分式方程增根分类举例
- 格式:doc
- 大小:199.50 KB
- 文档页数:4
分式方程增根例析解分式方程的基本方法是通过去分母把分式方程转化为整式方程,解分式方程时,有可能产生增根(使方程中有的分母为零的根),因此解分式方程要验根(其方法是把求得的根代入最简公分母中,使分母为零的是增根,否则不是).【例1】解方程x x 415-+=0.解:方程两边同乘x (x+1),得 5x-4(x+1)=0.化简,得x-4=0. 解得x=4.检验:当x=4时,x (x+1)=4×(4+1)=20≠0, ∴ x=4是原方程的解.【例2】解方程114112=---+x x x解:原方程可化为1)1)(1(411=-+--+x x x x ,方程两边同乘(x+1)(x-1),得(x+1)2-4=(x+1)(x-1).化简,得2x-3=-1.解得 x=1.检验:x=1时(x+1)(x-1)=0,x=1不是原分式方程的解,所以原分式方程无解. 【点评】去分母时,方程两边同乘以最简公分母,不能漏乘常数项.【例3】 解方程51614171-+-=-+-x x x x .解:原方程可变形为41615171---=---x x x x .解得x=211.检验:当x=211时,(x-7)(x-5)(x-6)(x-4)≠0,所以x=211是原方程的解.【点评】此题若直接去分母,就会出现三次式,且计算较为复杂,该类型题的简单解法为:只把方程等号两边转化为两个分式之差,且等号两边分母的差相等;再把方程等号两边的分式分别通分,会得到两个同分子的分式相等,从而得分母相等,此解法叫做“分组通分法”.【例4】 若关于x 的方程x x k x x x k +-=----2225111有增根x=-1,求k 的值.解:原方程可化为)1(5)1(1)1)(1(1+-=---+-x x k x x x x k .方程两边同乘x (x+1)(x-1)得x (k-1)-(x+1)=(k-5)(x-1).化简,得3x=6-k.当x=-1时有3×(-1)=6-k ,∴k=9.【点评】 因为增根是在分式方程转化为整式方程的过程中产生的,分式方程的增根,不是分式方程的根,而是该分式方程化成的整式方程的根,所以涉及分式 方程的增根问题的解题步骤通常为:①去分母,化分式方程为整式方程;②将增根代入整式方程中,求出方程中字母系数的值.解分式方程误区点拨一、漏乘公分母【例1】解方程23132--=--x x x .错解:方程两边都乘以(x-3),得2-x=-1-2,解这个方程,得x=5.错解分析:解分式方程需要去分母,根据等式的性质,在方程两边同乘以(x-3)时,应注意乘以方程的每一项.错解在去分母时,-2这一项没有乘以(x-3),另外,求到x=5没有代入原方程中检验. 正解:方程两边都乘以(x-3),得2-x=-1-2(x-3),解得x=3检验:将x=3代入原方程,可知原方程的分母等于0,所以x=3是原方程的增根,所以原方程无解.二、去分母时漏添括号【例2】解方程011132=+--x x .错解:方程化为11)1)(1(3+--+x x x =0,方程两边同乘以(x +1)(x -1),得3-x-1=0,解得x=2.所以方程的解为x=2.错解分析:当分式的分子是一个多项式,去掉分母时,应将多项式用括号括起来.错解在没有用括号将(x -1)括起来,出现符号上的错误,而且最后没有检验.正解:方程两边都乘以(x +1)(x -1),得3-(x -1)=0,解这个方程,得x=4.检验:当x=4时,原方程的分母不等于0,所以x=4是原方程的根.。
增根一. 增根的意义:当分式方程含有若干个分式时,通常可用各个分式的公分母乘方程的两边进行去分母。
必须注意的是,解分式方程一定要验根,即把求得的根代入原方程,或者代入原方程两边所乘的公分母,看分母的值是否为零,使分母为零的根叫增根。
