地质统计学
- 格式:doc
- 大小:1.85 MB
- 文档页数:44
地质统计学在地质及矿业中的应用及发展【摘要】地质统计学是一门重要的地质学分支,通过对地质数据的分析和解释,可以帮助我们更好地认识地质现象和地质资源。
在地质学中,地质统计学可以用于地质勘探、矿产资源评价、矿床预测和地质灾害预测等方面。
在矿业领域,地质统计学的应用也非常广泛,可以帮助矿业公司提高勘探效率和资源利用率。
地质统计学在实践中也存在一些局限性,比如样本数量不足或数据质量不高等问题。
未来,随着技术的不断发展和完善,地质统计学在地质及矿业中的应用将会更加广泛,为地质矿产领域的发展提供更多可能性。
地质统计学在地质及矿业中的重要性不可忽视,需要不断加强研究和实践。
【关键词】地质统计学、地质勘探、矿产资源评价、矿床预测、地质灾害预测、资源勘查、发展方向、局限性、重要性。
1. 引言1.1 地质统计学的概念地质统计学,是统计学与地质学相结合的一门交叉学科,主要研究地质现象的空间变异性及其规律性。
地质统计学通过对地质数据进行统计分析,揭示地质现象之间的关联性和规律性,从而为地质学和矿业提供科学依据。
地质统计学的方法包括样本普查、空间插值、随机模拟等。
这些方法可以帮助地质学家和矿业工作者更好地分析和解释地质数据,发现地下资源的分布规律,预测地质灾害的发生可能性,优化资源勘查的方案等。
地质统计学是一门在地质学和矿业中具有重要意义的学科,在研究地质现象的空间变异性和规律性方面发挥着至关重要的作用。
随着技术的发展和方法的进步,地质统计学将在地质及矿业领域发挥越来越重要的作用。
1.2 地质统计学在地质学中的重要性地质统计学在地质学中的重要性体现在对地质数据的分析与解释上。
地质统计学通过数理统计的方法,可以对地质数据进行合理的处理和分析,从而帮助地质学家更好地理解地质现象和地质过程。
在地质调查和勘探中,地质统计学可以帮助地质学家发现地质异常、地质断裂和矿产资源的分布规律,为矿产资源的勘探和评价提供科学依据。
地质统计学还可以帮助地质学家进行地质灾害的预测和评估。
条件模拟地质统计学蒙特卡洛地质统计学是地质学中一门重要的统计学科,通过收集、分析和解释地质数据,为地质学研究和资源勘探提供支持。
而蒙特卡洛模拟是一种基于随机数的数值计算方法,可以用于模拟实验和预测结果。
本文将介绍如何利用蒙特卡洛模拟在地质统计学中进行条件模拟。
一、蒙特卡洛模拟概述蒙特卡洛模拟是一种以概率统计为基础的计算方法,通过随机抽样和统计分析来模拟实验结果。
其基本思想是通过重复实验,根据实验结果的统计规律性来推断未知问题的答案。
在地质统计学中,蒙特卡洛模拟可以用来模拟地质参数的分布,从而进行地质建模和资源预测。
二、条件模拟在地质统计学中的应用条件模拟是一种基于地质数据的模拟方法,通过考虑地质数据的空间相关性和地质模型的先验信息,生成符合地质实际情况的模拟结果。
在地质统计学中,条件模拟可以用于生成地质属性的多个等概率模拟结果,从而提供多个可能的地质模型。
三、蒙特卡洛模拟在条件模拟中的应用在条件模拟中,蒙特卡洛模拟可以用来生成符合地质数据统计特征的随机数序列。
具体步骤如下:1. 收集地质数据:首先,需要收集地质数据,包括地质属性的空间分布、样本数据和块体边界等信息。
2. 空间插值:根据收集的地质数据,可以利用插值方法(如克里金插值)将点数据插值为连续的地质属性场。
3. 统计分析:对插值后的地质属性场进行统计分析,包括均值、方差、协方差等统计指标的计算。
4. 随机数生成:根据统计分析的结果,可以生成符合地质属性场的随机数序列。
