第六章量子力学
- 格式:ppt
- 大小:708.50 KB
- 文档页数:73
第六章 中心力场6.1) 利用6.1.3节中式(17)、(18),证明下列关系式相对动量 ()21121p m p m Mr p-==∙μ (1) 总动量1p p R M P+==∙ (2)总轨迹角动量p r P R p r p r L L L⨯+⨯=⨯+⨯=+=221121 (3)总动能 μ222222222121pMP m p m p T +=+= (4)反之,有 ,11r m R rμ+= r m R r22μ-= (5) p P m p +=21μ,p P m p -=12μ(6)以上各式中,()212121 ,m m m m m m M +=+=μ证: 212211m m r m r m R ++=, (17) 21r r r -=, (18)相对动量 ()21122121211p m p m M r r m m m m r p-=⎪⎪⎭⎫ ⎝⎛-+==∙∙∙μ (1’)总动量 ()2121221121p p m m r m r m m m R M P+=+++==∙∙∙ (2’)总轨迹角动量 221121p r p r L L L⨯+⨯=+=)5(2211p r m u R p r m u R ⨯⎪⎪⎭⎫⎝⎛-+⨯⎪⎪⎭⎫ ⎝⎛+= ()()2112211p m p mMr p p R -⨯++⨯=)2)(1(p r P R ⨯+⨯=由(17)、(18)可解出21,r r,即(5)式;由(1’)(2’)可解出(6)。
总动能()22112262221212222m p P m m p P m m p m p T ⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫⎝⎛+=+=μμ2122222122112222122222m m p P u m pPm m um m p P u m pPm m u⋅-++⋅++=()()⎪⎪⎭⎫⎝⎛+++++=2122221222211112122m m p Pm m m Pm m m μ2222pMP +=(4’)[从(17),(18)式可解出(5)式;从(1),(2)式可解出(6)式].6.2) 同上题,求坐标表象中p 、P 和L 的算术表示式r i p ∇-= R i P ∇-= ,p r P R L⨯+⨯=解: ()()211221121r r m mMi p m p mMp ∇-∇-=-=(1)其中 1111z k y j x ir ∂∂+∂∂+∂∂=∇,而x X M m x x x X x X x ∂∂+∂∂=∂∂∂∂+∂∂∂∂=∂∂1111,同理,y YM m y ∂∂+∂∂=∂∂11zZM m z ∂∂+∂∂=∂∂11;(利用上题(17)(18)式。
第二部分应用第6章不含时微扰理论6.1非简并微扰理论6.1.1 一般公式表达假设对于某些势场(比如,一维无限深势阱),我们已经解出了(定态)薛定谔方程:(6.1)ψ,从而可以得到一套完备的正交本征函数,0n(6.2)E。
现在,我们对这个势进行微小扰动(比方说,在势阱底部加入一个小突起−及对应的能量本征值0n图6.1)。
我们期望可以找到新的本征函数和本征值:(6.3) 但是除非我们非常幸运,对于这个有些复杂的势场,一般我们是不可能精确求解薛定谔方程的。
微扰理论是一套系统的理论,它可以利用已得的无微扰时地精确解求出有微扰时的近似解。
图6.1:受到小微扰的无限深势阱。
首先,我们将哈密顿量写成两项之和:(6.4)其中'H 是微扰(上标0总是表示非微扰量)。
此时,我们将λ取为一个很小的数;稍后我们会将取它为1,H 将为真实的哈密顿量。
下面我们把n ψ和n E 展为λ的幂级数:(6.5)(6.6)其中,1n E 为第n 个本征值的一级修正,1n ψ为第n 个本征函数的一级修正;2n E 和2n ψ为二级修正,以此类推。
将6.5和6.6式代入6.3式,得到:或(将λ幂次相同的项合并)对于零级(0λ)项1有,这没有什么新的内容(它就是6.1式)。
对于一级(1λ)项有,(6.7)对于二级(2λ)项有,(6.8)以此类推。
(方程中并没有λ——它仅仅用来更清楚地按数量级分出各方程——所以现在把λ取为1。