二. 分式方程中的增根:例1.若关于x 的方程11-+x ax =0有增根,则a 的值为( ).分析:增根是使分式方程的分母为0的未知数的值,所以增根只能是x=1,它应该是原方程去分母后的整式方程的根.解:因为分式方程有增根,所以增根只能是x=1,原方程去分母,得ax+1-(x-1)=0,将x=1代入并整理得a=﹣1,故应填a=﹣1.例2.若分式方程x x x x m x x1112+=++-+产生增根,则m 的值是( ).解:方程分母分别为x+1和2x +x,由此我们可以得知x=﹣1或x=0.解题时,先将分式方程通分,得到2x -m-1=(x+1)2,再移项得(x-x-1)(x+x+1)=m+1,化简得m=﹣2x-2,将x=﹣1或x=0代入m=﹣2x-2,当x=﹣1时,m=0;当x=0时,m=﹣2.因此我们可以得出m=0或m=﹣2.例3.当m=( )时,关于x 的分式方程32-+x mx =﹣1有增根.解:因为方程有增根,所以x=3.将方程通分得,2x+m=3-x,移项得3x=3-m,所以x=33m-,将x=3代入并整理,所以x=﹣6.例4.当m 为何值时,关于x 的方程35-x +92-x mx =32+x 会产生增根?解:将方程两边通分得5(x+3)+mx=2(x-3),去括号得,5x+15+mx=2x-6,合并同类项得(5+m-2)x=﹣21.因为分母为x+3和x-3,所以当x+3且x-3时会产生增根.此时,我们要分别考虑2种情况,求出与x 相应的m 的值.当x+3时,m=4;当x-3时,m=﹣10.所以当m=4或m=﹣10时方程会产生增根.总结:由以上4道例题可知,增根并不是一块很难的知识,所谓的“增根”口语化就是使分母为0的解。
分式方程的增根与无解甲:增根是什么?乙:增根是解分式方程时,把分式方程转化为整式方程这一变形中,由于去分母扩大了未知数的取值范围而产生的未知数的值.比如例一、解方程:。
①为了去分母,方程两边乘以,得②由②解得。
甲:原方程的解是。
乙:可是当时,原方程两边的值相等吗?甲:这我可没注意,查验一下不就明白了。
哟!当时,原方程有的项的分母为0,没成心义,是不是方程变形进程中弄错啦?乙:求解进程完全正确,没有任何的过失。
甲:那什么缘故会显现这种情形呢?乙:因为原先方程①中未知数x的取值范围是且,而去分母化为整式方程②后,未知数x的取值范围扩大为全部实数。
如此,从方程②解出的未知数的值就有可能不是方程①的解。
甲:如此说来,从方程①变形为方程②,这种变形并非能保证两个方程的解相同,那么,如何明白从整式方程②解出的未知数的值是或不是原方程①的解呢?乙:很简单,两个字:查验。
能够把方程②解出的未知数的值一一代入去分母时方程两边所乘的那个公分母,看是不是使公分母等于0,若是公分母为0,则说明那个值是增根,不然确实是原方程的解。
甲:那么,那个题中确实是增根了,可原方程的解又是什么呢?乙:原方程无解。
甲:啊?!什么缘故会无解呢?乙:无解时,方程本身确实是个矛盾等式,不论未知数取何值,都不能使方程两边的值相等,如上题中,不论x取何值,都不能使方程①两边的值相等,因此原方程无解,又如关于方程,不论x取何值也不能使它成立,因此,那个方程也无解。
甲:是不是有增根的分式方程确实是无解的,而无解的分式方程就必然有增根呢?乙:不是!有增根的分式方程不必然无解,无解的分式方程也不必然有增根,你看:例二、解方程,去分母后化为,解得或,现在,是增根,但原方程并非是无解,而是有一个解,而方程,去分母后化为,原方程尽管无解,但原方程也没有增根。
乙:增根不是原分式方程的解,但它是去分母后所得的整式方程的解,利用这种关系能够解决分式方程的有关问题,你看:例3、已知关于x的方程有增根,求k的值。
分式方程的增根探讨随着数学的不断发展,分式方程作为一种重要的数学工具,已经在各个领域被广泛应用。