在蒙特卡洛模拟中,可以使用随机数生成器生成符合指定统计特征的随机数。
5. 模拟重复:重复进行步骤3和步骤4,可以生成多个符合地质数据统计特征的随机数序列。
6. 地质模型生成:利用生成的随机数序列,可以生成多个满足地质数据统计特征的地质模型。
这些地质模型可以用于地质建模和资源预测。
四、蒙特卡洛模拟在地质统计学中的局限性尽管蒙特卡洛模拟在地质统计学中有很多应用,但也存在一些局限性。
地质统计学教案中的地质勘探与勘察方法一、引言地质统计学是地质学和统计学相结合的一门学科,主要研究地质现象的空间分布、变异规律及其与时间的关系。
地质勘探与勘察方法是地质统计学中的重要内容,本文将从地质目的、数据采集、数据处理和解释等方面介绍地质勘探与勘察方法。
二、地质目的1.灾害预测与评估地质勘探与勘察方法在灾害预测与评估中发挥着重要作用。
通过采集和分析地震、火山、滑坡等灾害相关的地质数据,可以预测灾害的发生概率和可能影响的范围,为减少灾害造成的损失提供科学依据。
2.矿产资源勘探地质勘探与勘察方法在矿产资源勘探中具有重要的应用价值。
通过地质调查、地球物理勘探、化学分析等手段,可以确定矿产资源的分布范围、矿床类型和矿藏量,为矿产资源的开发与利用提供必要的技术支持。
三、数据采集1.野外观察地质勘探与勘察方法的第一步是进行野外观察。
研究人员根据勘探目的,选择适当的地质地区进行观察,记录地质现象和地质构造的分布情况。
同时,应注意野外观察的精确性,避免主观偏差对数据采集结果的影响。
2.钻孔取样钻孔取样是地质勘探与勘察方法中常用的手段之一。
通过钻孔取得的岩石样本,可以对地层的岩性、构造和物理性质等进行分析,为地质勘探与勘察的深入研究提供可靠的数据支持。
四、数据处理1.数据整理与测量地质勘探与勘察方法中的数据处理包括数据整理和测量两个方面。
数据整理是指对野外采集的数据进行整理、分类和编码,以便于后续的分析和研究。
测量是指对各类数据进行准确的测量和记录,确保数据的可靠性和准确性。
2.统计分析地质统计学的核心是统计分析。
通过应用统计学的基本原理和方法,对地质数据进行分析和解释。
常用的统计分析方法包括聚类分析、主成分分析和空间插值等,可以揭示地质现象的规律和特征,为地质预测和评估提供科学依据。
五、数据解释与成果呈现地质勘探与勘察的最终目标是得出科学的结论并将成果呈现出来。
在数据解释方面,研究人员应结合野外观察、钻孔取样和统计分析等结果,对地质现象进行解释和说明。
地质统计学在地质及矿业中的应用及发展地质统计学是一门研究地质现象的数量特征和统计规律的学科,它通过对地质数据的收集、处理和分析,为地质学和矿业提供了重要的理论和方法支持,为地质资源勘探和开发提供了科学依据,并在环境保护和灾害预测等领域中发挥了重要作用。
本文将从地质统计学在地质学中的应用、在矿业中的应用以及地质统计学的发展趋势等方面进行论述。
首先,在地质学中,地质统计学可以帮助我们从海量地质数据中提取有用的信息,揭示地质现象的数量特征和规律。
通过地质统计学方法,可以对地球物理数据、地质测井数据、地球化学数据等进行处理和分析,进一步了解地质现象的分布、变化和演化过程,如地层的空间分布、矿床的成因机制、断层的活动性等。
此外,地质统计学还可以对地质现象进行模拟和预测,通过建立地质统计模型,对地质现象进行精确的模拟和预测,为地质灾害的预防和遥感地质学的应用提供技术支持。
其次,在矿业中,地质统计学的应用尤为广泛。
矿业勘探和开发过程中需要大量的地质数据支持,而地质统计学可以为矿产资源的评价、矿床勘探和资源管理提供有效的方法和手段。