)6.1.2 一级近似理论将0n ψ与6.7式进行内积运算(即乘以(0n ψ)*后积分),1级数展开的唯一性(见第2章,脚标25)保证了相同幂次的系数是相等的。
但是0H 为厄米算符,所以它和右边第一项相抵消。
又有001n n ψψ=,所以,2(6.9)这就是一级近似理论的一个最基本的结果;在实际中,它也是量子力学最重要的方程。
它说明能量的一级修正就是微扰在非微扰态中的期待值。
例子6.1 无微扰的无限深势阱波函数为(2.28式):图6.2:存在于整个势阱的常微扰。
第六章 力学量与本征态 §6 - 1 量子力学中的力学量 一 力学量用算符表达量子力学中的两个基本概念 ● 量子态 波函数 ● 力学量 (具有特定性质的)算符算符代表着对波函数的一种运算(但并不一定都与力学量相对应):()ddx ψ:对波函数取导数,ψ)(r U :对波函数乘以)(r U ,*ψ: 对波函数取复共轭,ψ: 对波函数开平方根考察位置算符r 和动量算符pˆ:r r →,(6. 1)∇-=→ i ˆpp . (6. 2)经典力学中的力学量还有:势能)(r V 纯位置坐标的函数(算符不变)力)()(r r F V ∇-=速度m /p v = 动量的函数(算符可由动量的对应关系得出)动能m p T 2/2= 动能2222ˆ ()222P T m m m x y z222222∂∂∂==-∇=-++∂∂∂ (6. 3)角动量∇⨯-=⨯=r p r Li ˆˆ (6. 4)在直角坐标系中的分量表达式)(i ˆˆˆyz z y p z py L y z x ∂∂-∂∂-=-= )(i ˆˆˆzx x z p x pz L z x y ∂∂-∂∂-=-=(6. 5))(i ˆˆˆxy y x p y px L x y z ∂∂-∂∂-=-=角动量算符Lˆ的模方(L ˆ的平方) L LL ˆˆˆˆ22⋅==L 222ˆˆˆz y x L L L ++=. (6. 6)角动量在球面坐标系的表示]sin 1)sin (sin 1[ˆ22222ϕθθθθθ∂∂+∂∂∂∂-= L(6. 7)ϕ∂∂-= i ˆz L (6. 8)θθθθθ2222sin ˆ)sin (sin ˆzL L +∂∂∂∂-= (6. 9)利用了:ϕθcos sin r x =,ϕθsin sin r y =, θcos r z =;2222z y x r ++=,rz =θcos , x y=ϕtan .图21 - 1 球面坐标系二 量子力学中的哈密顿量1、 哈密顿算符 薛定谔方程的普遍形式在量子力学中,薛定谔方程的普遍形式是ψψH tˆi =∂∂(6. 10)式中H ˆ是体系的哈密顿算符( = 动能函数 +势能函数)V T H +=,(6. 11)对于一个粒子在势场V ( r )中运动的情况,有)(2ˆ22r V mH +∇-= ,(6. 12) 讨论:● 哈密顿算符决定了体系的量子态随时间的变化规律,在量子力学中占有特别重要的地位。
第六章 群论与量子力学§6.1 哈密顿算符群和相关定理设()r H ρˆ为哈密顿算符,g 为同一坐标中的坐标变换,P g 为与之对应的函数变换算符,()()r g f r f P g ρρ1-=,()r f ρ为任意函数,有:故()()1ˆˆ-=g g P r g H P r Hρρ(由()r f ρ为任意函数) 若坐标经过变换g 作用后,哈密顿算符的形式不变,即:r g r ρρ=',()()()r H r H r g H ρρϖˆ'ˆˆ==,则: ()()1ˆˆ-=g g P r H P r H ρρ或()()r H P P r H g g ρρˆˆ= 即当哈密顿算符()r H ρˆ在函数变换算符gP 的作用下不变时,则()r H ρˆ与P g 对易: 【定义6.1】哈密顿算符的群 所有保持一个系统的哈密顿算符Hˆ不变的变换g 作成的集合构成一个群,称为该哈密顿算符()r Hρˆ的群,或薛定谔方程的群:()(){}r H r g Hg G H ρρˆˆ== 存在逆元:H G g ∈∀,有()()r H r g Hρρˆˆ= 令r g r ρρ=',则'1r g r ρρ-=,代入得:()'ˆ1r gg H ρ-,即:()()'ˆ'ˆ1r H r g H ρρ=-,故H G g ∈-1封闭性:HG g g ∈∀',,有:)()'()'()()()'(ˆ11'1''1'r H r g H r g H P r H P P r g H P r gg H g g g g ρρρρρρ=====----结合律和单位元显然存在。