分式方程的解法也相对来说比较困难,为此,增根成为了重要的研究方向。
本文将分带大家探讨关于分式方程增根的问题。
一、分式方程的定义和分类分式方程指的是形如$\frac{P(x)}{Q(x)}= k$ 的方程,其中$P(x)$ 和$Q(x)$ 是多项式函数,$k$ 是一个常数。
分式方程的解法通常包括直接合并分式、通分、约分等步骤。
根据$Q(x)$ 的零点,分式方程可以分为以下几类:1.有单根如果$Q(x)$ 有一个重根或者两个不同的根,那么这个分式方程就称为有单根。
例如:$\frac{x^2}{(x-1)^2}=3$。
2.有零根如果$Q(x)$ 的根不是重根且都是实数,那么这个分式方程就称为有零根。
例如:$\frac{1}{x^2-9}=4$。
3.有虚根如果$Q(x)$ 的根都是虚数,则这个分式方程就称为有虚根。
例如:$\frac{x^2+1}{x^2-1}=5$。
4.无根如果$Q(x)$ 在实数范围内没有根,那么这个分式方程就称为无根。
例如:$\frac{x^2+1}{x^2+9}=2$。
以上是分式方程的分类情况,接下来将探讨分式方程的增根问题。
二、分式方程的增根问题当分式方程的分母的次数小于分子的次数时,通常情况下,分式方程就不是方程的形式了,而是一个分段函数。
例如:$\frac{x}{x^2-4}=2$,这个方程的分母次数小于分子次数,无法直接处理。
在这种情况下,增根就成为了解决这类问题的一种常用手段。
增根的思想就是将分母的次数提高到大于等于分子的次数,使得分式方程恢复到方程的形式。
这通常需要在两侧同时乘一个新的多项式。
下面以一个例子来说明增根的具体步骤:例子1:求方程$\frac{x}{x^2-4}=2$ 的解。
步骤1:将方程两侧都乘以$x^2-4$,得到$x=2x^2-8$。
步骤2:将方程变形$2x^2-x-4=0$。
分式方程增根的例题
在解析分式方程增根的例题的过程中,我们可以清楚地看到分式方程增根的具体步骤和方法。
首先,假设我们有一个分式方程:x/2 + 1 = 0。
那么,我们可以首
先将方程重写为:x/2 = -1,然后乘以2得到:x = -2。
这就是增根后的结果。
再来看一个更复杂一些的例子,假设我们有一个分式方程:2/(x-3) + 1 = 0。
首先,我们可以将这个方程重写为:2/(x-3) = -1,然后两边同时乘以x-3,得到:2 = -(x-3)。
最后,解开括号,将方程重写为:2 = -x + 3。
解这个方程,我们可以得到:x = 1。
这就是增根后的结果。
以上只是两个简单的例子,分式方程的增根需要逐步推理和运算,并不是一蹴而就的。
在遇到复杂的分式方程时,可能需要更多的步骤进行处理。
但无论如何,分式方程增根的基本原理都是相同的,那就是通过一系列数学操作,将分母消除,从而使得x变量的次数降低,以便于求解。
与分式方程根有关的问题分类举例与分式方程的根有关的问题,在近年的中考试题中时有出现,现结合近年的中考题分类举例,介绍给读者,供学习、复习有关内容时参考。
1. 已知分式方程有增根,求字母系数的值解答此类问题必须明确增根的意义:(1)增根是使所给分式方程分母为零的未知数的值。
(2)增根是将所给分式方程去分母后所得整式方程的根。
利用(1)可以确定出分式方程的增根,利用(2)可以求出分式方程有增根时的字母系数的值。
例1. (2000年潜江市)使关于x 的方程a x x a x 2224222-+-=-产生增根的a 的值是( ) A. 2 B. -2C. ±2D. 与a 无关解:去分母并整理,得: ()a x 22401--=<>因为原方程的增根为x =2,把x =2代入<1>,得a 2=4所以a =±2故应选C 。
