三种集合表示法的适用范围
- 格式:docx
- 大小:11.16 KB
- 文档页数:1
第2课时集合的表示考点学习目标核心素养列举法表示集合掌握用列举法表示有限集数学抽象理解描述法格式及其适用情况,并会数学抽象描述法表示集合用描述法表示相关集合区间及其表示会用区间表示集合数学抽象学会在集合的不同表示法中作出选择集合表示法的简单应用数学抽象和转换问题导学预习教材P5倒数第4行-P8的内容,思考以下问题:1.集合有哪几种表示方法?它们如何定义?2.列举法的使用条件是什么?如何用符号表示?3.描述法的使用条件是什么?如何用符号表示?4.如何用区间表示集合?1.列举法把集合中的元素一一列举出来(相邻元素之间用逗号分隔),并写在大括号内,以此来表示集合的方法称为列举法.■名师点拨(1)应用列举法表示集合时应关注以下四点①元素与元素之间必须用“,”隔开;②集合中的元素必须是明确的;③集合中的元素不能重复;④集合中的元素可以是任何事物.(2)a与{a}是完全不同的,{a}表示一个集合,这个集合由一个元素a构成,a是集合{a}的元素.2.描述法一般地,如果属于集合A的任意一个元素x都具有性质p(x),而不属于集合A的元素都不具有这个性质,则性质p(x)称为集合A的一个特征性质.此时,集合A可以用它的特征性质p(x)表示为{x|p(x)}.这种表示集合的方法,称为特征性质描述法,简称为描述法.■名师点拨(1)应用描述法表示集合时应关注以下三点①写清楚集合中元素的符号,如数或点等;②说明该集合中元素的共同特征,如方程、不等式、函数式或几何图形等;③不能出现未被说明的字母.(2)注意区分以下四个集合①A={x|y=x2+1}表示使函数y=x2+1有意义的自变量x的取值范围,且x的取值范围是R,因此A=R;②B={y|y=x2+1}表示使函数y=x2+1有意义的函数值y的取值范围,而y的取值范围是y=x2+1≥1,因此B={y|y≥1};③C={(x,y)|y=x2+1}表示满足y=x2+1的点(x,y)组成的集合,因此C表示函数y =x2+1的图像上的点组成的集合;④P={y=x2+1}是用列举法表示的集合,该集合中只有一个元素,且此元素是一个式子y=x2+1.3.区间的概念及表示(1)区间的定义及表示设a,b是两个实数,而且a<b.定义名称符号数轴表示{x|a≤x≤b}闭区间[a,b]{x|a<x<b}开区间(a,b){x|a≤x<b}半开半闭区间[a,b){x|a<x≤b}半开半闭区间(a,b]定义R{x|x≥a}{x|x>a}{x|x≤a}{x|x<a}符号(-∞,+∞)[a,+∞)(a,+∞)(-∞,a](-∞,a)关于无穷大的两点说明(1)“∞”是一个符号,而不是一个数.(2)以“-∞”或“+∞”为端点时,区间这一端必须是小括号.判断正误(正确的打“√”,错误的打“×”)(1)一个集合可以表示为{s,k,t,k}.( )(2)集合{-5,-8}和{(-5,-8)}表示同一个集合.( )(3)集合A={x|x-1=0}与集合B={1}表示同一个集合.( )(4)集合{x|x>3,且x∈N}与集合{x∈N|x>3}表示同一个集合.( )(5)集合{x∈N|x3=x}可用列举法表示为{-1,0,1}.( )答案:(1)×(2)×(3)√(4)√(5)×方程x2-1=0的解集用列举法表示为( )A.{x2-1=0} B.{x∈R|x2-1=0}C.{-1,1} D.以上都不对解析:选C.解方程x2-1=0得x=±1,故方程x2-1=0的解集为{-1,1}.集合{x∈N*|x-3<2}的另一种表示法是( )A.{0,1,2,3,4} B.{1,2,3,4}C.{0,1,2,3,4,5} D.{1,2,3,4,5}解析:选B.因为x-3<2,x∈N*,所以x<5,x∈N*,所以x=1,2,3,4.由大于-1小于5的自然数组成的集合用列举法表示为________,用描述法表示为________.解析:大于-1小于5的自然数有0,1,2,3,4.故用列举法表示集合为{0,1,2,3,4},用描述法表示可用x表示代表元素,其满足的条件是x∈N且-1<x<5.故用描述法表示集合为{x∈N|-1<x<5}.答案:{0,1,2,3,4} {x∈N|-1<x<5}(1){x|-1≤x≤2}可用区间表示为________;(2){x|1<x≤3}可用区间表示为________;(3){x|x>2}可用区间表示为________;(4){x|x≤-2}可用区间表示为________;答案:(1)[-1,2] (2)(1,3] (3)(2,+∞)(4)(-∞,-2]用列举法表示集合用列举法表示下列集合:(1)满足-2≤x ≤2且x ∈Z 的元素组成的集合A ; (2)方程(x -2)2(x -3)=0的解组成的集合M ;(3)方程组⎩⎪⎨⎪⎧2x +y =8,x -y =1的解组成的集合B ;(4)15的正约数组成的集合N . 【解】 (1)因为-2≤x ≤2,x ∈Z , 所以x =-2,-1,0,1,2, 所以A ={-2,-1,0,1,2}. (2)因为2和3是方程的根, 所以M ={2,3}.(3)解方程组⎩⎪⎨⎪⎧2x +y =8,x -y =1得⎩⎪⎨⎪⎧x =3,y =2. 所以B ={(3,2)}.(4)因为15的正约数有1,3,5,15, 所以N ={1,3,5,15}.列举法表示的集合的种类(1)元素个数少且有限时,全部列举,如{1,2,3,4}.(2)元素个数多且有限时,可以列举部分,中间用省略号表示,如“从1到1 000的所有自然数”可以表示为{1,2,3,…,1 000}.