【6套合集】浙江省杭州学军中学2020中考提前自主招生数学模拟试卷附解析
- 格式:docx
- 大小:964.03 KB
- 文档页数:122
2020年浙江省杭州市中考数学一模试卷一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的. 1.(3分)﹣2的绝对值是( ) A .﹣2 B .2C .12D .−122.(3分)下列计算正确的是( )A .m 4+m 3=m 7B .(m 4) 3=m 7C .2m 5÷m 3=m 2D .m (m ﹣1)=m 2﹣m3.(3分)如图,P 为⊙O 外一点,PC 切⊙O 于C ,PB 与⊙O 交于A 、B 两点.若P A =1,PB =5,则PC =( )A .3B .√5C .4D .无法确定 4.(3分)为了解某班学生每天使用零花钱的情况,小敏随机调查了15名同学,结果如表:每天用零花钱(单位:元) 12345人数2 4 53 1则这15名同学每天使用零花钱的众数和中位数分别是( )A .3,3B .5,2C .3,2D .3,55.(3分)某工程甲单独完成要30天,乙单独完成要25天.若乙先单独干15天,剩下的由甲单独完成,设甲、乙一共用x 天完成,则可列方程为( )A .x+1525+1530=1 B .x+1530+1525=1 C .1530+x−1525=1D .x−1530+1525=16.(3分)如图,已知一组平行线a ∥b ∥c ,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且AB =3,BC =4,EF =4.8,则DE =( )A .7.2B .6.4C .3.6D .2.47.(3分)如图,BD 是△ABC 的角平分线,AE ⊥BD ,垂足为F .若∠ABC =36°,∠C =44°,则∠EAC 的度数为( )A .18°B .28°C .36°D .38°8.(3分)直线l 1:y =kx +b 与直线l 2:y =bx +k 在同一坐标系中的大致位置是( )A .B .C .D .9.(3分)关于x 的二次函数y =x 2+2kx +k ﹣1,下列说法正确的是( ) A .对任意实数k ,函数图象与x 轴都没有交点B .对任意实数k ,函数图象没有唯一的定点C .对任意实数k ,函数图象的顶点在抛物线y =﹣x 2﹣x ﹣1上运动D .对任意实数k ,当x ≥﹣k ﹣1时,函数y 的值都随x 的增大而增大10.(3分)如图,在△ABC 中,∠C =90°,D 是BC 边上一点,∠ADC =3∠BAD ,BD =4,DC =3.则AB 的值为( )A .5+3√2B .2+2√15C .7√2D .√113二、填空题:本题有6个小题,每小题4分,共24分 11.(4分)分解因式:3x 2+6xy +3y 2= .12.(4分)一个袋子中有1个红球,2个黄球,每个球除颜色外都相同,从中摸出2个球,2个球颜色不同的概率为 . 13.(4分)分式方程2x−1=1x的解是 . 14.(4分)已知一个扇形的面积为12πcm 2,圆心角的度数为108°,则它的弧长为 .15.(4分)已知关于x 的不等式组{5x −a >3(x −1)2x −1≤7的所有整数解的和为7,则a 的取值范围是 .16.(4分)一张直角三角形纸片ABC ,∠ACB =90°,AB =13,AC =5,点D 为BC 边上的任一点,沿过点D 的直线折叠,使直角顶点C 落在斜边AB 上的点E 处,当△BDE 是直角三角形时,则CD 的长为 . 三、解答题:本大题有7个小题,共66分解答应写出文字说明、证明过程或演算步骤. 17.(6分)先化简再求值:(ab−b a)•aba+b,其中a =1,b =2. 18.(8分)光明中学欲举办“校园吉尼斯挑战赛”,为此学校随机抽取男女学生各50名进行一次“你喜欢的挑战项目”的问卷调查,每名学生都选了一项.根据收集到的数据,绘制成统计图(不完整).根据统计图表中的信息,解答下列问题:(1)在本次随机调查中,女生最喜欢“踢毽子”项目的有人,男生最喜欢“乒乓球“项目的有人.(2)请将条形统计图补充完整;(3)若该校有男生450人,女生400人,请估计该校喜欢“羽毛球”项目的学生总人数.19.(8分)如图,D、E是以AB为直径的⊙O上两点,且∠AED=45°.(1)过点D作DC∥AB,求证:直线CD与⊙O相切;(2)若⊙O的半径为12,sin∠ADE=3,求AE的长.420.(10分)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=8,AD=6√2,AF=4√2,求AE的长.21.(10分)已知Rt△ABC的斜边AB在平面直角坐标系的x轴上,点C(2,6)在反比例函数y1=k x的图象上,且sin∠BAC= 35(1)求k的值和边AC的长;(2)求点B的坐标;交于M与N点,求出x为何值时,y2≥y1.(3)有一直线y2=kx+10与y1=kx22.(12分)已知一次函数y1=2x+b的图象与二次函数y2=a(x2+bx+1)(a≠0,a、b为常数)的图象交于A、B两点,且A 的坐标为(0,1).(1)求出a、b的值,并写出y1,y2的表达式;(2)验证点B的坐标为(1,3),并写出当y1≥y2时,x的取值范围;(3)设u=y1+y2,v=y1﹣y2,若m≤x≤n时,u随着x的增大而增大,且v也随着x的增大而增大,求m的最小值和n的最大值.23.(12分)在△ABC 和△DBE 中,CA =CB ,EB =ED ,点D 在AC 上.(1)如图1,若∠ABC =∠DBE =60°,求证:∠ECB =∠A ;(2)如图2,设BC 与DE 交于点F .当∠ABC =∠DBE =45°时,求证:CE ∥AB ; (3)在(2)的条件下,若tan ∠DEC =12时,求EFDF的值.2020年浙江省杭州市中考数学一模试卷参考答案与试题解析一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的. 1.(3分)﹣2的绝对值是( ) A .﹣2B .2C .12D .−12【分析】根据绝对值的定义,可直接得出﹣2的绝对值.【解答】解:|﹣2|=2, 故选:B .【点评】本题考查了绝对值的定义,是中考的常见题型,比较简单,熟记绝对值的定义是本题的关键. 2.(3分)下列计算正确的是( ) A .m 4+m 3=m 7 B .(m 4) 3=m 7 C .2m 5÷m 3=m 2D .m (m ﹣1)=m 2﹣m【分析】直接利用整式的混合运算法则分别计算判断即可. 【解答】解:A 、m 4与m 3,无法合并,故此选项错误; B 、(m 4) 3=m 12,故此选项错误; C 、2m 5÷m 3=2m 2,故此选项错误; D 、m (m ﹣1)=m 2﹣m ,正确. 故选:D .【点评】此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.3.(3分)如图,P 为⊙O 外一点,PC 切⊙O 于C ,PB 与⊙O 交于A 、B 两点.若P A =1,PB =5,则PC =( )A .3B .√5C .4D .无法确定【分析】求出半径的长,求出PO 长,根据切线的性质求出∠PCO =90°,再根据勾股定理求出即可. 【解答】解:∵P A =1,PB =5, ∴AB =PB ﹣P A =4, ∴OC =OA =OB =2, ∴PO =1+2=3, ∵PC 切⊙O 于C , ∴∠PCO =90°,在Rt △PCO 中,由勾股定理得:PC =√PO 2−OC 2=√32−22=√5, 故选:B .【点评】本题考查了勾股定理和切线的性质,能熟记切线的性质的内容是解此题的关键,注意:圆的切线垂直于过切点的半径.4.(3分)为了解某班学生每天使用零花钱的情况,小敏随机调查了15名同学,结果如表:每天用零花钱(单位:元) 12345人数24531则这15名同学每天使用零花钱的众数和中位数分别是( )A .3,3B .5,2C .3,2D .3,5【分析】根据众数和中位数的定义分别进行解答即可.【解答】解:这15名同学每天使用零花钱的众数为3元,中位数为3元,故选:A.【点评】此题考查了众数和中位数,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5.(3分)某工程甲单独完成要30天,乙单独完成要25天.若乙先单独干15天,剩下的由甲单独完成,设甲、乙一共用x 天完成,则可列方程为()A.x+1525+1530=1 B.x+1530+1525=1C.1530+x−1525=1 D.x−1530+1525=1【分析】根据题意列出方程求出答案.【解答】解:设甲、乙一共用x天完成,则可列方程为:x−15 30+1525=1.故选:D.【点评】本题考查由实际问题抽象出一元一次方程,解题的关键是找出等量关系,本题属于基础题型.6.(3分)如图,已知一组平行线a∥b∥c,被直线m、n所截,交点分别为A、B、C和D、E、F,且AB=3,BC=4,EF =4.8,则DE=()A.7.2 B.6.4 C.3.6 D.2.4【分析】根据平行线分线段成比例定理列出比例式,代入计算得到答案.【解答】解:∵a∥b∥c,∴DEEF=ABBC,即DE4.8=34,解得,DE=3.6,故选:C.【点评】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.7.(3分)如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=36°,∠C=44°,则∠EAC的度数为()A.18°B.28°C.36°D.38°【分析】根据∠EAC=∠BAC﹣∠BAF,求出∠BAC,∠BAF即可解决问题.【解答】解:∵∠ABC=36°,∠C=44°,∴∠BAC=180°﹣36°﹣44°=100°,∵BD平分∠ABC,∴∠ABD=12∠ABC=18°,∵AE⊥BD,∴∠BF A=90°,∴∠BAF=90°﹣18°=72°,∴∠EAC =∠BAC ﹣∠BAF =100°﹣72°=28°, 故选:B .【点评】本题考查三角形内角和定理,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 8.(3分)直线l 1:y =kx +b 与直线l 2:y =bx +k 在同一坐标系中的大致位置是( )A .B .C .D .【分析】根据一次函数的系数与图象的关系依次分析选项,找k 、b 取值范围相同的即得答案. 【解答】解:根据一次函数的系数与图象的关系依次分析选项可得:A 、由图可得,y 1=kx +b 中,k <0,b <0,y 2=bx +k 中,b >0,k <0,b 、k 的取值矛盾,故本选项错误;B 、由图可得,y 1=kx +b 中,k >0,b <0,y 2=bx +k 中,b >0,k >0,b 的取值相矛盾,故本选项错误;C 、由图可得,y 1=kx +b 中,k >0,b <0,y 2=bx +k 中,b <0,k >0,k 的取值相一致,故本选项正确;D 、由图可得,y 1=kx +b 中,k >0,b <0,y 2=bx +k 中,b <0,k <0,k 的取值相矛盾,故本选项错误; 故选:C .