通过对矿床地质数据的统计和分析,可以揭示矿床的大小、分布、品质和成因等特征,为矿床的合理开发和利用提供科学依据。
此外,地质统计学在矿山计划和设计、矿井通风和安全管理等方面也发挥了重要作用。
通过对矿井的地质特征和矿石品位的统计分析,可以优化矿山的布局和开采方法,提高资源利用率和经济效益。
同时,地质统计学还可以对矿井废弃物和尾矿进行处理和预测,评估矿山环境的影响和风险。
地质统计学的发展也不断推动了地质学和矿业领域的进步。
首先,随着地质数据的数字化和地理信息系统(GIS)技术的发展,地质统计学的数据处理和分析工具得到了广泛应用。
通过利用计算机和统计软件,可以对大规模的地质数据进行高效的处理和分析,加快了地质学和矿业的研究进程。
其次,地质统计学和机器学习等人工智能技术的结合也为地质学和矿业的发展带来了新的机遇。
地质统计学法储量估算在矿产资源评估和开采领域,准确估算储量是至关重要的一项工作。
地质统计学法作为一种有效的储量估算方法,正逐渐受到广泛的关注和应用。
地质统计学法是基于区域化变量理论,以变异函数为基本工具,综合考虑了地质、工程、样品等多种信息的一种数学地质方法。
它能够更合理地处理空间数据的变异性和相关性,从而提供更精确的储量估算结果。
这种方法的应用通常需要经过一系列严谨的步骤。
首先是数据收集和预处理。
需要收集包括钻孔、槽探、坑探等各种工程所获取的样品数据,以及相关的地质信息,如地层、构造、岩性等。
这些数据的质量和准确性直接影响到后续的储量估算结果。
在收集到数据后,还需要对其进行清洗、筛选和统计分析,以去除异常值和错误数据,并确定数据的分布特征和相关性。
接下来是变异函数的计算和拟合。
变异函数反映了区域化变量在空间上的变异特征,是地质统计学法的核心概念之一。
通过计算不同方向和距离上的样本差值的方差,可以得到变异函数的实验值。
然后,使用合适的理论模型对实验变异函数进行拟合,以获取其关键参数,如块金值、基台值和变程等。
这些参数能够定量地描述区域化变量的空间结构和相关性。
在完成变异函数的拟合后,就可以进行克里金估值了。
克里金法是地质统计学中最常用的一种估值方法,它基于变异函数和已知样本数据,对未知点进行线性无偏最优估计。
通过构建克里金方程组,求解权重系数,最终得到未知点的估计值和估计方差。
克里金估值不仅能够给出估计值,还能够提供估计的不确定性,这对于评估储量估算的可靠性非常重要。
除了克里金法,还有一些其他的地质统计学方法也常用于储量估算,如协同克里金法、泛克里金法等。
协同克里金法可以同时考虑多个区域化变量的协同作用,提高估值的准确性;泛克里金法则适用于存在漂移现象的数据。
在实际应用中,地质统计学法具有许多优点。
它能够充分利用有限的样本数据,考虑数据的空间相关性和变异性,从而提供更符合实际地质情况的储量估算结果。
地质统计学方法一、引言地质统计学是地质学中的一个重要分支,它运用统计学的理论和方法来分析和解释地质现象和地质数据。
地质统计学的发展与地质学研究的需要密切相关,它可以帮助地质学家更好地理解地质现象、预测地质事件以及优化地质资源的开发利用。
本文将介绍地质统计学方法的基本原理和常用技术,以及其在地质学中的应用。
二、地质统计学方法的基本原理地质统计学方法的基本原理是基于概率统计的理论,它认为地质现象和地质数据的分布具有一定的规律性。
地质统计学方法通过对地质数据进行采样、观测和分析,可以得到地质现象的统计特征和概率模型,进而进行地质事件的预测和模拟。
三、地质统计学方法的常用技术1. 变量分析变量分析是地质统计学中最基本的技术之一,它主要用于研究地质现象和地质数据的变量特征。