(3)元素个数无限但有规律时,也可以类似地用省略号列举,如“自然数集N ”可以表示为{0,1,2,3,…}.[注意] (1)花括号“{}”表示“所有”“整体”的含义,如实数集R 可以写为{实数},但如果写成{实数集}、{全体实数}、{R }都是不确切的.(2)用列举法表示集合时,要求元素不重复、不遗漏.用列举法表示下列给定的集合:(1)大于1且小于6的整数组成的集合A ; (2)方程x 2-9=0的实数根组成的集合B ; (3)小于8的质数组成的集合C ;(4)一次函数y =x +3与y =-2x +6的图像的交点组成的集合D .解:(1)大于1且小于6的整数包括2,3,4,5, 所以A ={2,3,4,5}.(2)方程x 2-9=0的实数根为-3,3, 所以B ={-3,3}.(3)小于8的质数有2,3,5,7, 所以C ={2,3,5,7}.(4)由⎩⎪⎨⎪⎧y =x +3,y =-2x +6,解得⎩⎪⎨⎪⎧x =1,y =4,所以一次函数y =x +3与y =-2x +6的图像的交点为(1,4),所以D ={(1,4)}. 用描述法表示集合用描述法表示下列集合:(1)函数y =-2x 2+x 的图像上的所有点组成的集合; (2)不等式2x -3<5的解组成的集合; (3)如图中阴影部分的点(含边界)的集合; (4)3和4的所有正的公倍数构成的集合.【解】 (1)函数y =-2x 2+x 的图像上的所有点组成的集合可表示为{(x ,y )|y =-2x 2+x }.(2)不等式2x -3<5的解组成的集合可表示为{x |2x -3<5},即{x |x <4}.(3)题图中阴影部分的点(含边界)的集合可表示为{(x ,y )|-1≤x ≤32,-12≤y ≤1,xy≥0}.(4)3和4的最小公倍数是12,因此3和4的所有正的公倍数构成的集合是{x |x =12n ,n ∈N *}.使用描述法表示集合应注意的问题(1)写清楚该集合的代表元素,如数或点等. (2)说明该集合中元素的共同属性. (3)不能出现未被说明的字母.(4)所有描述的内容都要写在花括号内,用于描述的内容力求简洁、准确.试分别用描述法和列举法表示下列集合:(1)由方程x (x 2-2x -3)=0的所有实数根组成的集合;(2)大于2小于7的整数.解:(1)用描述法表示为{x ∈R |x (x 2-2x -3)=0},用列举法表示为{0,-1,3}. (2)用描述法表示为{x ∈Z |2<x <7},用列举法表示为{3,4,5,6}. 区间及其表示把下列数集用区间表示:(1)⎩⎨⎧⎭⎬⎫x |x ≥-12;(2){x |x <0}; (3){x |-2<x ≤3}; (4){x |-3≤x <2}; (5){x |-1<x <6}.【解】 (1)⎣⎢⎡⎭⎪⎫-12,+∞; (2)(-∞,0); (3)(-2,3]; (4)[-3,2); (5)(-1,6).解决区间问题应注意的五点(1)区间的左端点必须小于右端点,有时我们将b -a 称为区间长度,对于只有一个元素的集合我们仍然用集合来表示,如{a }.(2)注意开区间(a ,b )与点(a ,b )在具体情景中的区别. (3)用数轴来表示区间时,要特别注意实心点与空心圆的区别.(4)对于一个不等式的解集,我们既可以用集合形式来表示,也可以用区间形式来表示. (5)要注意区间表示实数集的几条原则,数集是连续的,左小,右大,开或闭不能混淆,用“∞”作为区间端点时,要用开区间符号.1.若[2a +1,3a -1]为一确定区间,则实数a 的取值范围为________. 解析:由题意知3a -1>2a +1,即a >2. 答案:(2,+∞)2.不等式2x +3≤0的解集可用区间表示为________. 解析:由2x +3≤0,得x ≤-32.答案:⎝ ⎛⎦⎥⎤-∞,-32 3.使15-x有意义的x 的取值范围为________(用区间表示). 解析:要使15-x有意义,则5-x >0,即x <5. 答案:(-∞,5) 集合表示方法的简单应用已知集合A ={x ∈R |mx 2-2x +3=0,m ∈R },若A 中元素至多只有一个,求m 的取值范围.【解】 ①当m =0时,原方程为-2x +3=0,x =32,符合题意.②当m ≠0时,方程mx 2-2x +3=0为一元二次方程,由Δ=4-12m ≤0,得m ≥13,即当m ≥13时,方程mx 2-2x +3=0无实根或有两个相等的实数根,符合题意.由①②知m =0或m ≥13.1.(变条件)若将本例中的“至多只有一个”改为“恰有一个”,如何求解?解:当m =0时,A =⎩⎨⎧⎭⎬⎫32,即集合A 中只有一个元素32,符合题意;当m ≠0时,Δ=4-12m =0, 即m =13.综上可知,m =0或m =13.2.(变条件)若将本例中的“至多只有”改为“至少有”,如何求解?解:A 中至少有一个元素,即A 中有一个或两个元素.由例题解析可知,当m =0或m =13时,A 中有一个元素;当A 中有两个元素时,Δ=4-12m >0,即m <13且m ≠0.所以A 中至少有一个元素时,m 的取值范围为⎩⎨⎧⎭⎬⎫m ⎪⎪⎪m ≤13.此题容易漏解m =0,漏解的原因是默认所给的方程一定是一元二次方程.其实,当m =0时,所给的方程是一个一元一次方程;当m ≠0时,所给的方程才是一个一元二次方程,求解时要注意对m 进行分类讨论.