【点评】本题主要考查了一次函数的图象性质,要掌握它们的性质才能灵活解题.解答本题注意理解:直线y =kx +b 所在的位置与k 、b 的符号有直接的关系.9.(3分)关于x 的二次函数y =x 2+2kx +k ﹣1,下列说法正确的是( ) A .对任意实数k ,函数图象与x 轴都没有交点B .对任意实数k ,函数图象没有唯一的定点C .对任意实数k ,函数图象的顶点在抛物线y =﹣x 2﹣x ﹣1上运动D .对任意实数k ,当x ≥﹣k ﹣1时,函数y 的值都随x 的增大而增大【分析】利用△=(2k ﹣1)2+3>0可对A 进行判断;利用点(−12,−34)满足抛物线解析式可对B 进行判断;先求出抛物线顶点坐标为(﹣k ,﹣k 2+k ﹣1),则根据二次函数图象上点的坐标特征可对C 进行判断;先表示出抛物线的对称轴方程,然后利用二次函数的性质可对D 进行判断.【解答】解:A 、△=4k 2﹣4(k ﹣1)=(2k ﹣1)2+3>0,抛物线与x 轴有两个交点,所以A 选项错误;B 、k (2x +1)=y +1﹣x 2,k 为任意实数,则2x +1=0,y +1﹣x 2=0,所以抛物线经过定点(−12,−34),所以B 选项错误; C 、y =(x +k )2﹣k 2+k ﹣1,抛物线的顶点坐标为(﹣k ,﹣k 2+k ﹣1),则抛物线的顶点在抛物线y =﹣x 2﹣x ﹣1上运动,所以C 选项正确;D 、抛物线的对称轴为直线x =−2k2=−k ,抛物线开口向上,则x >﹣k 时,函数y 的值都随x 的增大而增大,所以D 选项错误. 故选:C .【点评】本题考查了抛物线与x 轴的交点:把求二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质.10.(3分)如图,在△ABC 中,∠C =90°,D 是BC 边上一点,∠ADC =3∠BAD ,BD =4,DC =3.则AB 的值为( )A.5+3√2B.2+2√15C.7√2D.√113【分析】延长CB到E,使得BE=BA.设BE=AB=a.利用相似三角形的性质,勾股定理构建方程即可解决问题.【解答】解:如图,延长CB到E,使得BE=BA.设BE=AB=a.∵BE=BA,∴∠E=∠BAE,∵∠ADC=∠ABD+∠BAD=2∠E+∠BAD=3∠BAD,∴∠BAD=∠E,∵∠ADB=∠EDA,∴△ADB∽△EDA,∴ADED=DBAD,∴AD2=4(4+a)=16+4a,∵AC2=AD2﹣CD2=AB2﹣BC2,∴16+4a﹣32=a2﹣72,解得a=2+2√15或2﹣2√15(舍弃).∴AB=2+2√15,故选:B.【点评】本题考查相似三角形的判定和性质,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.二、填空题:本题有6个小题,每小题4分,共24分11.(4分)分解因式:3x2+6xy+3y2=3(x+y)2.【分析】先利用提取公因式法提取数字3,再利用完全平方公式继续进行分解.【解答】解:3x2+6xy+3y2,=3(x2+2xy+y2),=3(x+y)2【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.(4分)一个袋子中有1个红球,2个黄球,每个球除颜色外都相同,从中摸出2个球,2个球颜色不同的概率为23.【分析】画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【解答】解:画树状图如下:由树状图知,共有6种等可能结果,其中2个球颜色不同的有4种结果, ∴2个球颜色不同的概率为46=23, 故答案为:23.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.13.(4分)分式方程2x−1=1x的解是 x =﹣1 . 【分析】观察分式方程得最简公分母为x (x ﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解. 【解答】解:方程的两边同乘x (x ﹣1),得 2x =x ﹣1, 解得x =﹣1.检验:把x =﹣1代入x (x ﹣1)=2≠0. ∴原方程的解为:x =﹣1. 故答案为:x =﹣1.【点评】本题考查了解分式方程.(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.14.(4分)已知一个扇形的面积为12πcm 2,圆心角的度数为108°,则它的弧长为6√105πcm . 【分析】先根据扇形的面积公式求出扇形的半径,再根据弧长公式求出弧长即可.【解答】解:设扇形的半径为Rcm ,∵扇形的面积为12πcm 2,圆心角的度数为108°, ∴108π×R 2360=12π,解得:R =2√10,∴弧长为108π×2√10180=6√105π(cm ),故答案为:6√105πcm .【点评】本题考查了扇形面积的计算和弧长的计算,能熟记公式是解此题的关键.15.(4分)已知关于x 的不等式组{5x −a >3(x −1)2x −1≤7的所有整数解的和为7,则a 的取值范围是 7≤a <9或﹣3≤a <﹣1 .【分析】先求出求出不等式组的解集,再根据已知得出关于a 的不等式组,求出不等式组的解集即可.【解答】解:{5x −a >3(x −1)①2x −1≤7②,∵解不等式①得:x >a−32, 解不等式②得:x ≤4, ∴不等式组的解集为a−32<x ≤4, ∵关于x 的不等式组{5x −a >3(x −1)2x −1≤7的所有整数解的和为7,∴当a−32>0时,这两个整数解一定是3和4,∴2≤a−32<3, ∴7≤a <9,当a−32<0时,﹣3≤a−32<−2, ∴﹣3≤a <﹣1,∴a 的取值范围是7≤a <9或﹣3≤a <﹣1. 故答案为:7≤a <9或﹣3≤a <﹣1.【点评】本题考查了解一元一次不等式组和不等式组的整数解,能得出关于a 的不等式组是解此题的关键.16.(4分)一张直角三角形纸片ABC ,∠ACB =90°,AB =13,AC =5,点D 为BC 边上的任一点,沿过点D 的直线折叠,使直角顶点C 落在斜边AB 上的点E 处,当△BDE 是直角三角形时,则CD 的长为103或6017. 【分析】根据沿过点D 的直线折叠,使直角顶点C 落在斜边AB 上的点E 处,当△BDE 是直角三角形时,分两种情况讨论:∠DEB =90°或∠BDE =90°,分别依据勾股定理或者相似三角形的性质,即可得到CD 的长. 【解答】解:∵∠ACB =90°,AB =13,AC =5, ∴BC =√AB 2−AC 2=12, 根据题意,分两种情况: ①如图,若∠DEB =90°,则∠AED =90°=∠C , CD =ED ,连接AD ,则Rt △ACD ≌Rt △AED (HL ), ∴AE =AC =5,BE =AB ﹣AE =13﹣5=8, 设CD =DE =x ,则BD =BC ﹣CD =12﹣x , 在Rt △BDE 中,DE 2+BE 2=BD 2, ∴x 2+82=(12﹣x )2解得x =103, ∴CD =103;②如图,若∠EDB =90°,则∠CDE =∠DEF =∠C =90°,CD =DE , ∴四边形CDEF 是正方形, ∴∠AFE =∠EDB =90°, ∠AEF =∠B , ∴△AEF ∽△EBD , ∴AF ED =EF BD ,6017设CD =x ,则EF =CF =x ,AF =5﹣x ,BD =12﹣x ,∴5−x x =x 12−x , 解得x =6017. ∴CD =6017. 综上所述,CD 的长为103或6017. 【点评】本题考查了翻折变换,综合运用勾股定理、相似三角形的判定与性质、正方形的判定与性质解答,解题关键是根据题意分两种情况讨论.三、解答题:本大题有7个小题,共66分解答应写出文字说明、证明过程或演算步骤.17.(6分)先化简再求值:(a b −b a )•ab a+b ,其中a =1,b =2. 【分析】先把分式化简后,再把a 、b 的值代入求出分式的值. 【解答】解:原式=a 2−b 2ab •ab a+b =(a+b)(a−b)ab ⋅ab a+b=a ﹣b ,当a =1,b =2时,原式=1﹣2=﹣1.【点评】本题考查了分式的化简求值,熟练化简分式是解题的关键.18.(8分)光明中学欲举办“校园吉尼斯挑战赛”,为此学校随机抽取男女学生各50名进行一次“你喜欢的挑战项目”的问卷调查,每名学生都选了一项.根据收集到的数据,绘制成统计图(不完整).根据统计图表中的信息,解答下列问题:(1)在本次随机调查中,女生最喜欢“踢毽子”项目的有 10 人,男生最喜欢“乒乓球“项目的有 20 人.(2)请将条形统计图补充完整;(3)若该校有男生450人,女生400人,请估计该校喜欢“羽毛球”项目的学生总人数.【分析】(1)根据题目中的数据和条形统计图中的数据,可以计算出女生最喜欢“踢毽子”项目的人数,然后根据扇形统计图中的数据,可以计算出男生最喜欢“乒乓球“项目的人数;(2)根据(1)中的结果,可以得到女生最喜欢“踢毽子”项目的有10人,从而可以将条形统计图补充完整;(3)根据统计图中的数据和该校有男生450人,女生400人,可以计算出该校喜欢“羽毛球”项目的学生总人数.【解答】解:(1)在本次随机调查中,女生最喜欢“踢毽子”项目的有:50﹣15﹣9﹣9﹣7=10(人),男生最喜欢“乒乓球“项目的有:50×(1﹣8%﹣10%﹣14%﹣28%)=50×40%=20(人),故答案为:10,20;(2)由(1)知,女生最喜欢“踢毽子”项目的有10人,补全完整的条形统计图如右图所示;(3)450×28%+400×950=126+72198(人),答:该校喜欢“羽毛球”项目的学生一共有198人.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.19.(8分)如图,D、E是以AB为直径的⊙O上两点,且∠AED=45°.(1)过点D作DC∥AB,求证:直线CD与⊙O相切;,求AE的长.(2)若⊙O的半径为12,sin∠ADE=34【分析】(1)连接OD,根据圆周角定理求出∠AOD,根据平行线的性质求出∠ODC=90°,根据切线的判定得出即可;(2)连接BE,根据圆周角定理求出∠B=∠ADE,解直角三角形求出即可.【解答】(1)证明:连接OD,∵∠AED=45°,∴由圆周角定理得:∠AOD=2∠AED=90°,∵CD∥AB,∴∠CDO=∠AOD=90°,即OD⊥CD,∵OD过O,∴直线CD与⊙O相切;(2)解:连接BE,∵AB为⊙O的直径,∴∠AEB=90°,∵由圆周角定理得:∠B=∠ADE,sin∠ADE=3 4,∴sin∠ADE=sin B,∵sin B=AE AB ,∵⊙O的半径为12,∴AE24=34,解得:AE=18.【点评】本题考查了解直角三角形,圆周角定理,切线的判定,平行线的性质等知识点,能综合运用知识点进行推理是解此题的关键.20.(10分)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=8,AD=6√2,AF=4√2,求AE的长.