例2. (1997年山东省) 若解分式方程21112x x m x x x x+-++=+产生增根,则m 的值是( ) A. -1或-2 B. -1或2C. 1或2D. 1或-2解:去分母并整理,得:x x m 22201---=<>又原方程的增根是x =0或x =-1,把x =0或x =-1分别代入<1>式,得:m =2或m =1故应选C 。
例3. (2001年重庆市)若关于x 的方程ax x +--=1110有增根,则a 的值为__________。
解:原方程可化为:()a x -+=<>1201又原方程的增根是x =1,把x =1代入<1>,得:a =-1故应填“-1”。
例4. (2001年鄂州市)关于x 的方程x x k x -=+-323会产生增根,求k 的值。
解:原方程可化为:()x x k =-+<>231又原方程的增根为x =3,把x =3代入<1>,得:k=3例5. 当k 为何值时,解关于x 的方程:()()()1151112x x k x x k x x -+-+=--只有增根x =1。
分式方程的增根与无解一、引言分式方程是数学中常见的一类方程,它涉及到分数的运算和方程的解。
在解分式方程的过程中,我们会遇到增根和无解的情况。
本文将深入探讨分式方程的增根和无解,帮助读者更好地理解和应用这一概念。
二、分式方程的基本概念分式方程是一个等式,其中至少包含一个分数。
一般形式为:A(x)=C(x)B(x)其中,A(x)、B(x)和C(x)是多项式函数,B(x)≠0。
我们的目标是找到使等式成立的x的值,即方程的解。
在解分式方程时,我们需要注意以下几个概念:增根、无解和恒等式。
三、增根的定义和判定条件1. 增根的定义增根是指当x取某个值时,分式方程的解的个数增加。
也就是说,原本的方程只有有限个解,但在某些特定情况下,方程的解的个数会增加。
2. 增根的判定条件判断分式方程是否有增根,我们需要考虑以下几个条件:a) 分母的因式分解将分母进行因式分解,得到的因式中,如果存在某个因式在分子中也出现了,那么这个因式就是增根的条件之一。
b) 分子的因式分解将分子进行因式分解,得到的因式中,如果存在某个因式在分母中也出现了,那么这个因式就是增根的条件之一。
c) 方程的约束条件某些分式方程在解的过程中可能会有一些约束条件,这些条件可能导致方程的解的个数增加,也是增根的条件之一。
四、无解的定义和判定条件1. 无解的定义无解是指分式方程不存在实数解的情况。
也就是说,无论我们取什么值代入方程,都无法使等式成立。
2. 无解的判定条件判断分式方程是否无解,我们需要考虑以下几个条件:a) 分母的值为零如果方程的分母在某个取值下为零,那么这个取值就是使方程无解的条件之一。
b) 方程的约束条件某些分式方程在解的过程中可能会有一些约束条件,如果这些约束条件无法满足,那么方程就无解。
五、增根和无解的例子分析为了更好地理解增根和无解的概念,我们来看几个具体的例子。
1. 例子一考虑方程x−2x+1=1。
我们可以将其化简为x−2=x+1,得到x=−1。
分式方程的增根和无解黄石市白马山学校 胡优武知识重点:同学们在平时解答分式方程时,经常对分式方程的增根和无解混淆不清,容易错解、漏解。
为了学生好区分这两个概念,特制定以下例子加以说明。
(一)所求出的根使分式方程分母为零,这个根叫增根。
假定分母为零的值不一定是分式方程的增根。
例1:若解关于x 的分式方程234222+=-+-x x mx x 会产生增根,求m 的值. 解:方程两边都乘最简公分母(x+2)(x-2),得2(x+2)+mx=3(x-2)∵最简公分母为(x+2)(x-2),∴原方程增根为x=±2,∴把x=2代入整式方程,得m=-4.把x=-2代入整式方程,得m=6.综上,可知m=-4或6.本例具有常规性,一般学生都可以看出增根是x=±2,从而求出两个m 的值。