常用的变量分析方法包括:频数分析、概率分布函数拟合、变异系数计算等。
这些方法可以帮助地质学家了解地质现象的变量分布规律,从而为后续的地质建模和预测提供依据。
2. 空间分析空间分析是地质统计学中另一个重要的技术,它主要用于研究地质现象和地质数据的空间特征。
常用的空间分析方法包括:半方差函数分析、克里金插值、空间统计模型建立等。
这些方法可以帮助地质学家揭示地质现象的空间分布规律,从而为地质资源的勘探和开发提供指导。
3. 地质模拟地质模拟是地质统计学中的一项重要技术,它主要用于通过随机模拟方法生成符合实际地质条件的模拟数据。
常用的地质模拟方法包括:高斯模拟、马尔可夫链模拟、蒙特卡洛模拟等。
这些方法可以帮助地质学家预测地质事件的概率和可能性,提高地质资源的开发效率。
四、地质统计学方法在地质学中的应用1. 地质资源评价地质统计学方法可以帮助地质学家评价地质资源的分布和储量,从而为资源的合理开发提供依据。
通过对地质数据的变量分析和空间分析,可以揭示地质资源的分布规律和富集规律,进而进行资源量的估算和评价。
2. 地质灾害预测地质统计学方法可以帮助地质学家预测地质灾害的发生概率和可能性,提前做好防灾准备工作。
地质统计学方法地质统计学方法是一种应用概率统计理论和方法于地质学领域的学科,通过对地质数据的收集、整理、分析和解释,揭示地质现象背后的规律和规则,为地质科学研究和资源勘探提供科学依据。
地质统计学方法在岩矿勘查、地质灾害评估、油气田开发等领域具有重要的应用价值。
地质统计学方法主要包括地质数据的描述统计、空间插值方法和地质概率模型等。
地质数据的描述统计是地质统计学的基础。
通过对地质数据的观测和测量,可以获得大量的地质数据,如岩性、矿石品位、地形高程等。
地质数据的描述统计主要包括数据的集中趋势和离散程度的度量。
常用的集中趋势度量包括算术平均值、中位数和众数等,用于描述数据的平均水平;离散程度度量包括方差、标准差和变异系数等,用于描述数据的分散程度。
通过描述统计方法,可以对地质数据的特征进行客观、定量的分析,为后续的地质统计学方法提供基础。
地质数据的空间插值方法是地质统计学的重要内容。
地质现象往往具有一定的空间连续性,即相邻地点的地质特征具有一定的相似性。
空间插值方法可以通过已知的地质数据,推断未知地点的地质特征。
常用的空间插值方法有反距离加权插值法、克里金插值法和径向基函数插值法等。
这些插值方法可以根据地质数据的空间分布特点,合理地估计未知地点的地质特征,为地质预测和资源勘探提供科学依据。
地质概率模型是地质统计学的高级方法。
地质现象往往受到多种因素的影响,如地质构造、沉积环境和地球物理场等。
地质概率模型可以通过对这些影响因素的统计分析,建立地质现象的概率模型,进而对未来地质事件进行概率预测。
常用的地质概率模型包括高斯模型、二项模型和泊松模型等。
这些模型可以通过对地质数据的拟合和参数估计,确定地质现象的概率分布特征,为地质科学研究和资源勘探提供科学依据。
地质统计学方法是一种重要的地质科学研究方法,通过对地质数据的描述统计、空间插值和地质概率模型等方法的应用,可以揭示地质现象的规律和规则,为地质科学研究和资源勘探提供科学依据。
地质统计学教案中的空间插值与地质预测地质统计学是地质学中一门重要的学科,它通过对地质数据的统计分析来揭示地质过程和地质现象的规律。
其中,空间插值是地质统计学中常用的一种方法,它能够基于有限的观测数据,预测未来可能出现的地质情况,对地质预测具有重要意义。