【定义6.2】 哈密顿算符群或薛定谔方程群 由哈密顿算符的群对应的函数变换算符作成的集合构成群,称为哈密顿算符群或薛定谔方程群,记为:}|{H g G G g P P H ∈=。
第六章:中心力场[1]质量分别为 m 1,m 2的两个粒子组成的体系,质心座标及相对座R标r为:R =212211m m r m r m ++ (1)r 12r r r-= (2)试求总动量21p p P+=及总角动量21l l L +=在R ,r表象中的算符表示。
1. [解] (a )合动量算符21p p P+=。
根据假设可以解出1r ,2r令21m m m +≡ : r m m R r121-= (3)r m m R r212+= (4)设各个矢量的分量是),,(1111z y x r ,),(22,22z y x r ,),,(z y x r和),,(Z Y X R 。
为了计算动量的变换式先求对1x , 2x 等的偏导数:xX m m x x x X x X x ∂∂-∂∂=∂∂∂∂+∂∂∂∂=∂∂1111 (5)xX m m x x x X x X x ∂∂+∂∂=∂∂∂∂+∂∂∂∂=∂∂2222 (6) 关于1y ∂∂,2y ∂∂,1z ∂∂,2z ∂∂ 可以写出与(5)(6)类似的式子,因而: )()(212^1^^2^1^x x i p p p p P x x x x ∂∂+∂∂=+=+==Xi x X m m x X m m i ∂∂=∂∂+∂∂+∂∂-∂∂ )(21 RiZ i k Y i j X i i P ∇=∂∂+∂∂+∂∂= ^(b)总角动量)(2211^2^1^∇⨯+∇⨯=+=r r il l Lx x r r iL )(2211^∇⨯+∇⨯==)()(2222111y z z y i z z y i ∂∂-∂∂+-∂∂ 利用(3),(4),(5),(6): ))({(12^zZ m m y m m Y i L x ∂∂-∂∂-=))((12y Y m m z m m Z ∂∂-∂∂-- ))((21zZ m m y m m Y ∂∂+∂∂++ )})((21yY m m z m m Z ∂∂+∂∂+- =)()({1y Z z Y Y Z Z Y m m i ∂∂-∂∂-∂∂-∂∂ )()(221y z z y m m Y z Z y m m m ∂∂-∂∂+∂∂-∂∂-)()(2yZ z Y Y Z Z Y m m ∂∂-∂∂+∂∂-∂∂+)}()(2221yz z y m m Y z Z y m m m ∂∂-∂∂+∂∂-∂∂+=)}(){(yz z y Y Z Z Yi∂∂-∂∂+∂∂-∂∂ =x r R r iR i )(∇⨯+∇⨯因而 r R r iR i L ∇⨯+∇⨯=^[2]证明r r r ∂∂+=∇1],[212,∇=∇],[212r(证明)第一式ψ)(2122∇-∇r r =))((21222222222ψz y x zy x ++∂∂+∂∂+∂∂ )(21222222222zy x z y x ∂∂+∂∂+∂∂++-ψψψ但xz y x z y x x z y x x∂∂+++++=++∂∂ψψψ222222222)( 22222222()(z y x x x z y x x ++∂∂=++∂∂ψψ+)222xzy x ∂∂++ψ =232222222)())((z y x x x xz y x ++-+∂∂++ψψψ+2222223222)(xz y x z y x x x∂∂+++++∂∂ψψ即2222222222x z y x z y x x ∂∂++-++∂∂ψψ=232222222)(2z y x x zy x x x++-+++∂∂ψψψ同样写出关于y,z 的式子,相加得:22222222{21)(21zy x zz y y x xr r ++∂∂+∂∂+∂∂=∇-∇ψψψψ+}3222zy x ++-ψψ=r z r z y r y x r x ψψψψ+∂∂+∂∂+∂∂ =ψ)1(rr +∂∂ 因ψ是任意函数,因而第一式得证。