已知集合A ={x |x 2+px +q =x },B ={x |(x -1)2+p (x -1)+q =x +3},当A ={2}时,集合B =( )A .{1}B .{1,2}C .{2,5}D .{1,5}解析:选D.由A ={x |x 2+px +q =x }={2}知,22+2p +q =2,且Δ=(p -1)2-4q =0.计算得出,p =-3,q =4.则(x -1)2+p (x -1)+q =x +3可化为(x -1)2-3(x -1)+4=x +3; 即(x -1)2-4(x -1)=0; 则x -1=0或x -1=4, 计算得出,x =1或x =5. 所以集合B ={1,5}.1.已知集合A ={x |-1<x <3,x ∈Z },则一定有( ) A .-1∈A B .12∈A C .0∈AD .1∉A解析:选C.因为-1<0<3,且0∈Z ,所以0∈A .2.将集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎩⎪⎨⎪⎧x +y =5,2x -y =1用列举法表示,正确的是( ) A .{2,3} B .{(2,3)} C .{x =2,y =3}D .(2,3)解析:选B.解方程组⎩⎪⎨⎪⎧x +y =5,2x -y =1得⎩⎪⎨⎪⎧x =2,y =3,所以集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎩⎪⎨⎪⎧x +y =5,2x -y =1={(2,3)}. 3.给出下列说法:①平面直角坐标系中,第一象限内的点组成的集合为{(x ,y )|x >0,y >0}; ②方程x -2+|y +2|=0的解集为{2,-2};③集合{y |y =x 2-1,x ∈R }与{y |y =x -1,x ∈R }是不相同的;④不等式2x +1>0的解集可用区间表示为⎝ ⎛⎭⎪⎫-12,+∞. 其中正确的是________(填序号).解析:对于①,在平面直角坐标系中,第一象限内的点的横、纵坐标均大于0,且集合中的代表元素为点(x ,y ),所以①正确;对于②,方程x -2+|y +2|=0的解为⎩⎪⎨⎪⎧x =2y =-2,解集为{(2,-2)}或{(x ,y )|⎩⎪⎨⎪⎧x =2y =-2},所以②不正确;对于③,集合{y |y =x 2-1,x ∈R }={y |y ≥-1},集合{y |y =x -1,x ∈R }=R ,这两个集合不相同,所以③正确;对于④,不等式2x +1>0的解集为{x |x >-12},用区间表示为⎝ ⎛⎭⎪⎫-12,+∞,所以④正确. 答案:①③④4.设集合A ={4,a },集合B ={2,ab },若A 与B 的元素相同,则a +b =______. 解析:因为集合A 与集合B 的元素相同,所以⎩⎪⎨⎪⎧a =2,ab =4,即a =2,b =2.故a +b =4.答案:4[A 基础达标]1.集合{(x ,y )|y =2x -1}表示( ) A .方程y =2x -1 B .点(x ,y )C .平面直角坐标系中的所有点组成的集合D .一次函数y =2x -1的图像上的所有点组成的集合解析:选D.本题中的集合是点集,其表示一次函数y =2x -1的图像上的所有点组成的集合.故选D.2.对集合{1,5,9,13,17}用描述法来表示,其中正确的是( ) A .{x |x 是小于18的正奇数} B .{x |x =4k +1,k ∈Z ,且k <5} C .{x |x =4t -3,t ∈N ,且t ≤5} D .{x |x =4s -3,s ∈N *,且s ≤5}解析:选D.A 中小于18的正奇数除给定集合中的元素外,还有3,7,11,15;B 中除给定集合中的元素外,还有-3,-7,-11,…;C 中t =0时,x =-3,不属于给定的集合;只有D 是正确的.故选D.3.已知集合{x |x 2+ax =0}={0,1},则实数a 的值为( ) A .-1 B .0 C .1D .2解析:选A.由题意,x 2+ax =0的解为0,1,利用根与系数的关系得0+1=-a ,所以a =-1.4.(2019·襄阳检测)已知集合A ={1,2,4},集合B =⎩⎨⎧⎭⎬⎫z ⎪⎪⎪z =x y ,x ∈A ,y ∈A ,则集合B 中元素的个数为( )A .4B .5C .6D .7解析:选B.因为A ={1,2,4}.所以集合B =⎩⎨⎧⎭⎬⎫z ⎪⎪⎪z =x y ,x ∈A ,y ∈A =⎩⎨⎧⎭⎬⎫1,12,14,2,4,所以集合B 中元素的个数为5. 5.下列说法中正确的是( ) ①0与{0}表示同一个集合;②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}; ③方程(x -1)2(x -2)=0的所有解组成的集合可表示为{1,1,2}; ④集合{x |4<x <5}可以用列举法表示. A .只有①和④ B .只有②和③ C .只有②D .只有②和④解析:选C.①中“0”不能表示集合,而“{0}”可以表示集合,故①错误.根据集合中元素的无序性可知②正确;根据集合中元素的互异性可知③错误;④不能用列举法表示,原因是集合中有无数个元素,不能一一列举.6.不等式3x -13≤x 的解集可用区间表示为________.解析:由3x -13≤x ,得x ≤16,故不等式的解集为{x |x ≤16},可用区间表示为⎝ ⎛⎦⎥⎤-∞,16. 答案:⎝⎛⎦⎥⎤-∞,167.用列举法表示集合A ={(x ,y )|x +y =3,x ∈N ,y ∈N *}为____________.