例2:关于分式方程xx x x x +=-+-2227163增根的情况,说法正确的是( ) A .有增根是0和-1 B .有增根是0和1、-1C .有增根是-1D .有增根是1一般的学生会假定最简公分母x(x+1)(x-1)=0,得出B 选项,那么就错了。
大家先看看解答过程。
解:方程两边乘以最简公分母为x (x+1)(x-1),得3(x+1)-6x=7(x-1),x=1;当x=1时,x (x+1)(x-1)=0,x=1是增根.原方程无解故选D .以上说明面对分式方程增根时,不能通过假定分母为零的所有x 的值是方程增根,必须动手计算。
(二)分式方程得的无解,要从两个角度分析,①无解:使分式方程分母为零的根叫增根,此时分式方程无解。
②无解:分式方程化成整式方程ax=b , 当 a=0 ,b ≠0时,方程无解。
例3:若关于x 的分式方程131=---xx m x 无解,求m 的值. 解:方程两边同时乘以x (x-1)得,x (x-m )-3(x-1)=x (x-1),整理得 (m+2)x=3①当x=0时原分式方程无解,此时0=3,无意义;②当x=1时原分式方程无解,此时解得m=1.③当m+2=0时,即m=-2时,整式方程(m+2)x=3无解,即原分式方程无解.故m=1或-2.上面的第③步,是学生最容易遗漏的。
分式方程的增根与无解分式方程的增根与无解是分式方程中常见的两个概念,同学们在学习分式方程后,常常会对这两个概念混淆不清,认为分式方程无解和分式方程有增根是同一回事,事实上并非如此. 分式方程有增根,指的是解分式方程时,在把分式方程转化为整式方程的变形过程中,方程的两边都乘了一个可能使分母为零的整式,从而扩大了未知数的取值范围而产生的未知数的值;而分式方程无解则是指不论未知数取何值,都不能使方程两边的值相等.它包含两种情形:(一)原方程化去分母后的整式方程无解;(二)原方程化去分母后的整式方程有解,但这个解却使原方程的分母为0,它是原方程的增根,从而原方程无解.现举例说明如下:例1 解方程2344222+=---x x x x . ① 解:方程两边都乘以(x+2)(x-2),得2(x+2)-4x=3(x-2).②解这个方程,得x=2.经检验:当x=2时,原方程无意义,所以x=2是原方程的增根.所以原方程无解.例2 解方程22321++-=+-xx x x . 解:去分母后化为x -1=3-x +2(2+x ).整理得0x =8.因为此方程无解,所以原分式方程无解.例3(2007湖北荆门)若方程32x x --=2m x-无解,则m=——————. 解:原方程可化为32x x --=-2m x -. 方程两边都乘以x -2,得x -3=-m .解这个方程,得x=3-m .因为原方程无解,所以这个解应是原方程的增根.即x=2,所以2=3-m ,解得m=1.故当m=1时,原方程无解.例4当a 为何值时,关于x 的方程223242ax x x x +=--+①会产生增根? 解:方程两边都乘以(x+2)(x-2),得2(x +2)+ax =3(x -2)整理得(a -1)x =-10 ②若原分式方程有增根,则x =2或-2是方程②的根.把x =2或-2代入方程②中,解得,a =-4或6.若将此题“会产生增根”改为“无解”,即:当a 为何值时,关于x 的方程223242ax x x x +=--+①无解? 此时还要考虑转化后的整式方程(a -1)x =-10本身无解的情况,解法如下:解:方程两边都乘以(x+2)(x-2),得2(x +2)+ax =3(x -2)整理得(a -1)x =-10 ②若原方程无解,则有两种情形:(1)当a -1=0(即a =1)时,方程②为0x =-10,此方程无解,所以原方程无解。
分式方程解法及增根问题例题分式方程解法及增根问题例题在代数学中,分式方程是指方程中含有分式的方程。
在解分式方程时,通常需要使用增根和减根的方法。