一、空间插值的基本原理空间插值是一种通过已知点的观测数据,在未知区域内进行数值推算的方法。
它通过将已知点的属性值与其空间位置相联系,从而实现对未知点的属性值估计。
在地质统计学中,空间插值常用于将离散的地质数据整合成平滑连续的地质场景,为地质预测提供依据。
常用的空间插值方法包括Kriging插值、IDW(反距离加权)插值和样条插值等。
Kriging插值方法通过对地质数据进行半变异函数的拟合,找到最佳的插值权重,从而实现对未知点的属性值预测。
IDW插值方法则基于离未知点越近的已知点权重越大的假设,进行属性值的估计。
而样条插值则通过生成平滑的曲线或表面,对未知点进行属性值的估计。
二、地质预测中的空间插值应用在地质预测中,空间插值被广泛应用于矿产资源评估、环境地质灾害预测、地下水资源分析等领域。
以矿产资源评估为例,地质学家常常需要通过有限的采样点数据,对整个矿区的矿产资源进行评估。
通过利用空间插值方法,可以对矿产的丰度、赋存形式等进行预测,为矿产勘探和资源管理提供科学依据。
除此之外,空间插值还可以应用于地下水资源分析。
地下水是人类生活和工业生产中不可或缺的重要资源,而地下水的空间分布对于水资源的管理和保护至关重要。
通过利用地下水监测站点的观测数据,结合空间插值方法,可以对未观测区域的地下水位、水质等属性进行预测,为地下水资源合理开发和保护提供决策支持。
三、空间插值模型的评估与选择选择适合的空间插值模型对于地质预测的准确性至关重要。
在选择模型时,需要考虑地质数据的特点、观测点的数量和分布、插值结果的平滑性等因素。
为了评估空间插值模型的准确性,常用的方法包括交叉验证和校验分析。
地质统计学原理与地质建模方法1地质统计学原理与地质建模方法1地质统计学原理与地质建模方法是地质学中非常重要的研究方向,它们通过对地质数据的统计分析和建模来揭示地质过程的特征和规律。
本文将对地质统计学原理和地质建模方法进行阐述,并介绍一些常用的地质统计学方法和地质建模技术。
地质统计学原理是指利用统计学方法分析地质数据的原理和方法。
地质数据往往包含有关地质现象或地质属性的信息,例如地层厚度、岩性、矿化程度等。
地质统计学可通过对这些数据的统计分析来揭示地质现象的分布和变化规律。
地质统计学原理主要包括以下几个方面:1.变差分析:变差分析是地质统计学中最基本的方法之一,它用于研究地质现象的空间和时间分布的变异性。
变差分析主要利用变差函数来描述地质属性的变异性,并通过半变函数来拟合该变异性。
通过变差分析可以评估地质属性的空间相关性以及其在不同空间尺度上的变异程度。
2.空间统计分析:空间统计分析是地质统计学中常用的方法之一,它主要用于研究地质现象的空间分布和空间关联性。
常用的空间统计分析方法包括点模式分析、指数模型和协方差函数等。
通过空间统计分析可以揭示地质现象的空间结构和规律。
3. 空间插值方法:空间插值方法是地质统计学中常用的方法之一,它主要用于预测和插值地质属性的空间分布。
常用的空间插值方法包括Kriging、反距离加权插值和多层标准差插值等。
通过空间插值可以根据已知地质数据推测未知地质属性的空间分布。
地质建模方法是指利用地质统计学原理和地质数据进行地质模型构建和预测的方法。
地质建模方法主要用于分析地质过程的演化和预测地质资源的潜力。
常用的地质建模方法包括:1. 地质模型构建:地质模型构建是地质建模中的核心环节,它通过对地质数据的分析和解释来构建地质模型。
地质模型可以包括地层模型、构造模型和矿产模型等。
地质模型构建可以通过地质统计学方法来实现,例如使用协方差函数和Kriging等方法进行空间插值,从而构建出具有空间一致性和连续性的地质模型。