解析:集合A 是由方程x +y =3的部分整数解组成的集合,由条件可知,当x =0时,y =3;当x =1时,y =2;当x =2时,y =1,故A ={(0,3),(1,2),(2,1)}.答案:{(0,3),(1,2),(2,1)}8.已知-5∈{x |x 2-ax -5=0},则集合{x |x 2-3x +a =0}用列举法表示为________. 解析:因为-5∈{x |x 2-ax -5=0},所以(-5)2+5a -5=0,解得a =-4.所以x 2-3x -4=0,解得x =-1或x =4,所以{x |x 2-3x +a =0}={-1,4}.答案:{-1,4}9.用列举法表示下列集合:(1){x |x 2-2x -8=0};(2){x |x 为不大于10的正偶数};(3){a |1≤a <5,a ∈N };(4)A =⎩⎨⎧⎭⎬⎫x ∈N ⎪⎪⎪169-x ∈N ; (5){(x ,y )|x ∈{1,2},y ∈{1,2}}.解:(1){x |x 2-2x -8=0},列举法表示为{-2,4}.(2){x |x 为不大于10的正偶数},列举法表示为{2,4,6,8,10}.(3){a |1≤a <5,a ∈N },列举法表示为{1,2,3,4}.(4)A =⎩⎨⎧⎭⎬⎫x ∈N ⎪⎪⎪169-x ∈N ,列举法表示为{1,5,7,8}. (5){(x ,y )|x ∈{1,2},y ∈{1,2}},列举法表示为{(1,1),(1,2),(2,1),(2,2)}.10.用描述法表示下列集合:(1){0,2,4,6,8};(2){3,9,27,81,…};(3)⎩⎨⎧⎭⎬⎫12,34,56,78,…; (4)被5除余2的所有整数的全体构成的集合.解:(1){x ∈N |0≤x <10,且x 是偶数}.(2){x |x =3n ,n ∈N *}.(3)⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =2n -12n ,n ∈N *. (4){x |x =5n +2,n ∈Z }.[B 能力提升]11.若集合A ={x |kx 2+4x +4=0,x ∈R }只有一个元素,则实数k 的值为( )A .0B .1C .0或1D .2解析:选C.集合A 中只有一个元素,即方程kx 2+4x +4=0只有一个根.当k =0时,方程为一元一次方程,只有一个根;当k ≠0时,方程为一元二次方程,若只有一根,则Δ=16-16k =0,即k =1.所以实数k 的值为0或1.12.设P 、Q 为两个实数集,定义集合P +Q ={a +b |a ∈P ,b ∈Q },若P ={0,2,5},Q ={1,2,6},则P +Q 中元素的个数是( )A .9B .8C .7D .6解析:选B.因为0+1=1,0+2=2,0+6=6,2+1=3,2+2=4,2+6=8,5+1=6,5+2=7,5+6=11,所以P +Q ={1,2,3,4,6,7,8,11}.故选B.13.(2019·襄阳检测)设集合M ={x |x =2m +1,m ∈Z },P ={y |y =2m ,m ∈Z },若x 0∈M ,y 0∈P ,a =x 0+y 0,b =x 0y 0,则( )A .a ∈M ,b ∈PB .a ∈P ,b ∈MC .a ∈M ,b ∈MD .a ∈P ,b ∈P解析:选A.设x 0=2n +1,y 0=2k ,n ,k ∈Z ,则x 0+y 0=2n +1+2k =2(n +k )+1∈M ,x 0y 0=2k (2n +1)=2(2nk +k )∈P ,即a ∈M ,b ∈P ,故选A.14.设a ∈N ,b ∈N ,a +b =2,集合A ={(x ,y )|(x -a )2+(y -a )2=5b },(3,2)∈A ,求a ,b 的值.解:由a +b =2,得b =2-a ,代入(x -a )2+(y -a )2=5b 得:(x -a )2+(y -a )2=5(2-a )①,又因为(3,2)∈A ,将点代入①,可得(3-a )2+(2-a )2=5(2-a ),整理,得2a 2-5a +3=0,得a =1或1.5(舍去,因为a 是自然数),所以a=1,所以b=2-a=1,综上,a=1,b=1.[C 拓展探究]15.对于任意两个正整数m,n,定义某种运算“※”如下:当m,n都为正偶数或正奇数时,m※n=m+n,当m,n中一个为正偶数,另一个为正奇数时,m※n=mn,在此定义下,求集合M={(a,b)|a※b=12,a∈N*,b∈N*}中的元素有多少个?解:若a,b同奇偶,有12=1+11=2+10=3+9=4+8=5+7=6+6,前面的每种可以交换位置,最后一种只有1个点(6,6),这时有2×5+1=11(个);若a,b一奇一偶,有12=1×12=3×4,每种可以交换位置,这时有2×2=4(个).所以共有11+4=15(个).。
教师活动学生活动设计意图元素的集合集合当然也可以用图示法表示。
例1:用适当的方法表示下列集合⑴由24与30的所有公约数组成的集合答:{1,2,3,4}⑵大于10的所有自然数组成的集合答:{x│x>10,x∈N}⑶所有正偶数组成的集合答:{x│x=2n,n∈N*}直角坐标系中,第二象限内的点构成的集合答:{(x,y)│x<0.y>0}抛物线y=x2上的所有点组成的集合{(x,y)│y=x2}(二)各种表示法的适用范围它们各有优点.用什么方法来表示集合,要具体问题具体分析.(l)有的集合可以分别用三种方法表示.例如“小于的自然数组成的集合”就可以表为:①列举法:;②描述法:;③图示法:如图1。