【分析】(1)由平行四边形的性质和平行线的性质得出∠ADF=∠CED,∠B+∠C=180°;由∠AFE+∠AFD=180°,∠AFE =∠B,得出∠AFD=∠C,即可得出结论;(2)根据平行四边形的性质可得出CD=AB=8,根据相似三角形的性质可得出ADDE =AFDC,求出DE=12.证出AE⊥AD,由勾股定理即可得出答案.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠ADF=∠CED,∠B+∠C=180°;∵∠AFE+∠AFD=180°,∠AFE=∠B,∴∠AFD=∠C,∴△ADF∽△DEC;(2)解:∵四边形ABCD是平行四边形,∴DC=AB=8.∵△ADF∽△DEC,∴ADDE=AFDC,即6√2DE=4√28,∴DE=12.∵AD∥BC,AE⊥BC,∴AE⊥AD.在Rt△ADE中,∠EAD=90°,DE=12,AD=6√2,∴AE =√DE 2−AD 2=√122−(6√2)2=6√2.【点评】此题主要考查的是平行四边形的性质、相似三角形的判定和性质以及勾股定理的运用,解题的关键判定三角形相似.21.(10分)已知Rt △ABC 的斜边AB 在平面直角坐标系的x 轴上,点C (2,6)在反比例函数y 1=k x的图象上,且sin ∠BAC =35 (1)求k 的值和边AC 的长;(2)求点B 的坐标;(3)有一直线y 2=kx +10与y 1=k x 交于M 与N 点,求出x 为何值时,y 2≥y 1.【分析】(1)本题需先根据C 点的坐标在反比例函数y 1=k x 的图象上,从而得出k 的值,再根据且sin ∠BAC =35,得出AC 的长;(2)本题需先根据已知条件,得出∠DAC =∠DCB ,从而得出CD 的长,根据点B 的位置即可求出正确答案;(3)解方程组即可得到结论.【解答】解:(1)∵点C (2,6)在反比例函数y =k x 的图象上,∴6=k 2,解得k =12,∵sin ∠BAC =35∴sin ∠BAC =6AC =35, ∴AC =10;∴k 的值和边AC 的长分别是:12,10;(2)①当点B 在点A 右边时,如图,作CD ⊥x 轴于D .∵△ABC 是直角三角形,∴∠DAC =∠DCB ,又∵sin ∠BAC =35,∴tan ∠DAC =34,∴BD CD =34, 又∵CD =6, ∴BD =92,∴OB =2+92=132, ∴B (132,0); ②当点B 在点A 左边时,如图,作CD ⊥x 轴于D .∵△ABC 是直角三角形, ∴∠B +∠A =90°,∠B +∠BCD =90°,∴∠DAC =∠DCB ,又∵sin ∠BAC =35,∴tan ∠DAC =34,∴BD CD =34, 又∵CD =6,∴BD =92,BO =BD ﹣2=52, ∴B (−52,0) ∴点B 的坐标是(−52,0),(132,0); (3)∵k =12,∴y 2=12x +10与y 1=12x , 解{y =12x +10y =12x得,{x =23y =18,{x =−32y =−8, ∴M (23,18),N 点(−32,﹣8),∴−32<x <0或x >23时,y 2≥y 1.【点评】本题考查了反比例函数与一次函数的交点问题,解直角三角形,正确的理解题意是解题的关键.22.(12分)已知一次函数y 1=2x +b 的图象与二次函数y 2=a (x 2+bx +1)(a ≠0,a 、b 为常数)的图象交于A 、B 两点,且A 的坐标为(0,1).(1)求出a 、b 的值,并写出y 1,y 2的表达式;(2)验证点B 的坐标为(1,3),并写出当y 1≥y 2时,x 的取值范围;(3)设u =y 1+y 2,v =y 1﹣y 2,若m ≤x ≤n 时,u 随着x 的增大而增大,且v 也随着x 的增大而增大,求m 的最小值和n 的最大值.【分析】(1)把A 点的坐标分别代入两个函数的解析式,便可求得a 与b 的值;(2)画出函数图象,根据函数图象作答;(3)求出出个函数的对称轴,根据函数的性质得出“u 随着x 的增大而增大,且v 也随着x 的增大而增大”时x 的取值范围,进而得m 的最小值和n 的最大值.【解答】解:(1)把A (0,1)代入y 1=2x +b 得b =1,把A (0,1)代入y 2=a (x 2+bx +1)得,a =1,∴y 1=2x +1,y 2=x 2+x +1;(2)作y 1=2x +1,y 2=x 2+x +1的图象如下:由函数图象可知,y 1=2x +1不在y 2=x 2+x +1下方时,0≤x ≤3,∴当y 1≥y 2时,x 的取值范围为0≤x ≤3;(3)∵u =y 1+y 2=2x +1+x 2+x +1=x 2+3x +2=(x +1.5)2﹣0.25,∴当x ≥﹣1.5时,u 随x 的增大而增大;v =y 1﹣y 2=(2x +1)﹣(x 2+x +1)=﹣x 2+x =﹣(x ﹣0.5)2+0.25,∴当x ≤0.5时,v 随x 的增大而增大,∴当﹣15≤x ≤0.5时,u 随着x 的增大而增大,且v 也随着x 的增大而增大,∵若m ≤x ≤n 时,u 随着x 的增大而增大,且v 也随着x 的增大而增大,∴m 的最小值为﹣1.5,n 的最大值为0.5.【点评】本题是二次函数的综合题,主要考查了函数的图象与性质,利用函数图象求不等式的解集,待定系数法,关键是熟练掌握二次函数的性质,灵活运用性质解题.23.(12分)在△ABC 和△DBE 中,CA =CB ,EB =ED ,点D 在AC 上.(1)如图1,若∠ABC =∠DBE =60°,求证:∠ECB =∠A ;(2)如图2,设BC 与DE 交于点F .当∠ABC =∠DBE =45°时,求证:CE ∥AB ;(3)在(2)的条件下,若tan ∠DEC =12时,求EF DF的值. 【分析】(1)根据SAS 可证明△ABD ≌△CBE .得出∠A =∠ECB ;(2)得出△ABC 和△DBE 都是等腰直角三角形,证明△ABD ∽△CBE ,则∠BAD =∠BCE =45°,可得出结论;(3)过点D 作DM ⊥CE 于点M ,过点D 作DN ∥AB 交CB 于点N ,设DM =MC =a ,得出DN =2a ,CE =a ,证明△CEF ∽△DNF ,可得出答案.【解答】(1)证明:∵CA =CB ,EB =ED ,∠ABC =∠DBE =60°,∴△ABC 和△DBE 都是等边三角形,∴AB =BC ,DB =BE ,∠A =60°.∵∠ABC =∠DBE =60°,∴∠ABD =∠CBE ,∴△ABD ≌△CBE (SAS ).∴∠A =∠ECB ;(2)证明:∵∠ABC=∠DBE=45°,CA=CB,EB=ED,∴△ABC和△DBE都是等腰直角三角形,∴∠CAB=45°,∴ABBC=√2,DB BE=√2,∴ABBC=DBBE,∵∠ABC=∠DBE,∴∠ABD=∠CBE,∴△ABD∽△CBE,∴∠BAD=∠BCE=45°,∵∠ABC=45°,∴∠ABC=∠BCE,∴CE∥AB;(3)解:过点D作DM⊥CE于点M,过点D作DN∥AB交CB于点N,∵∠ACB=90°,∠BCE=45°,∴∠DCM=45°,∴∠MDC=∠DCM=45°,∴DM=MC,设DM=MC=a,∴DC=√2a,∵DN∥AB,∴△DCN为等腰直角三角形,∴DN=√2DC=2a,∵tan∠DEC=DMME=12,∴ME=2DM,∴CE=a,∴CEDN=a2a=12,∵CE∥DN,∴△CEF∽△DNF,∴EFDF=CEDN=12.【点评】本题是三角形综合题,考查了等边三角形的判定与性质,等腰直角三角形的判定与性质,全等三角形的判定与性质,相似三角形的判定与性质,锐角三角函数等知识,正确作出辅助线,熟练掌握基本图形的性质是解题的关键.。
2020年浙江杭州中考模拟试卷数学考试题号一二三总分评分1.-23等于( )A. -6B. 6C. -8D. 82.在平面直角坐标系中,点关于原点对称的点的坐标是A. B. C. D.3.如图,已知以直角梯形ABCD的腰CD为直径的半圆O与梯形的上底AD、下底BC以及腰AB均相切,切点分别是D、C、E.若半圆O的半径为2,梯形的腰AB为5,则该梯形的周长是().A. 9B. 10C. 12D. 144.A种饮料比B种饮料单价少1元,小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,如果设B 种饮料单价为x元/瓶,那么下面所列方程正确的是( )A. 2(x-1)+3x=13B. 2(x+1)+3x=13C. 2x+3(x+1)=13D. 2x+3(x-1)=135.如图,这是根据某班40名同学一周的体育锻炼情况绘制的条形统计图,根据统计图提供的信息,可得到该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A. 8,9B. 8,8.5C. 16,8.5D. 16,10.56.如图,AB和CD表示两根直立于地面的柱子,AC和BD表示起固定作用的两根钢筋,AC与BD相交于点M,已知AB=8m,CD=12m,则点M离地面的高度MH为( )A. 4 mB. mC. 5mD. m7.若等腰三角形中有一个角等于110°,则其它两个角的度数为().A. 70°B. 110°和70°C. 35°和35°D. 30°和70°8.已知点A,点B在一次函数y=kx+b(k,b为常数,且k≠0)的图象上,点A在第三象限,点B在第四象限,则下列判断一定正确的是()A. b<0B. b>0C. k<0D. k>09.身高相等的四名同学甲、乙、丙、丁参加风筝比赛,四人放出风筝的线长、线与地面的夹角如下表(假设风筝线是拉直的),则四名同学所放的风筝中最高的是()同学甲乙丙丁放出风筝线长140m 100m 95m 90m线与地面夹角30°45°45°60°A. 甲B. 乙C. 丙D. 丁10.已知抛物线与轴交于点A、B,与轴交于点C,则能使△ABC为等腰三角形抛物线的条数是()A. 5B. 4C. 3D. 2二、填空题:本大题有6个小题,每小题4分,共24分11.把多项式2x2y﹣4xy2+2y3分解因式的结果是________12.一组数据7,x,8,y,10,z,6的平均数为4,则x,y,z的平均数是________.13.若圆锥的地面半径为,侧面积为,则圆锥的母线是________ .14.如图,和分别是的直径和弦,且,,交于点,若,则的长是________.15.一次函数y = kx + b ,当- 3 £x £ 1时,对应的y 值为1 £y £ 9 ,则k + b =________;16.已知等腰中,,,,在线段上,是线段上的动点,的最小值是________.三、解答题:本大题有7个小题,共66分17.化简:18.市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如表:(1)把表中所空各项数据填写完整;选手选拔成绩/环中位数平均数甲 10 9 8 8 10 9 ________ ________乙 10 10 8 10 7 ________ ________ 9(2(3)根据(1)、(2)计算的结果,你认为推荐谁参加省比赛更合适,请说明理由.19.如图,已知:,,,点,分别在,上,连接,且,是上一点,的延长线交的延长线于点.(1)求证:;(2)求证:.20.