第六章 群论与量子力学§6.1 哈密顿算符群和相关定理设()r Hˆ为哈密顿算符,g 为同一坐标中的坐标变换,P g 为与之对应的函数变换算符,()()r g f r f P g1-=,()r f 为任意函数,有:()()()()()()()()r f P r g H P r g f r g H P r f r H P P r f r Hg g g g g 11ˆˆˆˆˆ--=== 故()()1ˆˆ-=g g P r g H P r H(由()r f为任意函数) 若坐标经过变换g 作用后,哈密顿算符的形式不变,即:r g r=',()()()r H r H r g H ˆ'ˆˆ==,则: ()()1ˆˆ-=g g P r H P r H 或()()r H P P r H g g ˆˆ=即当哈密顿算符()r H ˆ在函数变换算符g P 的作用下不变时,则()r Hˆ与P g 对易:[]0,=g P H【定义6.1】哈密顿算符的群 所有保持一个系统的哈密顿算符Hˆ不变的变换g 作成的集合构成一个群,称为该哈密顿算符()r Hˆ的群,或薛定谔方程的群:()(){}r H r g H g G H ˆˆ== 存在逆元:H G g ∈∀,有()()r H r g Hˆˆ= 令r g r =',则'1r g r-=,代入得:()'ˆ1r gg H -,即:()()'ˆ'ˆ1r H r g H =-,故H G g ∈-1封闭性:HG g g ∈∀',,有:)()'()'()()()'(ˆ11'1''1'r H r g H r g H P r H P P r g H P r gg H g g g g =====----结合律和单位元显然存在。
【定义6.2】 哈密顿算符群或薛定谔方程群 由哈密顿算符的群对应的函数变换算符作成的集合构成群,称为哈密顿算符群或薛定谔方程群,记为:}|{H g G G g P P H ∈=。
第六章 Wigner 算符与Husimi 算符的纯态密度矩阵形式在量子力学的相空间描述中,Wigner 分布函数是最常用的一类,因为一个量子态的Wigner 函数的两个边缘分布正好对应着在坐标和动量空间中测量粒子的概率密度,但是Wigner 函数本身并不总是正定的,故不能作为一个概率分布函数 (通常称之为准概率分布函数)。
在Wigner 函数定义的基础上Husimi 引入了一个新的分布函数——Husimi 函数,克服了Wigner 函数不总是正定的缺点,因而可作为一个新的概率分布函数; Husimi 分布函数的边缘分布有其自身的特点,特别适合于研究复杂体系的量子态。
但是对于Husimi 函数以前还没有人定义过与之对应的Husimi 算符, 本章中我们将引入它, 并发现它是一个纯压缩相干态密度矩阵, 利用IWOP 技术我们很容易导出其正规乘积形式,这就为求各种量子态的Husimi 函数提供了简洁明确的方法,这是量子统计一个新进展。
§ 6.1 从Wigner 算符到Husimi 算符:纯压缩相干态的密度矩阵[1]由于在量子力学中不能同时精确地测量粒子的坐标和动量,Wigner [2]曾提出描写粒子或系综的相空间函数理论。
在第一章中,我们曾看到位置与动量纯态密度矩阵分别为()2::q Q q q e--=, ()2::p P p p e--=, (6.1.1)把二者以如下方式合并写为()()()221::,q Q p P e q p π----≡∆, (6.1.2)而以往的文献中把(),q p ∆写在坐标表象中为(),2ipu duq p q u q u e π∞-∞∆=+-⎰。
(6.1.3) 从(6.1.2)式可见()()22,::q Q dp q p e q q q ψψψψψψ∞---∞∆===⎰, (6.1.4)()()22,::p P dq q p e p ψψψψ∞---∞∆==⎰. (6.1.5)它们分别代表在坐标和动量空间测到的概率密度,这正符合Wigner 当初引入相空间分布函数的动机,所以(),q p ψψ∆就是ψ态的Wigner 函数。