地统计(Geostatistics)又称地质统计,是在法国著名统计学家G. Matheron大量理论研究的基础上逐渐形成的一门新的统计学分支。
它是以区域化变量为基础,借助变异函数,研究既具有随机性又具有结构性,或空间相关性和依赖性的自然现象的一门科学。
凡是与空间数据的结构性和随机性,或空间相关性和依赖性,或空间格局与变异有关的研究,并对这些数据进行最优无偏内插估计,或模拟这些数据的离散性、波动性时,皆可应用地统计学的理论与方法。
地统计学与经典统计学的共同之处在于:它们都是在大量采样的基础上,通过对样本属性值的频率分布或均值、方差关系及其相应规则的分析,确定其空间分布格局与相关关系。
但地统计学区别于经典统计学的最大特点即是:地统计学既考虑到样本值的大小,又重视样本空间位置及样本间的距离,弥补了经典统计学忽略空间方位的缺陷。
地统计分析理论基础包括前提假设、区域化变量、变异分析和空间估值。
第一章品位与储量计算第一节概述投资一个矿床开采项目,首先必须估算其品位和储量。
一个矿床的矿量、品位及其空间分布是对矿床进行技术经济评价、可行性研究、矿山规划设计以及开采计划优化的基础,是矿山投资决策的重要依据。
因此,品位估算、矿体圈定和储量计算是一项影响深远的工作,其质量直接影响到投资决策的正确性和矿山规划及开采计划的优劣。
从一个市场经济条件下的矿业投资者的角度看,这一工作做不好可能导致两种对投资者不利的决策:(1)矿体圈定与品位、矿量估算结果比实际情况乐观,估计的矿床开采价值在较大程度上高于实际可能实现的最高价值,致使投资者投资于利润远低于期望值,甚至带来严重亏损的项目。
(2)与第一种情况相反,矿床的矿量与品位的估算值在较大程度上低于实际值,使投资者错误地认为在现有技术经济条件下,矿床的开采不能带来可以接受的最低利润,从而放弃了一个好的投资机会。
然而,准确地估算出一个矿床的矿量、品位绝非易事。
大部分矿体被深深地埋于地下,即使有露头,也只能提供靠近地表的局部信息。
进行矿体圈定和矿量、品位估算的已知数据主要来源于极其有限的钻孔岩心取样。
已知数据量相对于被估算的量往往是一比几十万乃至几百万的关系,即对一吨岩心进行取样化验的结果,可能要用来推算几十万乃至几百万吨的矿量及其品位。
可以不过分地说,矿量、品位的估算是世界上最大胆的外推。
因此,矿体圈定与矿量、品位估算不仅是一项十分重要的工作,而且是一项极具挑战性的工作。
做好这一工作要求掌握现代理论知识与手段,并应用它们对有限的已知数据进行各种详细、深入的定量、定性分析;同时也要求从事这一工作的地质与采矿工程师具有科学的态度和求实精神。
本章将较详细地介绍当今世界上常用的矿量、品位估算方法,包括探矿数据的分析、处理和用于品位估值的剖面法、平面法及矿床模型法等。
地质统计学作为品位估值的一种方法,从其诞生起就显示了强大的生命力,得到了越来越广泛的应用,本章对此给予较大的篇幅。
本章的主要目的不是教会读者如何一步一步地应用所介绍的方法,对一个矿床进行矿量、品位估算,而是使读者了解这些方法的内涵,为读者提供在不同条件下应用最合理的分析、评价方法所需的知识基础。
第二节探矿数据及其预处理一、一、钻孔取样2000NⅠⅡⅢzk11900Nzk21800N1700N1600N1500N2000E2100E2200E2300E2400E2500E图1-1 钻孔与勘探线示意图用于矿体圈定与矿量、品位估算的数据主要来源于探矿钻孔的岩心取样。
钻孔一般按照一定的网度布置在一些叫做勘探线的直线上(图1-1)。