大学生小张利用暑假50天在一超市勤工俭学,被安排销售一款成本为40元/件的新型商品,此类新型商品在第x天的销售量p件与销售的天数x的关系如下表:x(天) 1 2 3 (50)p(件)118 116 114 (20)销售单价q(元/件)与x满足:当1≤x<25时q=x+60;当25≤x≤50时q=40+ .(1)请分析表格中销售量p与x的关系,求出销售量p与x的函数关系.(2)求该超市销售该新商品第x天获得的利润y元关于x的函数关系式.(3)这50天中,该超市第几天获得利润最大?最大利润为多少?21.某校数学兴趣小组开展了一次课外活动,过程如下:如图①,正方形ABCD中,AB=4,将三角板放在正方形ABCD上,使三角板的直角顶点与D点重合.三角板的一边交AB于点P,另一边交BC的延长线于点Q.(1)求证:AP=CQ;(2)如图②,小明在图1的基础上作∠PDQ的平分线DE交BC于点E,连接PE,他发现PE和QE存在一定的数量关系,请猜测他的结论并予以证明;(3)在(2)的条件下,若AP=1,求PE的长.22.已知直角梯形纸片OABC在平面直角坐标系中的位置如图所示,四个顶点的坐标分别为O(0,0),A (10,0),B(8,2 ),C(0,2 ),点T在线段OA上(不与线段端点重合),将纸片折叠,使点A落在射线AB上(记为点A′),折痕经过点T,折痕TP与射线AB交于点P,设点T的横坐标为t,折叠后纸片重叠部分(图中的阴影部分)的面积为S.(1)求∠OAB的度数,并求当点A′在线段AB上时,S关于t的函数关系式;(2)当纸片重叠部分的图形是四边形时,求t的取值范围;(3)S存在最大值吗?若存在,求出这个最大值,并求此时t的值;若不存在,请说明理由.23.如图,在⊙中,弦,相交于点,且.(1)求证:;(2)若,,当时,求:①图中阴影部分面积.②弧的长.答案解析部分一、选择题1.C2.C3.D4.A5.A6.B7.C8.A9.D10.B二、填空题11.2y(x﹣y)2【解答】解:原式=2y(x2﹣2xy+y2)=2y(x﹣y)2.故答案为:2y(x﹣y)2.12.-1【解答】解:∵一组数据7,x,8,y,10,z,6的平均数为4,∴=4,解得,x+y+z=﹣3,∴=﹣1,故答案为:﹣1.13.13【解答】设母线长为R,则:解得:故答案为13.14.5【解答】连接CD;Rt△AOB中,∠A=30°,OB=5,则AB=10,OA=5 ;在Rt△ACD中,∠A=30°,AD=2OA=10 ,∴AC=cos30°×10 =15,∴BC=AC-AB=15-10=5.故答案为515.9或1【解答】解:①当x=-3时,y=1;当x=1时,y=9,则解得:所以k + b =2+7=9;②当x=-3时,y=9;当x=1时,y=1,则解得:,所以k + b=-2+3=1.故答案为9或1.16.【解答】解:∵AC=BC,OC⊥AB,∴AB=2OB=6,∵OC=4,∴BC=5,∴A,B关于y轴对称,过A作AM⊥BC于M,交y轴于P,∵∠AMB=∠COB=90°,∠ABM=∠CBO,∴△ABM∽△CBO,∴,即,∴AM=,∴PM+PB的最小值是,故答案为:.三、解答题:本大题有7个小题,共66分.17. 解:===1【分析】根据同分母分式的减法法则计算,再根据完全平方公式展开,合并同类项后约分计算即可求解.18. (1)9,9,9,9.5(2)解:s2甲= [2×(8﹣9)2+2×(9﹣9)2+2×(10﹣9)2]=;s2乙= [(7﹣9)2+(8﹣9)2+(9﹣9)2+3×(10﹣9)2]=(3)解:我认为推荐甲参加全国比赛更合适,理由如下:两人的平均成绩相等,说明实力相当;但甲的六次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加比赛更合适【解答】解:(1)甲:将六次测试成绩按从小到大的顺序排列为:8,8,9,9,10,10,中位数为(9+9)÷2=9,平均数为(10+9+8+8+10+9)÷6=9;乙:第6次成绩为9×6﹣(10+10+8+10+7)=9,将六次测试成绩按从小到大的顺序排列为:7,8,9,10,10,10,中位数为(9+10)÷2=9.5;填表如下:选手选拔成绩/环中位数平均数甲10 9 8 8 10 9 9 9乙10 10 8 10 7 9 9.5 919. (1)证明:∵,,∴,,又∵,∴(2)证明:∵在△BGF中,∴∠HGF>∠GBF,∵,∴∠ADE=∠GBF,∴20. (1)解:设销售量p件与销售的天数x的函数解析式为p=kx+b,代入(1,118),(2,116)得解得因此销售量p件与销售的天数x的函数解析式为p=﹣2x+120(2)解:当1≤x<25时,y=(60+x﹣40)(﹣2x+120)=﹣2x2+80x+2400,当25≤x≤50时,y=(40+ ﹣40)(﹣2x+120)= ﹣2250(3)解:当1≤x<25时,y=﹣2x2+80x+2400,=﹣2(x﹣20)2+3200,∵﹣2<0,∴当x=20时,y有最大值y1,且y1=3200;当25≤x≤50时,y= ﹣2250;∵135000>0,∴随x的增大而减小,当x=25时,最大,∵y1>y2∴这50天中第20天时该超市获得利润最大,最大利润为3200元21. (1)证明:∵四边形ABCD是正方形,∴∠ADC=∠A=∠B=∠BCD=∠DCQ=90°,AD=BC=CD=AB=4,∵∠PDQ=90°,∴∠ADP=∠CDQ,在△APD和△CQD中,,∴△APD≌△CQD(ASA),∴AP=CQ(2)解;PE=QE,理由如下:由(1)得:△APD≌△CQD,∴PD=QD,∵DE平分∠PDQ,∴∠PDE=∠QDE,在△PDE和△QDE中,,∴△PDE≌△QDE(SAS),∴PE=QE(3)解:由(2)得:PE=QE,由(1)得:CQ=AP=1,∴BQ=BC+CQ=5,BP=AB﹣AP=3,设PE=QE=x,则BE=5﹣x,在Rt△BPE中,由勾股定理得:32+(5﹣x)2=x2,解得:x=3.4,即PE的长为3.422. (1)解:∵A,B两点的坐标分别是A(10,0)和B(8,2 ),∴tan∠OAB= = ,∴∠OAB=60°,当点A′在线段AB上时,∵∠OAB=60°,TA=TA′,∴△A′TA是等边三角形,且TP⊥AA′,∴TP=(10﹣t)sin60°= (10﹣t),A′P=AP= AT= (10﹣t),∴S=S△ATP= A′P•TP= (10﹣t)2,当A´与B重合时,AT=AB==4,所以此时6≤t<10(2)解:当点A′在线段AB的延长线上,且点P在线段AB(不与B重合)上时,纸片重叠部分的图形是四边形(如图①,其中E是TA′与CB的交点),假设点P与B重合时,AT=2AB=8,点T的坐标是(2,0),由(1)中求得当A´与B重合时,T的坐标是(6,0),则当纸片重叠部分的图形是四边形时,2<t<6(3)解:S存在最大值.①当6≤t<10时,S= (10﹣t)2,在对称轴t=10的左边,S的值随着t的增大而减小,∴当t=6时,S的值最大是2 ;②当2≤t<6时,由图①,重叠部分的面积S=S△A′TP﹣S△A′EB,∵△A′EB的高是A′B•sin60°,∴S= (10﹣t)2﹣(10﹣t﹣4)2×+ (﹣4)2×= (﹣t2+2t+30)=﹣(t﹣2)2+4 ,当t=2时,S的值最大是4 ;③当0<t≤2,即当点A′和点P都在线段AB的延长线上是(如图②,其中E是TA´与CB的交点,F是TP 与CB的交点),∵∠EFT=∠ETF,四边形ETAB是等腰梯形,∴EF=ET=AB=4,∴S= EF•OC= ×4×2 =4 .综上所述,S的最大值是4 ,此时t的值是t=2.23. (1)证明:连接,,∵,∴,∵,∴,∵,∴,∵,∴≌,∴.(2)解:作于,于,由()可知,∴,∵,,,,∴四边形是正方形,∴,∵,∴≌,∴,∵,,∴,,,∵,∴.①.②,∴,∴.。
浙江省杭州市名校2020届数学中考模拟试卷一、选择题1.某超市设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”、“30元”的字样.规定:顾客在本超市一次性消费满200元,就可以在箱子里先后摸出两个小球(每一次摸出后不放回).某顾客刚好消费200元,则该顾客所获得购物券的金额超过30元的概率为( ) A.12 B.13 C.23 D.142.下列计算正确的是( )A .b 2•b 3=b 6B .(﹣a 2)3=a 6C .(ab )2=ab 2D .(﹣a )6÷(﹣a )3=﹣a 33.如图,O 为坐标原点,△OAB 是等腰直角三角形,∠OAB =90°,点B 的坐标为(0,),将该三角形沿x 轴向右平移得到Rt △O′A′B′,此时点B′的坐标为(OA 在平移过程中扫过部分的图形面积为( )A.4B.3 D.1 4.如图,抛物线y =ax 2+bx+c 和直线y =kx+b 都经过点(﹣1,0),抛物线的对称轴为x =1,那么下列说法正确的是( )A.ac >0B.b 2﹣4ac <0C.k =2a+cD.x =4是ax 2+(b ﹣k )x+c <b 的解5.如图1,点P 从矩形ABCD 的顶点A 出发,沿以的速度匀速运动到点C ,图2是点P 运动时,APD 的面积2()y cm 随运动时间()x s 变化而变化的函数关系图象,则矩形ABCD 的面积为( )A .36B .C .32D .6.如图,抛物线y =ax 2+bx+c 与x 轴交于点A (﹣1,0),顶点坐标为(1,n ),与y 轴的交点在(0,2)与(0,3)之间(包含端点),下列结论:①当x >3时,y <0;②﹣1≤a≤﹣23;③3≤n≤4;④关于x 的方程ax 2+bx+c =n ﹣1有两个不相等的实数根.其中正确的有( )A .1个B .2个C .3个D .4个7.如图,已知AB 是⊙O 的直径,点C 在⊙O 上,∠CAB =30°,AC =( )A .32π-B .32πC .3924π- D .3π-8.关于x 的方程2334ax a x +=-的解为1x =,则a =( ) A.1 B.3C.-1D.-3 9.给出下列各式:①(﹣2)0=1;②(a+b )2=a 2+b 2;③(﹣3ab 3)2=9a 2b 6;④-21-3⎛⎫ ⎪⎝⎭=9,其中正确的是( )A .①③④B .①②③C .①②④D .②③④10.如图,P 是抛物线y =x 2﹣x ﹣4在第四象限的一点,过点P 分别向x 轴和y 轴作垂线,垂足分别为A 、B ,则四边形OAPB 周长的最大值为( )A .10B .8C .7.5D .11.若反比例函数y =2k x -的图象位于第一、第三象限,则k 的取值范围是( ) A .k <2 B .k >﹣2 C .k <﹣2 D .k >212.如图,在Rt △ABC 中,∠C =90°,分别以各边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”,当AC =4,BC =2时,则阴影部分的面积为( )A .4B .4πC .8πD .8二、填空题 13.当m =___________________时,关于x 的分式方程223242mx x x x +=--+无解 14.从1,2,3,4四个数中任取一个数作为AC 的长度,又从4,5中任取一个数作为BC 的长度,6AB =,则AB AC BC 、、能构成三角形的概率是_____.15.定义{a ,b ,c}为函数y =ax 2+bx+c 的“特征数”.如:函数y =x 2﹣2x+3的“特征数”是{1,﹣2,3},函数y =2x+3的“特征数”是{0,2,3},函数y =﹣x 的“特征数”是{0,﹣1,0}.在平面直角坐标系中,将“特征数”是{﹣4,0,1}的函数的图象向下平移2个单位,得到一个新函数图象,这个新函数图象的解析式是_____16.长春市农博产业园占地2150000平方米,数字2150000用科学记数法表示为( )A .21.5×105B .2.15×105C .2.15×106D .0.215×10717.如图,AB ⊥y 轴,垂足为B ,将△ABO 绕点A 逆时针旋转到△AB 1O 1的位置,使点B 的对应点B 1落在直线3y x =-上,再将△AB 1O 1绕点B 1逆时针旋转到△A 1B 1O 1的位置,使点O 1的对应点O 2落在直线y x =上,依次进行下去…若点B 的坐标是(0,1),则点O 12的纵坐标为________________________.18.分解因式:2x 2-2=___________________。