本文将介绍分式方程的解法以及增根问题,并提供一些例题进行讲解。
一、分式方程的解法解分式方程的一般步骤如下:1. 化简分式:将分式方程中的分式进行化简,使方程变得更加简单。
2. 通分:将方程中的分式通分,使得方程中的分母相同,便于计算和化简。
3. 求解:利用通分后的方程,进行运算和求解,得出方程的解。
对于分式方程 3/(x+2) = 1/(x-1),首先可以将分式进行通分,得到3(x-1) = (x+2)。
然后进行计算和求解,得出 x 的值。
二、增根问题在解分式方程时,经常会遇到增根问题。
增根指的是在解出方程的根之外,还需要添加一些特殊的值,以满足方程的条件。
解决增根问题的一般步骤如下:1. 求解得到普通根:按照正常的解方程方法,求解得到方程的普通根。
2. 分析增根条件:分析方程中是否存在增根的条件,例如分式方程中的分母不能为零等条件。
3. 添加增根:根据增根的条件,添加符合条件的增根,让方程能够满足所有条件。
对于分式方程 1/(x-3) = 2/(x+2),首先可以求解得到普通根 x=4。
然后分析发现,当 x=3 时,方程中的分母为零,因此需要添加增根 x=3,才能满足方程的条件。
三、例题讲解现在,我们通过一些例题来具体讲解分式方程的解法和增根问题。
例题1:解方程 2/(x-1) - 3/(x+2) = 1/(x-3)解题步骤:1. 化简得到通分形式:2(x+2) - 3(x-1) = (x-3)2. 化简得到普通根:2x+4 - 3x+3 = x-33. 求解得到普通根:-x+7 = x-3,得到 x=54. 分析增根条件:当 x=1 时,分式中的分母为零。
5. 添加增根:添加增根 x=1,使得方程满足所有条件。
例题2:解方程 1/(x-2) + 2/(x+1) = 3/(x-3)解题步骤:1. 化简得到通分形式:(x-2) + 2(x-3) = 3(x+1)2. 化简得到普通根:x-2 + 2x-6 = 3x+33. 求解得到普通根:3x-8 = 3x+3,得到矛盾4. 分析增根条件:由于方程中出现了矛盾,需要分析增根条件。
分式方程的增根与无解分式方程的增根与无解是分式方程中常见的两个概念,同学们在学习分式方程后,常常会对这两个概念混淆不清,认为分式方程无解和分式方程有增根是同一回事,事实上并非如此.分式方程有增根,指的是解分式方程时,在把分式方程转化为整式方程的变形过程中,方程的两边都乘了一个可能使分母为零的整式,从而扩大了未知数的取值范围而产生的未知数的值;而分式方程无解则是指不论未知数取何值,都不能使方程两边的值相等.它包含两种情形:(一)原方程化去分母后的整式方程无解;(二)原方程化去分母后的整式方程有解,但这个解却使原方程的分母为0,它是原方程的增根,从而原方程无解.现举例说明如下:例1 解方程2344222+=---x x x x . ①例2 解方程22321++-=+-x x x x .例3(2007湖北荆门)若方程32x x --=2m x-无解,则m=——————.例4当a 为何值时,关于x 的方程223242ax x x x +=--+①会产生增根?练习1、 使关于x 的方程a x x a x 2224222-+-=-产生增根的a 的值是( ) A. 2B. -2C. ±2D. 与a 无关2、若解分式方程21112x x m x x x x+-++=+产生增根,则m 的值是( ) A. -1或-2 B. -1或2C. 1或2D. 1或-23、若关于x 的方程a x x +--=1110有增根,则a 的值为__________。
4、关于x 的方程x x k x -=+-323会产生增根,求k 的值。
5、当k 为何值时,解关于x 的方程:()()()1151112x x k x x k x x -+-+=--只有增根x =1。
