(m -a )2+a 2-2,当P A 取得最小值时,⎩⎪⎨⎪⎧ a ≤2,22-4a +2a 2-2=(22)2,或⎩⎪⎨⎪⎧a >2,a 2-2=(22)2,解得a =-1或a =10.答案 -1 10三、解答题(本大题共3小题,每小题10分,共30分) 10.(2014·杭州模拟)已知函数f (x )=x 2+(2a -1)x -3, (1)当a =2,x ∈[-2,3]时,求函数f (x )的值域;(2)若函数f (x )在[-1,3]上的最大值为1,求实数a 的值. 解 (1)当a =2时,f (x )=x 2+3x -3,x ∈[-2,3], 对称轴x =-32∈[-2,3],∴f (x )min =f (-32)=94-92-3=-214, f (x )max =f (3)=15,∴值域为[-214,15]. (2)对称轴为x =-2a -12. ①当-2a -12≤1,即a ≥-12时, f (x )max =f (3)=6a +3,∴6a +3=1,即a =-13满足题意; ②当-2a -12>1,即a <-12时, f (x )max =f (-1)=-2a -1,∴-2a -1=1,即a =-1满足题意. 综上可知a =-13或-1.11.已知函数f (x )=ax 2+(b -8)x -a -ab (a ≠0),当x ∈(-3,2)时,f (x )>0;当x ∈(-∞,-3)∪(2,+∞)时,f (x )<0.(1)求f (x )在[0,1]内的值域;(2)c 为何值时,不等式ax 2+bx +c ≤0在[1,4]上恒成立.解 由题意,得x =-3和x =2是函数f (x )的零点,且a <0,则⎩⎪⎨⎪⎧0=a ×(-3)2+(b -8)×(-3)-a -ab ,0=a ×22+(b -8)×2-a -ab .解得⎩⎪⎨⎪⎧a =-3,b =5.∴f (x )=-3x 2-3x +18.(1)由图象知,函数在[0,1]内单调递减, ∴当x =0时,y =18;当x =1时,y =12. ∴f (x )在[0,1]内的值域为[12,18]. (2)令g (x )=-3x 2+5x +c .∵g (x )在⎝ ⎛⎭⎪⎫56,+∞上单调递减,要使g (x )≤0在[1,4]上恒成立,则需要g (1)≤0.即-3+5+c ≤0,解得c ≤-2.∴当c ≤-2时,不等式ax 2+bx +c ≤0在[1,4]上恒成立. 12.已知函数f (x )=ax 2+bx +c (a >0,b ∈R ,c ∈R ).(1)若函数f (x )的最小值是f (-1)=0,且c =1,F (x )=⎩⎪⎨⎪⎧f (x ) (x >0),-f (x ) (x <0).求F (2)+F (-2)的值; (2)若a =1,c =0,且|f (x )|≤1在区间(0,1]上恒成立,求b 的取值范围.解 (1)由已知c =1,a -b +c =0,且-b2a =-1. 解得a =1,b =2. ∴f (x )=(x +1)2,∴F (x )=⎩⎪⎨⎪⎧(x +1)2(x >0),-(x +1)2(x <0). ∴F (2)+F (-2)=(2+1)2+[-(-2+1)2]=8.(2)f (x )=x 2+bx ,原命题等价于-1≤x 2+bx ≤1在(0,1]上恒成立,即b ≤1x -x 且b ≥-1x -x 在(0,1]上恒成立,1x -x 的最小值为0,-1x -x 的最大值为-2.所以-2≤b ≤0.。