2020年浙江省杭州市中考数学一模试卷一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的. 1.(3分)﹣2的绝对值是( ) A .﹣2 B .2C .12D .−122.(3分)下列计算正确的是( )A .m 4+m 3=m 7B .(m 4) 3=m 7C .2m 5÷m 3=m 2D .m (m ﹣1)=m 2﹣m3.(3分)如图,P 为⊙O 外一点,PC 切⊙O 于C ,PB 与⊙O 交于A 、B 两点.若P A =1,PB =5,则PC =( )A .3B .√5C .4D .无法确定 4.(3分)为了解某班学生每天使用零花钱的情况,小敏随机调查了15名同学,结果如表:每天用零花钱(单位:元) 12345人数2 4 53 1则这15名同学每天使用零花钱的众数和中位数分别是( )A .3,3B .5,2C .3,2D .3,55.(3分)某工程甲单独完成要30天,乙单独完成要25天.若乙先单独干15天,剩下的由甲单独完成,设甲、乙一共用x 天完成,则可列方程为( )A .x+1525+1530=1 B .x+1530+1525=1 C .1530+x−1525=1D .x−1530+1525=16.(3分)如图,已知一组平行线a ∥b ∥c ,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且AB =3,BC =4,EF =4.8,则DE =( )A .7.2B .6.4C .3.6D .2.47.(3分)如图,BD 是△ABC 的角平分线,AE ⊥BD ,垂足为F .若∠ABC =36°,∠C =44°,则∠EAC 的度数为( )A .18°B .28°C .36°D .38°8.(3分)直线l 1:y =kx +b 与直线l 2:y =bx +k 在同一坐标系中的大致位置是( )A .B .C .D .9.(3分)关于x 的二次函数y =x 2+2kx +k ﹣1,下列说法正确的是( ) A .对任意实数k ,函数图象与x 轴都没有交点B .对任意实数k ,函数图象没有唯一的定点C .对任意实数k ,函数图象的顶点在抛物线y =﹣x 2﹣x ﹣1上运动D .对任意实数k ,当x ≥﹣k ﹣1时,函数y 的值都随x 的增大而增大10.(3分)如图,在△ABC 中,∠C =90°,D 是BC 边上一点,∠ADC =3∠BAD ,BD =4,DC =3.则AB 的值为( )A .5+3√2B .2+2√15C .7√2D .√113二、填空题:本题有6个小题,每小题4分,共24分 11.(4分)分解因式:3x 2+6xy +3y 2= .12.(4分)一个袋子中有1个红球,2个黄球,每个球除颜色外都相同,从中摸出2个球,2个球颜色不同的概率为 . 13.(4分)分式方程2x−1=1x的解是 . 14.(4分)已知一个扇形的面积为12πcm 2,圆心角的度数为108°,则它的弧长为 .15.(4分)已知关于x 的不等式组{5x −a >3(x −1)2x −1≤7的所有整数解的和为7,则a 的取值范围是 .16.(4分)一张直角三角形纸片ABC ,∠ACB =90°,AB =13,AC =5,点D 为BC 边上的任一点,沿过点D 的直线折叠,使直角顶点C 落在斜边AB 上的点E 处,当△BDE 是直角三角形时,则CD 的长为 . 三、解答题:本大题有7个小题,共66分解答应写出文字说明、证明过程或演算步骤. 17.(6分)先化简再求值:(ab−b a)•aba+b,其中a =1,b =2. 18.(8分)光明中学欲举办“校园吉尼斯挑战赛”,为此学校随机抽取男女学生各50名进行一次“你喜欢的挑战项目”的问卷调查,每名学生都选了一项.根据收集到的数据,绘制成统计图(不完整).根据统计图表中的信息,解答下列问题:(1)在本次随机调查中,女生最喜欢“踢毽子”项目的有人,男生最喜欢“乒乓球“项目的有人.(2)请将条形统计图补充完整;(3)若该校有男生450人,女生400人,请估计该校喜欢“羽毛球”项目的学生总人数.19.(8分)如图,D、E是以AB为直径的⊙O上两点,且∠AED=45°.(1)过点D作DC∥AB,求证:直线CD与⊙O相切;(2)若⊙O的半径为12,sin∠ADE=3,求AE的长.420.(10分)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=8,AD=6√2,AF=4√2,求AE的长.21.(10分)已知Rt△ABC的斜边AB在平面直角坐标系的x轴上,点C(2,6)在反比例函数y1=k x的图象上,且sin∠BAC= 35(1)求k的值和边AC的长;(2)求点B的坐标;交于M与N点,求出x为何值时,y2≥y1.(3)有一直线y2=kx+10与y1=kx22.(12分)已知一次函数y1=2x+b的图象与二次函数y2=a(x2+bx+1)(a≠0,a、b为常数)的图象交于A、B两点,且A 的坐标为(0,1).(1)求出a、b的值,并写出y1,y2的表达式;(2)验证点B的坐标为(1,3),并写出当y1≥y2时,x的取值范围;(3)设u=y1+y2,v=y1﹣y2,若m≤x≤n时,u随着x的增大而增大,且v也随着x的增大而增大,求m的最小值和n的最大值.23.(12分)在△ABC 和△DBE 中,CA =CB ,EB =ED ,点D 在AC 上.(1)如图1,若∠ABC =∠DBE =60°,求证:∠ECB =∠A ;(2)如图2,设BC 与DE 交于点F .当∠ABC =∠DBE =45°时,求证:CE ∥AB ; (3)在(2)的条件下,若tan ∠DEC =12时,求EFDF的值.2020年浙江省杭州市中考数学一模试卷参考答案与试题解析一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的. 1.(3分)﹣2的绝对值是( ) A .﹣2B .2C .12D .−12【分析】根据绝对值的定义,可直接得出﹣2的绝对值.【解答】解:|﹣2|=2, 故选:B .【点评】本题考查了绝对值的定义,是中考的常见题型,比较简单,熟记绝对值的定义是本题的关键. 2.(3分)下列计算正确的是( ) A .m 4+m 3=m 7 B .(m 4) 3=m 7 C .2m 5÷m 3=m 2D .m (m ﹣1)=m 2﹣m【分析】直接利用整式的混合运算法则分别计算判断即可. 【解答】解:A 、m 4与m 3,无法合并,故此选项错误; B 、(m 4) 3=m 12,故此选项错误; C 、2m 5÷m 3=2m 2,故此选项错误; D 、m (m ﹣1)=m 2﹣m ,正确. 故选:D .【点评】此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.3.(3分)如图,P 为⊙O 外一点,PC 切⊙O 于C ,PB 与⊙O 交于A 、B 两点.若P A =1,PB =5,则PC =( )A .3B .√5C .4D .无法确定【分析】求出半径的长,求出PO 长,根据切线的性质求出∠PCO =90°,再根据勾股定理求出即可. 【解答】解:∵P A =1,PB =5, ∴AB =PB ﹣P A =4, ∴OC =OA =OB =2, ∴PO =1+2=3, ∵PC 切⊙O 于C , ∴∠PCO =90°,在Rt △PCO 中,由勾股定理得:PC =√PO 2−OC 2=√32−22=√5, 故选:B .【点评】本题考查了勾股定理和切线的性质,能熟记切线的性质的内容是解此题的关键,注意:圆的切线垂直于过切点的半径.4.(3分)为了解某班学生每天使用零花钱的情况,小敏随机调查了15名同学,结果如表:每天用零花钱(单位:元) 12345人数24531则这15名同学每天使用零花钱的众数和中位数分别是( )A .3,3B .5,2C .3,2D .3,5【分析】根据众数和中位数的定义分别进行解答即可.【解答】解:这15名同学每天使用零花钱的众数为3元,中位数为3元,故选:A.【点评】此题考查了众数和中位数,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5.(3分)某工程甲单独完成要30天,乙单独完成要25天.若乙先单独干15天,剩下的由甲单独完成,设甲、乙一共用x 天完成,则可列方程为()A.x+1525+1530=1 B.x+1530+1525=1C.1530+x−1525=1 D.x−1530+1525=1【分析】根据题意列出方程求出答案.【解答】解:设甲、乙一共用x天完成,则可列方程为:x−15 30+1525=1.故选:D.【点评】本题考查由实际问题抽象出一元一次方程,解题的关键是找出等量关系,本题属于基础题型.6.(3分)如图,已知一组平行线a∥b∥c,被直线m、n所截,交点分别为A、B、C和D、E、F,且AB=3,BC=4,EF =4.8,则DE=()A.7.2 B.6.4 C.3.6 D.2.4【分析】根据平行线分线段成比例定理列出比例式,代入计算得到答案.【解答】解:∵a∥b∥c,∴DEEF=ABBC,即DE4.8=34,解得,DE=3.6,故选:C.【点评】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.7.(3分)如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=36°,∠C=44°,则∠EAC的度数为()A.18°B.28°C.36°D.38°【分析】根据∠EAC=∠BAC﹣∠BAF,求出∠BAC,∠BAF即可解决问题.【解答】解:∵∠ABC=36°,∠C=44°,∴∠BAC=180°﹣36°﹣44°=100°,∵BD平分∠ABC,∴∠ABD=12∠ABC=18°,∵AE⊥BD,∴∠BF A=90°,∴∠BAF=90°﹣18°=72°,∴∠EAC =∠BAC ﹣∠BAF =100°﹣72°=28°, 故选:B .