(2)有的集合不宜用列举法表示.例如“由小于的正实数组成的集合”就不宜用列举法表示,因为不能将这个集合中的元素—一列举出来,但这个集合可以这样表示:①描述法:;②图示法:如图2.(3)用描述法表示集合,要特别注意这个集合中的元素是什么,它应该符合什么条件,从而准确理解集合的意义.例如:①集合中的元素是,它表示函数中自变量的取值范围,即;②集合中的元素是,它表示函数值。
的取值范围,即;③集合中的元素是点,它表示方程的解组成的集合,或者理解为表示曲线上的点组成的集合;学生回答问题加深对概念的巩固和应用④集合 中的元素只有一个,就是方程 ,它是用列举法表示的单元素集合.实际上,这是四个完全不同的集合.列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法.要注意,一般无限集,不宜采用列举法,因为不能将无限集中的元素—一列举出来,而没有列举出来的元素往往难以确定.例2:把下列集合用另一种方法表示出来 1.{x │x 2-x-6=0}2.{y │y= x 2-x-6,x ∈R} 3.{(x,y)│y= x 2-x-6,x ∈R }4.{(x,y)│x+y=5,x ∈N*,y ∈N* } 分析:(1)-2,3(2)代表元素是y ,这个集合是当x 取任意实数时,二次函数y= x 2-x-6的所有函数值的集合。
表示集合的三种基本方法
表示集合的三种基本方法是:子集构造法、并集构造法和规格语法(set-builder notation)。
子集构造法是指一个集合可以由他的子集来构成,其中一个集合A包含所有的子集B,C,D,…,那么它就可以用A = {B, C, D, …}来表示。
这种方法也可以把一个复杂的集合分解成几个子集来构造,比如说有一个集合S,它可以由S1和S2构成,那么它可以用S = S1∪S2来表示,它的意思就是S1和S2的并集就是S。
并集构造法是指一个集合可以由它的并集来构成,其中一个集合A包含所有的子集B,C,D,…,那么它就可以用A = ∪{B, C, D, …}来表示。
这种方法可以把一个复杂的集合分解成几个子集来构成,比如说有一个集合S,它可以由S1,S2,S3构成,那么它可以用S = S1∪S2∪S3来表示,它的意思就是S1,S2,S3的并集就是S。
规格语法(set-builder notation)是一种比较抽象的表示方式,它可以用来表示一个集合的成员,比如说有一个集合S={x | x是偶数},那么可以用S={x | x为偶数}来表示,它的意思就是集合S包含所有的偶数。
总之,表示集合的三种基本方法是子集构造法、并集构造法和规格语法(set-builder notation)。
子集构造法
可以将一个复杂的集合分解成几个子集来构成;并集构造法可以将一个复杂的集合由它的并集来构成;规格语法(set-builder notation)可以用来表示一个集合的成员。
2023年高考数学总复习第一章集合与常用逻辑用语第1节集合考试要求1.了解集合的含义,体会元素与集合的属于关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题;2.理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中了解全集与空集的含义;3.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;4.理解在给定集合中一个子集的补集的含义,会求给定子集的补集;5.能使用韦恩(Venn)图表达集合间的基本关系及集合的基本运算.1.元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于,表示符号分别为∈和∉.(3)集合的三种表示方法:列举法、描述法、图示法.2.集合间的基本关系表示关系文字语言符号语言集合间的基本关系相等集合A 与集合B 中的所有元素都相同A =B 子集A 中任意一个元素均为B 中的元素A ⊆B 真子集A 中任意一个元素均为B 中的元素,且B 中至少有一个元素不是A 中的元素A B空集空集是任何集合的子集,是任何非空集合的真子集3.集合的基本运算集合的并集集合的交集集合的补集符号表示A ∪BA ∩B若全集为U ,则集合A 的补集为∁U A图形表示集合{x|x∈A,或x∈B}{x|x∈A,且x∈B}{x|x∈U,且x∉A}表示4.集合的运算性质(1)A∩A=A,A∩=,A∩B=B∩A.(2)A∪A=A,A∪=A,A∪B=B∪A.(3)A∩(∁U A)=,A∪(∁U A)=U,∁U(∁U A)=A.1.若有限集A中有n个元素,则A的子集有2n个,真子集有2n-1个,非空子集有2n-1个,非空真子集有2n-2个.2.注意空集:空集是任何集合的子集,是非空集合的真子集.3.A⊆B⇔A∩B=A⇔A∪B=B⇔∁U A⊇∁U B.4.∁U(A∩B)=(∁U A)∪(∁U B),∁U(A∪B)=(∁U A)∩(∁U B).1.思考辨析(在括号内打“√”或“×”)(1)任何一个集合都至少有两个子集.()(2){x|y=x2+1}={y|y=x2+1}={(x,y)|y=x2+1}.()(3)若{x2,1}={0,1},则x=0,1.()(4)对于任意两个集合A,B,(A∩B)⊆(A∪B)恒成立.()2.