6、当k 的值为_________(填出一个值即可)时,方程x x k x x x -=--122只有一个实数根。
7、当m 为何值时,关于x 的方程21112x x m x x x ---=+-无实根?8、已知关于x 的方程11x m x m --=有实数根,求m 的取值范围。
解分式方程时什么情况下会产生增根
在解一个方程时,如果出现了增根,往往是由于违反了方程的同解原理或对方程变形时粗心大意造成的。
1. 如果不遵从同解原理,即使解整式方程也可能出现增根.例如将方程x-2=0
的两边都乘x,变形成x(x-2)=0,新方程就比原方程多出一个根x=0.这是因为在方程两边都乘了一个x,这相当于用0乘以原方程的两边(0适合于新方程),而这是违反同解原理的。
2. 解分式方程时,去分母不一定会出现增根。
在将一个分式方程变形时,往往先将它化为整式方程,于是在分式方程的两边都乘以各分母的最低公倍式,这样可能不违反同
解原理,也可能违反同解原理,如将方程两边都乘以x,变形成x-2=1,新方程
有一个根x=3,它也是原方程的根。
x=3不是原方程的增根,这是因为在方程两边乘的x,是一个相当于3的非零数,这样做没有违反同解原理。
判别增根,只要通过把新方程的根代入去分母时在原方程两边所乘的最简公分母,看其是否为0,是0即为增根.
1。
与分式方程根有关的问题分类举例
与分式方程的根有关的问题,在近年的中考试题中时有出现,现结合近年的中考题分类举例,介绍给读者,供学习、复习有关内容时参考。
1. 已知分式方程有增根,求字母系数的值
解答此类问题必须明确增根的意义:
(1)增根是使所给分式方程分母为零的未知数的值。
(2)增根是将所给分式方程去分母后所得整式方程的根。
利用(1)可以确定出分式方程的增根,利用(2)可以求出分式方程有增根时的字母系数的值。
例1. (2000年潜江市)
使关于x 的方程a x x a x 2
2
24222-+-=-产生增根的a 的值是( ) A. 2 B. -2
C. ±2
D. 与a 无关
解:去分母并整理,得: ()a x 22401--=<>
因为原方程的增根为x =2,把x =2代入<1>,得a 2=4
所以a =±2
故应选C 。
例2. (1997年山东省) 若解分式方程21112x x m x x x x
+-++=+产生增根,则m 的值是( ) A. -1或-2 B. -1或2
C. 1或2
D. 1或-2
解:去分母并整理,得:
x x m 22201---=<>
又原方程的增根是x =0或x =-1,把x =0或x =-1分别代入<1>式,得: m =2或m =1
故应选C 。
例3. (2001年重庆市)
若关于x 的方程ax x +--=11
10有增根,则a 的值为__________。
解:原方程可化为:()a x -+=<>1201
又原方程的增根是x =1,把x =1代入<1>,得:
a =-1
故应填“-1”。
例4. (2001年鄂州市)
关于x 的方程x x k x -=+-323
会产生增根,求k 的值。
解:原方程可化为:()x x k =-+<>231
又原方程的增根为x =3,把x =3代入<1>,得:
k=3
例5. 当k 为何值时,解关于x 的方程:
()()()115111
2x x k x x k x x -+-+=--只有增根x =1。
解:原方程可化为: ()()()()x k x k x ++--=-<>151112
把x =1代入<1>,得k=3
所以当k=3时,解已知方程只有增根x =1。
评注:由以上几例可知,解答此类问题的基本思路是:
(1)将所给方程化为整式方程;
(2)由所给方程确定增根(使分母为零的未知数的值或题目给出);
(3)将增根代入变形后的整式方程,求出字母系数的值。
2. 已知分式方程根的情况,求字母系数的值或取值范围