在钻孔过程中,每钻一定深度(一般在3米左右)将岩心取出,做好标记后按顺序放在箱中供搬运、贮存和化验。
地质人员对取出的岩心进行定性观察和简单的测试,以确定每一段岩心的主要物理特性,如岩心长度、岩性、颜色、硬度等,并记录下来,形成对钻孔穿过地段的地质特性的定性描述。
表1-1是一个钻孔的岩心观测结果的部分记录表 。
为直观起见,常常把表中的数据和文字描述绘成钻孔柱状图(图1-2)。
为了确定岩心的化学成分和品位,将岩心的一半送往化验室进行化验,另一半保存下来备用。
样品的化验结果记录在如表1-2所示的表中,或输入计算机的数据库中。
手工记录时常将表1-1和表1-2合并为一个表,称为钻孔地质资料记录表。
对所有钻孔的定性描述和取样化验结果构成了勘探区域的基本地质数据,这些取样化验数据是进行矿体圈定和矿量、品位估算的依据。
在矿量和品位计算前,一般需要对取样数据进行预处理,包括样品组合处理和“极值”样品的处理。
二、样品组合处理样品组合处理就是将几个相邻样品组合成为一个组合样品,并求出组合样品的品位。
当矿岩界限分明,且在矿石段内垂直方向上品位变化不大时,常常将矿11风化砂岩 页岩 浅灰色 石灰岩 灰色图1-2 钻孔柱状图石段内(即上下矿岩界限之间)的样品组合成一个组合样品(图13-3),这种组合称为矿段组合。
组合样品的品位b -=∑10是组合段内各样品品位的加权平均值,即g l g l i i i n i i n===∑∑11(1-1)式中,l i 为第i 个样品的长度;g i 为第i 个样品的品位;n 为矿石段内样品个数。
式1-1中用的是长度加权,是最常用的方法。
如果不同样品的比重相差较大,可以采用重量加权法。
岩石岩石l 1 l 2 l 3 l i l ng 1 g 2 g 3 g i g nl 5, l 1,’l 5l 4 l 3 l 2 l 1 g 5, g 1,’g 5g 4 g 3 g 2 g 1 188m200mH (台阶高度)矿石图1-4 台阶样品组合示意图图1-3 矿段样品组合示意图对于拟用露天开采的矿床,更具实际意义的样品组合处理是台阶样品组合,即把一个台阶高度内的样品组合成一个组合样品(图1-4)。
组合样品的品位为:g l g H i ii n==∑1(1-2)式中,H 为台阶高度。
当一个样品跨越台阶分界线时(如图1-4中第一和第五个样品), 在计算中样品的长度取落于本台阶的那部分长度(即图1-4中的l 1’’和 l 5’’),样品的品位不变。
对钻孔取样进行台阶样品组合处理的意义在于:(1)对取样数据进行统计学、地质统计学分析,以及利用取样值进行品位估值时,只有当每个样品具有相同的支持体,即每个样品的体积相同时,分析计算结果才有意义。
(2)露天开采在垂直方向上是以台阶为开采单元的,一旦台阶的参考标高和台阶高度被确定,沿台阶高度无论品位如何变化,也无法进行选别开采。
因此,在一个台阶高度内采用不同的取样品位是毫无意义的。
(3)组合样品的品位较原样品品位变化小,在一定程度上减轻了“极值”品位对分析计算的影响,也使样品的统计分布曲线和半变异函数曲线(这些概念将在以后几节讲述)趋于规则。
(4)样品组合处理减少了样品总数,节省计算机内存和计算时间。
三、极值样品(Outlier)处理极值样品是指那些品位值比绝大多数样品的品位(或样品平均品位)高出许多的样品,它们在贵重金属矿床较为常见。
例如,在一金矿床取样1000个,经化验,这些样品的平均品位为10克/吨,其中有十个样品的品位在100克/吨以上,这十个样品就可以被看成是极值样品。
究竟品位比均值高出多少的样品算是极值样品,没有统一的、现成的标准,需视具体情况而定。