若集合P={x∈N|x≤2023},a=22,则()A.a∈PB.{a}∈PC.{a}⊆PD.a∉P3.(2021·新高考Ⅰ卷)设集合A={x|-2<x<4},B={2,3,4,5},则A∩B=()A.{2}B.{2,3}C.{3,4}D.{2,3,4}4.(易错题)(2021·南昌调研)集合A={-1,2},B={x|ax-2=0},若B⊆A,则由实数a的取值组成的集合为()A.{-2}B.{1}C.{-2,1}D.{-2,1,0}5.(2021·西安五校联考)设全集U=R,A={x|y=2x-x2},B={y|y=2x,x∈R},则(∁U A)∩B=()A.{x|x<0}B.{x|0<x≤1}C.{x|1<x≤2}D.{x|x>2}6.(2021·全国乙卷)设集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,n∈Z},则S∩T =()A. B.S C.T D.Z考点一集合的基本概念1.已知集合U={(x,y)|x2+y2≤1,x∈Z,y∈Z},则集合U中元素的个数为()A.3B.4C.5D.62.若集合A={a-3,2a-1,a2-4},且-3∈A,则实数a=________.3.(2022·武汉调研)用列举法表示集合A={x|x∈Z且86-x∈N}=________.4.设A是整数集的一个非空子集,对于k∈A,如果k-1∉A,且k+1∉A,那么称k是A的一个“孤立元”.给定S={1,2,3,4,5,6,7,8},由S的3个元素构成的所有集合中,不含“孤立元”的集合共有________个.考点二集合间的基本关系例1(1)已知集合A={-1,1},B={x|ax+1=0}.若B⊆A,则实数a的所有可能取值的集合为()A.{-1}B.{1}C.{-1,1}D.{-1,0,1}(2)已知集合A={x|-3≤x≤4},B={x|2m-1≤x≤m+1},且B⊆A,则实数m的取值范围是________.训练1(1)(2022·大连模拟)设集合A={1,a,b},B={a,a2,ab},若A=B,则a2022+b2023的值为()A.0B.1C.-2D.0或-1(2)已知集合A={x|log2(x-1)<1},B={x||x-a|<2},若A⊆B,则实数a的取值范围为()A.(1,3)B.[1,3]C.[1,+∞)D.(-∞,3]考点三集合的运算角度1集合的基本运算例2(1)(2021·全国乙卷)已知全集U={1,2,3,4,5},集合M={1,2},N={3,4},则∁U(M∪N)=()A.{5}B.{1,2}C.{3,4}D.{1,2,3,4}(2)(2021·西安测试)设全集U=R,M={x|y=ln(1-x)},N={x|2x(x-2)<1},那么图中阴影部分表示的集合为()A.{x|x≥1}B.{x|1≤x<2}C.{x|0<x≤1}D.{x|x≤1}角度2利用集合的运算求参数例3(1)(2021·日照检测)已知集合A={x∈Z|x2-4x-5<0},B={x|4x>2m},若A∩B 中有三个元素,则实数m的取值范围是()A.[3,6)B.[1,2)C.[2,4)D.(2,4](2)已知集合A ={x |x 2-4≤0},B ={x |2x +a ≤0},若A ∪B =B ,则实数a 的取值范围是()A.a <-2B.a ≤-2C.a >-4D.a ≤-4训练2(1)(2021·全国甲卷改编)设集合M ={x |0<x <4},N x |13≤x <aM ∩N =N ,则a 的取值范围为()A.a ≤13B.a >4C.a ≤4D.a >13(2)集合M ={x |2x 2-x -1<0},N ={x |2x +a >0},U =R .若M ∩(∁U N )=∅,则a 的取值范围是()A.(1,+∞)B.[1,+∞)C.(-∞,1)D.(-∞,1]Venn 图的应用用平面上封闭图形的内部代表集合,这种图称为Venn 图.集合中图形语言具有直观形象的特点,将集合问题图形化.利用Venn 图的直观性,可以深刻理解集合的有关概念,快速进行集合的运算.例1设全集U ={x |0<x <10,x ∈N +},若A ∩B ={3},A ∩(∁U B )={1,5,7},(∁U A )∩(∁U B )={9},则A =________,B =________.例2(2020·新高考海南卷)某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62%B.56%C.46%D.42%例3向100名学生调查对A,B两件事的看法,得到如下结果:赞成A的人数是全体的35,其余不赞成;赞成B的人数比赞成A的人数多3人,其余不赞成.另外,对A,B都不赞成的人数比对A,B都赞成的学生人数的13多1人,则对A,B都赞成的学生人数为________,对A,B都不赞成的学生人数为________.1.(2021·新高考Ⅱ卷)设集合U={1,2,3,4,5,6},A={1,3,6},B={2,3,4},则A∩(∁U B)=()A.{3}B.{1,6}C.{5,6}D.{1,3}2.(2021·郑州模拟)设集合A={x|3x-1<m},若1∈A且2∉A,则实数m的取值范围是()A.(2,5)B.[2,5)C.(2,5]D.[2,5]3.(2021·浙江卷)设集合A={x|x≥1},B={x|-1<x<2},则A∩B=()A.{x|x>-1}B.{x|x≥1}C.{x|-1<x<1}D.{x|1≤x<2}4.