【点评】本题考查三角形内角和定理,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 8.(3分)直线l 1:y =kx +b 与直线l 2:y =bx +k 在同一坐标系中的大致位置是( )A .B .C .D .【分析】根据一次函数的系数与图象的关系依次分析选项,找k 、b 取值范围相同的即得答案. 【解答】解:根据一次函数的系数与图象的关系依次分析选项可得:A 、由图可得,y 1=kx +b 中,k <0,b <0,y 2=bx +k 中,b >0,k <0,b 、k 的取值矛盾,故本选项错误;B 、由图可得,y 1=kx +b 中,k >0,b <0,y 2=bx +k 中,b >0,k >0,b 的取值相矛盾,故本选项错误;C 、由图可得,y 1=kx +b 中,k >0,b <0,y 2=bx +k 中,b <0,k >0,k 的取值相一致,故本选项正确;D 、由图可得,y 1=kx +b 中,k >0,b <0,y 2=bx +k 中,b <0,k <0,k 的取值相矛盾,故本选项错误; 故选:C .【点评】本题主要考查了一次函数的图象性质,要掌握它们的性质才能灵活解题.解答本题注意理解:直线y =kx +b 所在的位置与k 、b 的符号有直接的关系.9.(3分)关于x 的二次函数y =x 2+2kx +k ﹣1,下列说法正确的是( ) A .对任意实数k ,函数图象与x 轴都没有交点B .对任意实数k ,函数图象没有唯一的定点C .对任意实数k ,函数图象的顶点在抛物线y =﹣x 2﹣x ﹣1上运动D .对任意实数k ,当x ≥﹣k ﹣1时,函数y 的值都随x 的增大而增大【分析】利用△=(2k ﹣1)2+3>0可对A 进行判断;利用点(−12,−34)满足抛物线解析式可对B 进行判断;先求出抛物线顶点坐标为(﹣k ,﹣k 2+k ﹣1),则根据二次函数图象上点的坐标特征可对C 进行判断;先表示出抛物线的对称轴方程,然后利用二次函数的性质可对D 进行判断.【解答】解:A 、△=4k 2﹣4(k ﹣1)=(2k ﹣1)2+3>0,抛物线与x 轴有两个交点,所以A 选项错误;B 、k (2x +1)=y +1﹣x 2,k 为任意实数,则2x +1=0,y +1﹣x 2=0,所以抛物线经过定点(−12,−34),所以B 选项错误; C 、y =(x +k )2﹣k 2+k ﹣1,抛物线的顶点坐标为(﹣k ,﹣k 2+k ﹣1),则抛物线的顶点在抛物线y =﹣x 2﹣x ﹣1上运动,所以C 选项正确;D 、抛物线的对称轴为直线x =−2k2=−k ,抛物线开口向上,则x >﹣k 时,函数y 的值都随x 的增大而增大,所以D 选项错误. 故选:C .【点评】本题考查了抛物线与x 轴的交点:把求二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质.10.(3分)如图,在△ABC 中,∠C =90°,D 是BC 边上一点,∠ADC =3∠BAD ,BD =4,DC =3.则AB 的值为( )A.5+3√2B.2+2√15C.7√2D.√113【分析】延长CB到E,使得BE=BA.设BE=AB=a.利用相似三角形的性质,勾股定理构建方程即可解决问题.【解答】解:如图,延长CB到E,使得BE=BA.设BE=AB=a.∵BE=BA,∴∠E=∠BAE,∵∠ADC=∠ABD+∠BAD=2∠E+∠BAD=3∠BAD,∴∠BAD=∠E,∵∠ADB=∠EDA,∴△ADB∽△EDA,∴ADED=DBAD,∴AD2=4(4+a)=16+4a,∵AC2=AD2﹣CD2=AB2﹣BC2,∴16+4a﹣32=a2﹣72,解得a=2+2√15或2﹣2√15(舍弃).∴AB=2+2√15,故选:B.【点评】本题考查相似三角形的判定和性质,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.二、填空题:本题有6个小题,每小题4分,共24分11.(4分)分解因式:3x2+6xy+3y2=3(x+y)2.【分析】先利用提取公因式法提取数字3,再利用完全平方公式继续进行分解.【解答】解:3x2+6xy+3y2,=3(x2+2xy+y2),=3(x+y)2【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.(4分)一个袋子中有1个红球,2个黄球,每个球除颜色外都相同,从中摸出2个球,2个球颜色不同的概率为23.【分析】画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【解答】解:画树状图如下:由树状图知,共有6种等可能结果,其中2个球颜色不同的有4种结果, ∴2个球颜色不同的概率为46=23, 故答案为:23.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.13.(4分)分式方程2x−1=1x的解是 x =﹣1 . 【分析】观察分式方程得最简公分母为x (x ﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解. 【解答】解:方程的两边同乘x (x ﹣1),得 2x =x ﹣1, 解得x =﹣1.检验:把x =﹣1代入x (x ﹣1)=2≠0. ∴原方程的解为:x =﹣1. 故答案为:x =﹣1.【点评】本题考查了解分式方程.(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.14.(4分)已知一个扇形的面积为12πcm 2,圆心角的度数为108°,则它的弧长为6√105πcm . 【分析】先根据扇形的面积公式求出扇形的半径,再根据弧长公式求出弧长即可.【解答】解:设扇形的半径为Rcm ,∵扇形的面积为12πcm 2,圆心角的度数为108°, ∴108π×R 2360=12π,解得:R =2√10,∴弧长为108π×2√10180=6√105π(cm ),故答案为:6√105πcm .【点评】本题考查了扇形面积的计算和弧长的计算,能熟记公式是解此题的关键.15.(4分)已知关于x 的不等式组{5x −a >3(x −1)2x −1≤7的所有整数解的和为7,则a 的取值范围是 7≤a <9或﹣3≤a <﹣1 .【分析】先求出求出不等式组的解集,再根据已知得出关于a 的不等式组,求出不等式组的解集即可.【解答】解:{5x −a >3(x −1)①2x −1≤7②,∵解不等式①得:x >a−32, 解不等式②得:x ≤4, ∴不等式组的解集为a−32<x ≤4, ∵关于x 的不等式组{5x −a >3(x −1)2x −1≤7的所有整数解的和为7,∴当a−32>0时,这两个整数解一定是3和4,∴2≤a−32<3, ∴7≤a <9,当a−32<0时,﹣3≤a−32<−2, ∴﹣3≤a <﹣1,∴a 的取值范围是7≤a <9或﹣3≤a <﹣1. 故答案为:7≤a <9或﹣3≤a <﹣1.【点评】本题考查了解一元一次不等式组和不等式组的整数解,能得出关于a 的不等式组是解此题的关键.16.(4分)一张直角三角形纸片ABC ,∠ACB =90°,AB =13,AC =5,点D 为BC 边上的任一点,沿过点D 的直线折叠,使直角顶点C 落在斜边AB 上的点E 处,当△BDE 是直角三角形时,则CD 的长为103或6017. 【分析】根据沿过点D 的直线折叠,使直角顶点C 落在斜边AB 上的点E 处,当△BDE 是直角三角形时,分两种情况讨论:∠DEB =90°或∠BDE =90°,分别依据勾股定理或者相似三角形的性质,即可得到CD 的长. 【解答】解:∵∠ACB =90°,AB =13,AC =5, ∴BC =√AB 2−AC 2=12, 根据题意,分两种情况: ①如图,若∠DEB =90°,则∠AED =90°=∠C , CD =ED ,连接AD ,则Rt △ACD ≌Rt △AED (HL ), ∴AE =AC =5,BE =AB ﹣AE =13﹣5=8, 设CD =DE =x ,则BD =BC ﹣CD =12﹣x , 在Rt △BDE 中,DE 2+BE 2=BD 2, ∴x 2+82=(12﹣x )2解得x =103, ∴CD =103;②如图,若∠EDB =90°,则∠CDE =∠DEF =∠C =90°,CD =DE , ∴四边形CDEF 是正方形, ∴∠AFE =∠EDB =90°, ∠AEF =∠B , ∴△AEF ∽△EBD , ∴AF ED =EF BD ,6017设CD =x ,则EF =CF =x ,AF =5﹣x ,BD =12﹣x ,∴5−x x =x 12−x , 解得x =6017. ∴CD =6017. 综上所述,CD 的长为103或6017. 【点评】本题考查了翻折变换,综合运用勾股定理、相似三角形的判定与性质、正方形的判定与性质解答,解题关键是根据题意分两种情况讨论.三、解答题:本大题有7个小题,共66分解答应写出文字说明、证明过程或演算步骤.17.(6分)先化简再求值:(a b −b a )•ab a+b ,其中a =1,b =2. 【分析】先把分式化简后,再把a 、b 的值代入求出分式的值. 【解答】解:原式=a 2−b 2ab •ab a+b =(a+b)(a−b)ab ⋅ab a+b=a ﹣b ,当a =1,b =2时,原式=1﹣2=﹣1.【点评】本题考查了分式的化简求值,熟练化简分式是解题的关键.18.(8分)光明中学欲举办“校园吉尼斯挑战赛”,为此学校随机抽取男女学生各50名进行一次“你喜欢的挑战项目”的问卷调查,每名学生都选了一项.根据收集到的数据,绘制成统计图(不完整).根据统计图表中的信息,解答下列问题:(1)在本次随机调查中,女生最喜欢“踢毽子”项目的有 10 人,男生最喜欢“乒乓球“项目的有 20 人.(2)请将条形统计图补充完整;(3)若该校有男生450人,女生400人,请估计该校喜欢“羽毛球”项目的学生总人数.【分析】(1)根据题目中的数据和条形统计图中的数据,可以计算出女生最喜欢“踢毽子”项目的人数,然后根据扇形统计图中的数据,可以计算出男生最喜欢“乒乓球“项目的人数;(2)根据(1)中的结果,可以得到女生最喜欢“踢毽子”项目的有10人,从而可以将条形统计图补充完整;(3)根据统计图中的数据和该校有男生450人,女生400人,可以计算出该校喜欢“羽毛球”项目的学生总人数.【解答】解:(1)在本次随机调查中,女生最喜欢“踢毽子”项目的有:50﹣15﹣9﹣9﹣7=10(人),男生最喜欢“乒乓球“项目的有:50×(1﹣8%﹣10%﹣14%﹣28%)=50×40%=20(人),故答案为:10,20;(2)由(1)知,女生最喜欢“踢毽子”项目的有10人,补全完整的条形统计图如右图所示;(3)450×28%+400×950=126+72198(人),答:该校喜欢“羽毛球”项目的学生一共有198人.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.19.(8分)如图,D、E是以AB为直径的⊙O上两点,且∠AED=45°.(1)过点D作DC∥AB,求证:直线CD与⊙O相切;,求AE的长.