极值样品虽然数量少,但对金属量影响大,为使品位的分析计算结果不致过分乐观,人们常常在实践中采用以下处理方法:(1)限值处理:即将极值样品的品位降至某一上限值。
比如在上述例子中,将所有高于100克/吨的样品的品位降至100克/吨。
(2)删除处理:即将极值样品从样本空间中删去,不参与分析计算。
使用上述处理方法时应非常谨慎。
虽然极值样品在数量上占样品总数的比例很小,但由于其品位很高,对矿石的总体品位和金属量的贡献值都很大。
因此,不加分析地进行降值或删除处理会严重歪曲矿床的实际品位和金属含量,人为地降低矿床的开采价值。
这一点可用下面的例子说明。
假设对一金矿床进行钻探取样后得知,品位值服从对数正态分布(图1-5)。
所有样品的平均品位为g=10克/吨,中值为m=3克/ 吨(即高于3克/吨和低于3克/吨的样品各占50%);有1%的样品品位高于100克/吨。
若将这1%的极值样品取出,单独计算其平均值,得190克/吨。
那么这1%的样品对矿床总金属量的贡献为(190×1%)/ g=1.9/10=19%。
也就是说,百分之一的数据量代表的是百分之十九的金属量!假如取边界品位为3克/吨(高于3克/吨为矿石,否则为废石),矿石的平均品位(即高于3克/吨的那部分样品的平均品位)经计算为16克/吨。
如果把极值样品从样品空间删除,矿石的平均品位变为(16×50%-190×1%)/(50%-1%)=12.45克/吨,也就是说,矿石品位被低估了22%。
如果将极值样品进行限值处理,将其品位值降到100克/吨,矿石的平均品位变为(12.45×49%+100×1%)/50%=14.2克/吨,也就是说,将矿石品位低估了11%。
=10图1-5金矿取样品位对数正态分布示意图在正常、稳定的经济环境中,采矿的利润率也就是15%左右。
因此,不加分析地将极值样品进行删除或限值处理,很可能将本来能够获取正常利润的矿床人为地变为没有开采价值,从而导致错误的投资决策。
这对于一个在市场经济条件下,以盈利为主要目的的矿业投资者来说,无疑是一个重大的决策失误。
这里必须澄清的是,极值样品是实实在在存在的有效样品,并不是指那些由于化验或数据录入错误造成的、具有“错误品位值”的样品。
如果有根据认为某些样品的品位是错误的,将这些样品从样本空间中删除不仅是合理的而且是必要的。
对极值样品的最理想的处理方法是,经过对探矿区域的地质构造和成矿机理进行深入分析,将这些样品的发生区域(或构造)划分出来,在进行品位与矿量的分析计算时,这些样品只参与其发生区域的品位与矿量计算,而不把它们外推到发生区域之外。
但是在大多数情况下,由于钻孔网度大,已知的地质信息满足不了这种区域划分的要求。
这时,可以将矿床看成是由两种不同的矿化作用形成的:样品中占绝大多数的“正常样品”可以看作是由主体矿化作用产生的样本空间;极值样品是由次矿化作用产生的样本空间。
然后利用统计学方法计算出空间任一点属于每一类矿化作用的概率,再根据这些概率计算矿床的品位与矿量。
这一方法超出了本书的范畴,有兴趣的读者可参阅 Journel(1988)和Parker 等人(1979)的论文。
第三节 取样数据的统计学分析对取样数据进行上述的预处理以后,做一些统计学分析可以提供不少有关矿床的有用信息。
因此统计学分析常常是取样数据分析的第一步。
对数据进行统计学分析的主要目的是确定:(1)品位的统计分布规律及其特征值; (2)品位变化程度;(3)样品是否属于不同的样本空间;(4)根据样品的分布特征,初步估计矿床的平均品位以及对于给定边界 品位的矿量和矿石平均品位。