(2022·河南名校联考)已知集合A={a,a2,0},B={1,2},若A∩B={1},则实数a的值为()A.-1B.0C.1D.±15.已知集合A={x∈Z|y=log5(x+1)},B={x∈Z|x2-x-2<0},则()A.A∩B=AB.A∪B=BC.B AD.A B6.设集合A={(x,y)|x+y=1},B={(x,y)|x-y=3},则满足M⊆(A∩B)的集合M 的个数是()A.0B.1C.2D.37.(2022·太原模拟)已知集合M={x|(x-2)2≤1},N={y|y=x2-1},则(∁R M)∩N=()A.[-1,+∞)B.[-1,1]∪[3,+∞)C.[-1,1)∪(3,+∞)D.[-1,1]∪(3,+∞)8.设集合A ={x |(x +2)(x -3)≤0},B ={a },若A ∪B =A ,则a 的最大值为()A.-2B.2C.3D.49.(2021·合肥模拟)已知集合A ={-2,-1,0,1,2},集合B ={x ||x -1|≤2},则A ∩B =________.10.(2021·湖南雅礼中学检测)设集合A ={x |y =x -3},B ={x |1<x ≤9},则(∁R A )∩B =________.11.已知集合A ={x |y =lg(x -x 2)},B ={x |x 2-cx <0,c >0},若A ⊆B ,则实数c 的取值范围是________.12.已知集合A ={a ,b ,2},B ={2,b 2,2a },若A =B ,则a +b =________.13.若全集U ={-2,-1,0,1,2},A ={-2,2},B ={x |x 2-1=0},则图中阴影部分所表示的集合为()A.{-1,0,1}B.{-1,0}C.{-1,1}D.{0}14.(2020·浙江卷)设集合S ,T ,S ⊆N +,T ⊆N +,S ,T 中至少有2个元素,且S ,T 满足:①对于任意的x ,y ∈S ,若x ≠y ,则xy ∈T ;②对于任意的x ,y ∈T ,若x <y ,则y x ∈S .下列命题正确的是()A.若S 有4个元素,则S ∪T 有7个元素B.若S 有4个元素,则S ∪T 有6个元素C.若S 有3个元素,则S ∪T 有5个元素D.若S 有3个元素,则S ∪T 有4个元素15.已知集合A={x∈R||x+2|<3},集合B={x∈R|(x-m)(x-2)<0},且A∩B=(-1,n),则m=________,n=________.16.当两个集合有公共元素,且互不为对方的子集时,我们称这两个集合“相交”.对于集合M={x|ax2-1=0,a>0},N={-12,12,1},若M与N“相交”,则a=________.。
列举法的表示方法在数学和逻辑学中,列举法是一种常见的表示方法,用于将一组元素或事物按照一定的顺序逐个列出来,以便进行研究、分析或描述。
它是一种简洁明了的方式,可以帮助我们更好地理解和运用相关概念。
本文将介绍列举法的表示方法,并以实例进行说明。
一、逐个列举法逐个列举法是最基本和直接的表示方法之一。
它通常用于将有限数量的元素逐个列出,并用逗号或其他符号进行分隔。
例如,我们可以使用逐个列举法表示自然数集合{1,2,3,4,5},其中每个元素都被列出并用逗号分隔。
二、横线表示法横线表示法是一种常见的列举法,尤其适用于表示具有一定规律的元素集合。
它使用横线将元素进行连接,以表示它们之间的关系或规律。
例如,我们可以使用横线表示法表示偶数集合{2,4,6,8,...},其中省略号表示元素的规律性延续。
三、集合表示法集合表示法是一种常用的数学表示方法,用于表示集合的元素和特征。
它使用大括号包围元素,并使用逗号分隔不同的元素。
同时,还可以使用条件句描述集合中元素的特征。
例如,我们可以使用集合表示法表示正整数集合{x | x > 0},其中x表示正整数,并使用竖线与条件句相连。
四、表格表示法表格表示法是一种清晰而整齐的列举方式,常用于展示具有多个属性或特征的元素集合。
它使用表格来呈现元素以及与之相关的特征,每一行表示一个元素,每一列表示一个属性。
例如,我们可以使用表格表示法列举一个学生名单,包括学生的姓名、年龄、性别等属性。
五、图形表示法图形表示法是一种直观而生动的列举方式,常用于呈现具有空间关系的元素集合。
它通过图形或图表的形式展示元素之间的关系或特征。
例如,我们可以使用图形表示法列举一个城市的地标,标示出每个地标在地图上的位置。
六、数列表示法数列表示法用于表示具有一定规律的数值序列,它以一个或多个初始项开始,并使用递推关系确定后续的项。
数列表示法可以使用通项公式或递归公式来描述元素之间的关系。
例如,我们可以使用数列表示法表示斐波那契数列{xx | xx = xx−1 + xx−2,x0 = 0,x1 = 1},其中xx表示斐波那契数列的第x个元素。