例6. (2002年荆门市)
当k 的值为_________(填出一个值即可)时,方程x x k x x x
-=--122只有一个实数根。
解:原方程可化为:x x k 2201+-=<>
要原方程只有一个实数根,有下面两种情况:
(1)当方程<1>有两个相等的实数根,且不为原方程的增根,所以由∆=+=440k 得k=-1。
当k=-1时,方程<1>的根为x x 121==-,符合题意。
(2)方程<1>有两个不相等的实数根且其中有一个是原方程的增根,所以由∆=+>440k ,得k>-1。
又原方程的增根为x =0或x =1,把x =0或x =1分别代入
<1>得k=0,或k=3,均符合题意。
综上所述:可填“-1、0、3”中的任何一个即可。
例7. (2002年孝感市)
当m 为何值时,关于x 的方程2111
2x x m x x x ---=+-无实根? 解:原方程可化为:
x x m 2201-+-=<>
要原方程无实根,有下面两种情况:
(1)方程<1>无实数根,由()()∆=---<14202
m ,得m <74
; (2)方程<1>的实数解均为原方程的增根时,原方程无实根,而原方程的增根为x =0或x =1,把x =0或x =1分别代入<1>得m =2。
综上所述:当m <74
或当m=2时,所给方程无实数解。
例8. (2003年南昌市)
已知关于x 的方程11x m x m --=有实数根,求m 的取值范围。
解:原方程化为:mx x 2101-+=<>
要原方程有实数根,只要方程<1>有实数根且至少有一个根不是原方程的增根即可。
(1)当m =0时,有x =1,显然x =1是原方程的增根,所以m =0应舍去。
(2)当m ≠0时,由∆=-≥140m ,得m ≤14。
又原方程的增根为x =0或x =1,当x =0时,方程<1>不成立;当x m ==10,。
综上所述:当m ≤
14
且m ≠0时,所给方程有实数根。
评注:由以上三例可知,由分式方程根的情况,求字母系数的值或取值范围的基本思路是:
(1)将所给方程化为整式方程;
(2)根据根的情况,由整式方程利用根的判别式求出字母系数的值或取值范围,注意排除使原方程有增根的字母系数的值。
3. 已知分式方程无增根,求字母系数的取值范围 例9. 当a 取何值时,解关于x 的方程:()()
x x x x x ax x x ---++=+-+12212212无增根? 解:原方程可化为:
23012x ax +-=<>
又原方程的增根为x =2或x =-1,把x =2或x =-1分别代入<1>得:
a =-52
或a =-1 又由∆=+>a 2240知,a 可以取任何实数。
所以,当a ≠-
52
且a ≠-1时,解所给方程无增根。
评注:解答此类问题的基本思路是:
(1)将已知方程化为整式方程;
(2)由所得整式方程求出有增根的字母系数的值和使整式方程有实数根的字母系数的取值范围;
(3)从有实数根的范围里排除有增根的值,即得无增根的取值范围。
4. 已知分式方程根的符号,求字母系数的取值范围
例9. 已知关于x 的方程x a x +-=-2
1的根大于0,求a 的取值范围。
解:原方程可化为:22x a =- 所以x a =-12
由题意,得:
120->a 且12
2-≠a 所以a <2且a ≠-2
例10. 已知关于x 的方程x k x +-=2
2的根小于0,求k 的取值范围。
解:原方程可化为:x k x +=-24
所以x k =+4
由题意,得:k +<40
所以k <-4
评注:解答此类题的基本思路是:
(1)求出已知方程的根;
(2)由已知建立关于字母系数的不等式,求出字母系数的取值范围,注意排除使原方程有增根的字母系数的值。
说明:注意例9与例10的区别,例9有12
2-≠a ,而例10无k +≠42这一不等式?请读者思考。