(2)若⊙O的半径为12,sin∠ADE=34【分析】(1)连接OD,根据圆周角定理求出∠AOD,根据平行线的性质求出∠ODC=90°,根据切线的判定得出即可;(2)连接BE,根据圆周角定理求出∠B=∠ADE,解直角三角形求出即可.【解答】(1)证明:连接OD,∵∠AED=45°,∴由圆周角定理得:∠AOD=2∠AED=90°,∵CD∥AB,∴∠CDO=∠AOD=90°,即OD⊥CD,∵OD过O,∴直线CD与⊙O相切;(2)解:连接BE,∵AB为⊙O的直径,∴∠AEB=90°,∵由圆周角定理得:∠B=∠ADE,sin∠ADE=3 4,∴sin∠ADE=sin B,∵sin B=AE AB ,∵⊙O的半径为12,∴AE24=34,解得:AE=18.【点评】本题考查了解直角三角形,圆周角定理,切线的判定,平行线的性质等知识点,能综合运用知识点进行推理是解此题的关键.20.(10分)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=8,AD=6√2,AF=4√2,求AE的长.【分析】(1)由平行四边形的性质和平行线的性质得出∠ADF=∠CED,∠B+∠C=180°;由∠AFE+∠AFD=180°,∠AFE =∠B,得出∠AFD=∠C,即可得出结论;(2)根据平行四边形的性质可得出CD=AB=8,根据相似三角形的性质可得出ADDE =AFDC,求出DE=12.证出AE⊥AD,由勾股定理即可得出答案.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠ADF=∠CED,∠B+∠C=180°;∵∠AFE+∠AFD=180°,∠AFE=∠B,∴∠AFD=∠C,∴△ADF∽△DEC;(2)解:∵四边形ABCD是平行四边形,∴DC=AB=8.∵△ADF∽△DEC,∴ADDE=AFDC,即6√2DE=4√28,∴DE=12.∵AD∥BC,AE⊥BC,∴AE⊥AD.在Rt△ADE中,∠EAD=90°,DE=12,AD=6√2,∴AE =√DE 2−AD 2=√122−(6√2)2=6√2.【点评】此题主要考查的是平行四边形的性质、相似三角形的判定和性质以及勾股定理的运用,解题的关键判定三角形相似.21.(10分)已知Rt △ABC 的斜边AB 在平面直角坐标系的x 轴上,点C (2,6)在反比例函数y 1=k x的图象上,且sin ∠BAC =35 (1)求k 的值和边AC 的长;(2)求点B 的坐标;(3)有一直线y 2=kx +10与y 1=k x 交于M 与N 点,求出x 为何值时,y 2≥y 1.【分析】(1)本题需先根据C 点的坐标在反比例函数y 1=k x 的图象上,从而得出k 的值,再根据且sin ∠BAC =35,得出AC 的长;(2)本题需先根据已知条件,得出∠DAC =∠DCB ,从而得出CD 的长,根据点B 的位置即可求出正确答案;(3)解方程组即可得到结论.【解答】解:(1)∵点C (2,6)在反比例函数y =k x 的图象上,∴6=k 2,解得k =12,∵sin ∠BAC =35∴sin ∠BAC =6AC =35, ∴AC =10;∴k 的值和边AC 的长分别是:12,10;(2)①当点B 在点A 右边时,如图,作CD ⊥x 轴于D .∵△ABC 是直角三角形,∴∠DAC =∠DCB ,又∵sin ∠BAC =35,∴tan ∠DAC =34,∴BD CD =34, 又∵CD =6, ∴BD =92,∴OB =2+92=132, ∴B (132,0); ②当点B 在点A 左边时,如图,作CD ⊥x 轴于D .∵△ABC 是直角三角形, ∴∠B +∠A =90°,∠B +∠BCD =90°,∴∠DAC =∠DCB ,又∵sin ∠BAC =35,∴tan ∠DAC =34,∴BD CD =34, 又∵CD =6,∴BD =92,BO =BD ﹣2=52, ∴B (−52,0) ∴点B 的坐标是(−52,0),(132,0); (3)∵k =12,∴y 2=12x +10与y 1=12x , 解{y =12x +10y =12x得,{x =23y =18,{x =−32y =−8, ∴M (23,18),N 点(−32,﹣8),∴−32<x <0或x >23时,y 2≥y 1.【点评】本题考查了反比例函数与一次函数的交点问题,解直角三角形,正确的理解题意是解题的关键.22.(12分)已知一次函数y 1=2x +b 的图象与二次函数y 2=a (x 2+bx +1)(a ≠0,a 、b 为常数)的图象交于A 、B 两点,且A 的坐标为(0,1).(1)求出a 、b 的值,并写出y 1,y 2的表达式;(2)验证点B 的坐标为(1,3),并写出当y 1≥y 2时,x 的取值范围;(3)设u =y 1+y 2,v =y 1﹣y 2,若m ≤x ≤n 时,u 随着x 的增大而增大,且v 也随着x 的增大而增大,求m 的最小值和n 的最大值.【分析】(1)把A 点的坐标分别代入两个函数的解析式,便可求得a 与b 的值;(2)画出函数图象,根据函数图象作答;(3)求出出个函数的对称轴,根据函数的性质得出“u 随着x 的增大而增大,且v 也随着x 的增大而增大”时x 的取值范围,进而得m 的最小值和n 的最大值.【解答】解:(1)把A (0,1)代入y 1=2x +b 得b =1,把A (0,1)代入y 2=a (x 2+bx +1)得,a =1,∴y 1=2x +1,y 2=x 2+x +1;(2)作y 1=2x +1,y 2=x 2+x +1的图象如下:由函数图象可知,y 1=2x +1不在y 2=x 2+x +1下方时,0≤x ≤3,∴当y 1≥y 2时,x 的取值范围为0≤x ≤3;(3)∵u =y 1+y 2=2x +1+x 2+x +1=x 2+3x +2=(x +1.5)2﹣0.25,∴当x ≥﹣1.5时,u 随x 的增大而增大;v =y 1﹣y 2=(2x +1)﹣(x 2+x +1)=﹣x 2+x =﹣(x ﹣0.5)2+0.25,∴当x ≤0.5时,v 随x 的增大而增大,∴当﹣15≤x ≤0.5时,u 随着x 的增大而增大,且v 也随着x 的增大而增大,∵若m ≤x ≤n 时,u 随着x 的增大而增大,且v 也随着x 的增大而增大,∴m 的最小值为﹣1.5,n 的最大值为0.5.【点评】本题是二次函数的综合题,主要考查了函数的图象与性质,利用函数图象求不等式的解集,待定系数法,关键是熟练掌握二次函数的性质,灵活运用性质解题.23.(12分)在△ABC 和△DBE 中,CA =CB ,EB =ED ,点D 在AC 上.(1)如图1,若∠ABC =∠DBE =60°,求证:∠ECB =∠A ;(2)如图2,设BC 与DE 交于点F .当∠ABC =∠DBE =45°时,求证:CE ∥AB ;(3)在(2)的条件下,若tan ∠DEC =12时,求EF DF的值. 【分析】(1)根据SAS 可证明△ABD ≌△CBE .得出∠A =∠ECB ;(2)得出△ABC 和△DBE 都是等腰直角三角形,证明△ABD ∽△CBE ,则∠BAD =∠BCE =45°,可得出结论;(3)过点D 作DM ⊥CE 于点M ,过点D 作DN ∥AB 交CB 于点N ,设DM =MC =a ,得出DN =2a ,CE =a ,证明△CEF ∽△DNF ,可得出答案.【解答】(1)证明:∵CA =CB ,EB =ED ,∠ABC =∠DBE =60°,∴△ABC 和△DBE 都是等边三角形,∴AB =BC ,DB =BE ,∠A =60°.∵∠ABC =∠DBE =60°,∴∠ABD =∠CBE ,∴△ABD ≌△CBE (SAS ).∴∠A =∠ECB ;(2)证明:∵∠ABC=∠DBE=45°,CA=CB,EB=ED,∴△ABC和△DBE都是等腰直角三角形,∴∠CAB=45°,∴ABBC=√2,DB BE=√2,∴ABBC=DBBE,∵∠ABC=∠DBE,∴∠ABD=∠CBE,∴△ABD∽△CBE,∴∠BAD=∠BCE=45°,∵∠ABC=45°,∴∠ABC=∠BCE,∴CE∥AB;(3)解:过点D作DM⊥CE于点M,过点D作DN∥AB交CB于点N,∵∠ACB=90°,∠BCE=45°,∴∠DCM=45°,∴∠MDC=∠DCM=45°,∴DM=MC,设DM=MC=a,∴DC=√2a,∵DN∥AB,∴△DCN为等腰直角三角形,∴DN=√2DC=2a,∵tan∠DEC=DMME=12,∴ME=2DM,∴CE=a,∴CEDN=a2a=12,∵CE∥DN,∴△CEF∽△DNF,∴EFDF=CEDN=12.【点评】本题是三角形综合题,考查了等边三角形的判定与性质,等腰直角三角形的判定与性质,全等三角形的判定与性质,相似三角形的判定与性质,锐角三角函数等知识,正确作出辅助线,熟练掌握基本图形的性质是解题的关键.。
2020年初中毕业生学业考试仿真卷(三)数学(满分:120分考试时间:120分钟)一、选择题(每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求)1.下列实数中,是无理数的是( D )A.227B.2-2C.5.15 D.cos45°[命题考向:本题考查特殊角的三角函数值,无理数的概念.]2.已知一粒大米的质量约为0.000 021 kg,0.000 021用科学记数法表示为( A ) A.2.1×10-5B.2.1×10-4C.0.21×10-5D.0.21×10-4[命题考向:本题考查用科学记数法表示数.]3.已知a=2 0182,b=2 017×2 019,则( B )A.a=b B.a>bC.a<b D.a≤b[命题考向:本题考查完全平方公式、平方差公式的运用.]4.下列图形“等腰三角形、平行四边形、五边形、十边形、圆”,其中一定既是轴对称图形又是中心对称图形的有( A )A.1个B.2个C.3个D.4个[命题考向:本题考查轴对称图形、中心对称图形的概念.]5.李华根据演讲比赛中九位评委所给的分数制作了如下表格:如果要去掉一个最高分和最低分,则表中数据一定不发生变化的是( A ) A.中位数B.众数C.方差D.平均数[命题考向:本题考查中位数、众数、方差、平均数的概念.]6.一个圆锥的母线长是底面半径的2倍,则侧面展开图扇形的圆心角是( D )A.60° B.90° C.120° D.180°[命题考向:本题考查圆锥的展开图,扇形的弧长公式.]7.在平面直角坐标系中,若有一点P(2,1)向上平移3个单位或向左平移4个单位,恰好都在直线y=kx+b上,则k的值为( C )A.12B.2 C.34D.43[命题考向:本题考查直角坐标系中,坐标的平移规律,用待定系数法求一次函数表达式.]8.如图,在△ABC中,∠C=30°,点D在BC上,AE平分∠BAD,∠ADB=∠B+90°,下列结论正确的是( D )A.EC=2AE B.AC=2AEC.EC=2AE D.AC=2AE(第8题图) (第8题答图)[命题考向:本题考查含30°角、45°角的直角三角形的三边关系.利用角平分线与三角形外角的性质作等角转换是解题的关键.解析:如答图,过点A作AF⊥BC,则∠AFC=∠AFB=90°,∵∠ADB=∠DAF+∠AFB,∠ADB=∠B+90°,∴∠DAF=∠B.∵∠B+∠BAF=90°,AE平分∠BAD,∴∠B+∠BAE=∠DAF+∠EAD,∴∠AEF=∠EAF=12×90°=45°,∴在Rt△AEF中,AE=2AF,在Rt△ACF中,∠C=30°,∴AC=2AF,∴AC=2AE.