集合一、知识要点:1. 把一些元素组成的总体叫作集合,其元素具有三个特征,即确定性、互异性、无序性.2. 集合的表示方法有两种:列举法:即把集合的元素一一列举出来,并用花括号“{ }”括起来,基本形式为123{,,,,}n a a a a ⋅⋅⋅,适用于有限集或元素间存在规律的无限集.描述法:即用集合所含元素的共同特征来表示,基本形式为{|()x A P x ∈},既要关注代表元素x ,也要把握其属性()P x ,适用于无限集.3. 通常用大写拉丁字母,,,A B C ⋅⋅⋅表示集合. 要记住一些常见数集的表示,如自然数集N ,正整数集*N 或N +,整数集Z ,有理数集Q ,实数集R.4、元素与集合之间的关系是属于与不属于,分别用符号∈、∉表示,例如3N ∈,2N -∉.二、集合间的基本关系1、一般地,对于两个集合A 、B ,如果集合A 中的任意一个元素都是集合B 中的元素,则说两个集合有包含关系,其中集合A 是集合B 的子集,记作A B ⊆(或B A ⊇),读作“A 含于B ”(或“B 包含A ”).2、如果集合A 是集合B 的子集(A B ⊆),且集合B 是集合A 的子集(B A ⊇),即集合A 与集合B 的元素是一样的,因此集合A 与集合B 相等,记作A B =.3、如果集合A B ⊆,但存在元素x B ∈,且x A ∉,则称集合A 是集合B 的真子集,记作A ≠⊂B (或B ≠⊃A ). 4、不含任何元素的集合叫作空集(empty set ),记作∅,并规定空集是任何集合的子集.5、性质:A A ⊆;若A B ⊆,B C ⊆,则A C ⊆;若A B A =,则A B ⊆;若A B A =,则B A ⊆.三、集合的基本运算:集合的基本运算有三种,即交、并、补,学习时先理解概念,并掌握符号等,再结合解题的训练,而达到掌握的层次. 下面以表格的形式归纳三种基本运算如下B (读作“B (读作“{|A B x x ={|A B x x =实战演练1、设全集U ={1,2,3,4,5,6} ,设集合P ={1,2,3,4} ,Q ={3,4,5},则P ∩(C U Q )=( )A.{1,2,3,4,6}B.{1,2,3,4,5}C.{1,2,5}D.{1,2}2、已知集合,,则满足条件的集合C 的个数为( )A .1B .2C .3D .43、已知全集{0,1,2,3,4}U =,集合{1,2,3}A =,{2,4}B =,则()U A B ð为( ) A.{1,2,4} B.{2,3,4} C.{0,2,4} D.{0,2,3,4}4、已知集合},2,0,1{},4,2,2,1{-=-=B A 则_______,=⋂B A5、设集合},,)2(2|),{(222R y x m y x my x A ∈≤+-≤=, },,122|),{(R y x m y x m y x B ∈+≤+≤=, 若,φ≠⋂B A 则实数m 的取值范围是______________6、已知集合,,下列结论成立的是( ) A . B . C . D .7、设集合,集合是函数的定义域;则( )A. B. C. D.8、已知集合,,则= ( )A .B .C .D . 9、设集合{1,2,3,4,5,6},{1,3,5}U M ==;则U C M =( ) A.{,,}246 B.{1,3,5} C.{,,}124 D.U10、设集合M=,N=,则M ∩N =( )A .B .C .D . 11、若全集U={x ∈R|x 2≤4} A={x ∈R||x+1|≤1}的补集U C A 为2{|320,}A x x x x =-+=∈R {|05,}B x x x =<<∈N AC B ⊆⊆}4,3,2,1{=M }2,2{-=N M N ⊆M N M = N N M = }2{=N M {3213}A x x =-≤-≤B lg(1)y x =-A B =(1,2)[1,2][,)12(,]12{}320A x R x =∈+>{}(1)(3)0B x R x x =∈+->A B (,1)-∞-2(1,)3--2(,3)3-(3,)+∞{}1,0,1-{}2|x x x ={}1,0,1-{}0,1{}1{}0A |x ∈R |0<x <2|B |x ∈R |0≤x<2|C |x ∈R |0<x≤2|D |x∈R |0≤x≤2| 12、已知全集U ={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则 =A.{5,8}B.{7,9}C.{0,1,3}D.{2,4,6} 13、集合,,则( )A .B .C .D . 14、若集合,,则= . 15、设集合,,则( )A 、B 、C 、D 、 16、已知集合A={x |x 2-x -2<0},B={x |-1<x <1},则 A.A ⊂≠B B.B ⊂≠A C.A=B D.A∩B=∅ 17、不等式的解集是为 (A ) (B ) (C )(-2,1)(D )∪()()U U C A C B ⋂{|lg 0}M x x =>2{|4}N x x =≤MN =(12),[12),(12],[12],}012|{>-=x x A }1|{<=x x B B A {,}A a b ={,,}B b c d =A B ={}b {,,}b c d {,,}a c d {,,,}a b c d 102x x -<+(1,)+∞(,2)-∞-(,2)-∞-(1,)+∞答案1. D Q {3,4,5},∴C U Q ={1,2,6},∴ P ∩(C U Q )={1,2}.2. D:{}{}1,2,1,2,3,4A B ==,,1,2C ∈,则集合C 的个数为422=,故选3. C4. {}-1,25. 12⎡⎢⎣6.:,。
自然语言:
自然语言是比较少用的方法,多数用于口头表示集合中,少数用于书面.
列举法:
列举法用于表示集合内元素较少的集合或者是无限集但是可以直观的看出集合内元素的规律,列举法的优点在于它比较简便,直观
描述法是比较常用的方法;
一般用于集合内的元素是无限个或是有些时候集合内的元素是实数或者为一个点,且这些元素具有不断共同特征.
若这些元素是有限或无限个但是无法找出其中的规律所在就不可用描述法了,就使用列举法.。