∴EC=EF+FC=22AE+32AC=2+62AE.故选D.]9.已知A ,B ,C 三点顺次在同一条直线上,甲、乙两人分别从A ,B 两点同时同向出发,历时7 min 同时到达C 点,乙的速度始终是60 m/min ,如图是甲、乙两人之间的距离y (m)与他们行走的时间x (min)之间的函数图象(其中FG ∥x 轴),则下列说法中正确的有( D )(第9题图)①甲的速度始终是95 m/min ; ②A ,C 两点之间的距离是420 m ; ③甲到达点B 需要 1419min ;④甲、乙两人行走 65 min ,145 min 和 235 min 时相距28 m.A .①②B .③C .①③④D .③④[命题考向:本题考查用一次函数分析、解决实际问题.根据一次函数的性质分析每一段函数图象所表示的实际意义是理解题意、解决问题的关键.解析: ①t =0时,甲乙相距70 m ,甲追乙,t =2时,甲追上乙,故(v 1-60)×2=70,则v 1=95 m/min ;3<t <4时,FG ∥x 轴,则v 2=60 m/min ;t =7时,甲乙同时到达C ,故95×3+60×1+v 3·3=60×7+70,则v 3=1453 m/min ,①不正确.②AC 两点之间的距离是60×7+70=490 m ,②不正确.③甲到达点B 需要70÷95=1419min ,③正确.④(95-60)t 1=70-28,解得t 1=65;(95-60)(t 2-2)=28,解得t 2=145;⎝⎛⎭⎪⎫60-1453(t 3-4)=35-28,解得t 3=235,④正确.故选D.]10.如图,定长弦CD 在以AB 为直径的⊙O 上滑动(点C ,D 与点A ,B 不重合),M是CD的中点,过点C作CP⊥AB于点P,若CD=3,AB=8,PM=l,则l的最大值是( B )A.3 B.4 C.5 D.6(第10题图) (第10题答图)[命题考向:本题考查圆的基本性质.根据同斜边的两直角三角形确定四点共圆是解本题的关键.解析:如答图,连结OC,OM.∵AB=8,∴OC=4,∵M是CD的中点,∴OM⊥CD,∵CP⊥AB,∴△CPO,△CMO均为直角三角形,∴点C,P,O,M在以OC为直径的圆上,由PM为该圆上的弦,可知PM为该圆直径时最大,即l的最大值是4.] 二、填空题(每小题4分,共24分)11.因式分解:(x-y)2+2y(x-y)=__(x+y)(x-y)__.[命题考向:本题考查用提公因式法进行因式分解.]12.已知m是方程x2-3x-7=0的一个根,则2m2-6m+1=__15__.[命题考向:本题考查方程根的定义及整体代入法的运用.]13.若方程组⎩⎨⎧ax-2y=1,2x+by=5的解是⎩⎨⎧x=1,y=a,则b=__-3__.[命题考向:本题考查解二元一次方程组.]14.某班准备同时在A,B两地开展数学活动,每位同学抽签确定去其中一个地方,则甲、乙、丙三位同学中恰好有两位同学抽到去B地的概率是__38__.[命题考向:本题考查用列举法计算事件发生的概率.]15.在面积为12的▱ABCD中,过点A作直线BC的垂线交BC于点E,过点A作直线CD的垂线交CD于点F,若AB=4,BC=6,则CE+CF的值为.[命题考向:本题考查平行四边形的性质,勾股定理.在未给定图形时,须考虑符合条件的多种情况.]16.二次函数y =ax 2+bx +c 的图象过点(3,1),(6,-5),若当3≤x ≤6时,y 随着x 的增大而减小,则实数a 的取值范围是__0<a ≤23或-23≤a <0__.[命题考向:本题考查二次函数的图象和性质.在二次项系数a (a ≠0)不确定时,须分a >0(图象开口向上)和a <0(图象开口向下)两种情况讨论.解析: 将点(3,1),(6,-5)代入表达式,得b =-9a -2.当3≤x ≤6时,y 随x 的增大而减小,结合图象得两种情况: ①开口向下且对称轴在x =3的左边,则⎩⎨⎧a <0,-b 2a≤3,解得-23≤a <0; ②开口向上且对称轴在x =6的右边,则⎩⎨⎧a >0,-b 2a≥6,解得0<a ≤23. 故a 的取值范围是-23≤a <0或0<a ≤23.]三、解答题(本大题有7个小题,共66分)17.(本题6分)先化简,再求值:⎝ ⎛⎭⎪⎫a -2ab -b 2a ÷a -b a ,其中a =sin60°,b =tan60°.[命题考向:本题考查代数式的化简求值,特殊角的三角函数值.] 解:⎝⎛⎭⎪⎫a -2ab -b 2a ÷a -b a =a 2-2ab +b 2a ·a a -b =a -b ,∵a =sin60°=32,b =tan60°=3,∴原式=-32. 18.(本题8分)如图,每个小方格都是边长为1个单位的小正方形,B ,C ,D 三点都是格点.(1)找出格点A,连结AB,AD使得四边形ABCD为菱形;(2)画出菱形ABCD绕点A逆时针旋转90°后的菱形AB1C1D1,并求菱形ABCD在旋转的过程中扫过的面积.(第18题图)[命题考向:本题考查菱形的性质,图形的旋转变换及扇形的面积.]解:(1)略;(2)画图略.S=8π+8.19.(本题8分)为提高初中生的身体素质,教育行政部门规定:初中生每天参加户外活动的平均时间应不少于 1 h.为了解学生参加户外活动的情况,某区教育行政部门对部分学生参加户外活动的时间进行了抽样调查,并将调查结果绘制成下列两幅不完整的统计图,请你根据图中提供的信息解答以下问题:(1)这次抽样共调查了__500__名学生,并补全条形统计图;(2)计算扇形统计图中表示户外活动时间为0.5 h的扇形圆心角度数;(3)本次调查中学生参加户外活动的平均时间是否符合要求?(请写出判断过程)(第19题图)[命题考向:本题考查利用条形、扇形统计图分析数据,计算平均数并根据结果作出判断.]解:(1)500,图略;(2)72°;(3)平均值为1.2 h ,符合.20.(本题10分)已知:如图,△ABC 中,AB =AC ,AD ,CD 分别是△ABC 两个外角的平分线. (1)求证:AC =AD ;(2)若∠B =60°,求证:四边形ABCD 是菱形.(第20题图)[命题考向:本题考查等腰三角形的性质,角平分线的性质及菱形的判定.] 证明:(1)∵AB =AC , ∴∠B =∠BCA ,∴∠FAC =∠B +∠BCA =2∠B , ∵AD 平分∠FAC ,∴∠FAD =∠B , ∴AD ∥BC ,∴∠D =∠DCE , ∵CD 平分∠ACE ,∴∠ACD =∠DCE , ∴∠D =∠ACD ,∴AC =AD .(2)∵∠B =60°,∴∠ACB =60°,∠FAC =∠ACE =120°, ∴∠DCE =∠B =60°,∴DC ∥AB , ∵AD ∥BC ,∴四边形ABCD 为平行四边形, 又由(1)知AC =AD ,∴AB =AD , ∴四边形ABCD 是菱形.21.(本题10分)如图,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,点G 是AD ︵上一点,连结AG ,CG .(1)在不添加辅助线的前提下找出图中与∠AGC 相等的角,并说明理由; (2)求证:当AB ∥DG 时,△ACG 与△ACE 相似; (3)若OE =BE ,求∠AGC 的度数.(第21题图) 备用图[命题考向:本题考查圆的基本性质,相似三角形的判定,等边三角形的判定与性质.](第21题答图①)解:(1)∠ACE=∠AGC.理由如下:如答图①,连结AD.∵AB是直径,AB⊥CD,∴EC=ED,∴AD=AC,∴∠ACE=∠ADC,∵∠AGC=∠ADC,∴∠ACE=∠AGC.(2)证明:如答图②,∵DG∥AB,∴∠AEC=∠CDG=90°,∴CG是直径,∴∠CAG=90°,∵∠CAG=∠AEC=90°,∠AGC=∠ACE,∴△ACG∽△EAC.(第21题答图②)(第21题答图③)(3)如答图③,连结OC ,BC .∵OE =EB ,CE ⊥OB ,∴CO =CB =OB , ∴△OBC 是等边三角形,∴∠B =60°, ∴∠AGC =∠B =60°.22.(本题12分)若二次函数的表达式为y =(x -m )(x -1),(1≤m ≤2). (1)当x 分别取-1,0,1时对应的函数值为y 1,y 2,y 3,请比较y 1,y 2,y 3的大小关系;(2)对于任意m ,当x >k 时,y 随x 的增大而增大,求k 的最小整数值; (3)若函数过(a ,b )点和(a +6,b )点,求b 的取值范围. [命题考向:本题考查二次函数的性质.] 解:(1)y 1>y 2>y 3; (2)k 的最小整数值为2; (3)354≤b ≤9.23.(本题12分)一个四边形被一条对角线分割成两个三角形,如果被分割的两个三角形相似,我们称该对角线为相似对角线.(1)如图1,正方形ABCD 的边长为4,E 为AD 的中点,AF =1,连结CE ,CF ,求证:EF 为四边形AECF 的相似对角线;(2)在四边形ABCD 中,AC =6,AB =3,∠BAD =120°,AC 平分∠BAD ,且AC 是四边形ABCD 的相似对角线,求BD 的长;(3)如图2,在矩形ABCD 中,AB =6,BC =4,点E 是线段AB (不取端点A ,B )上的一个动点,点F 是射线AD 上的一个动点,若EF 是四边形AECF 的相似对角线,求BE 的长.(直接写出答案)(第23题图)[命题考向:本题考查正方形、矩形的性质,相似三角形的判定与性质.符合条件的图形不唯一,须考虑多种情况.]解:(1)∵四边形ABCD是正方形,∴AB=BC=CD=AD=4,∵AE=DE=2,AF=1,∴AFDE=AECD=12,∵∠A=∠D=90°,∴△AEF∽△DCE,∴∠AEF=∠DCE,EFCE=AFDE=12,∵∠DCE+∠CED=90°,∴∠AEF+∠CED=90°,∴∠FEC=∠A=90°,∵AFAE=EFEC=12,∴△AEF∽△ECF,∴EF为四边形AECF的相似对角线.(2)∵AC是四边形ABCD的相似对角线,∴有两种情形:①如答图①,△ACB≌△ACD时,∵AB=AD=3,BC=CD,∴AC垂直平分DB,在Rt△AOB中,∵AB=3,∠ABO=30°,∴BO=AB·cos 30°=332,∴BD=2OB=3 3.(第23题答图①) (第23题答图②)②如答图②,当△ACD ∽△ABC 时,可得AC 2=AB ·AD ,∴6=3AD ,∴AD =2,在Rt△ADH 中,∵∠HAD =60°,AD =2,∴AH =12AD =1,DH =3AH =3, 在Rt△BDH 中,BD =BH 2+DH 2=42+(3)2=19.(3)①如答图③,当△AEF 和△CEF 关于EF 对称时,EF 是四边形AECF 的相似对角线,设AE =EC =x ,在Rt△BCE 中,∵EC 2=BE 2+BC 2,∴x 2=(6-x )2+42,解得x =133, ∴此时BE =AB -AE =6-133=53.(第23题答图③) ( 第23题答图④)②如答图④,取AD 中点F ,连结CF ,将△CFD 沿CF 翻折得到△CFD ′,延长CD ′交AB 于E ,易证EF 是四边形AECF 的相似对角线.由△AEF ∽△DFC ,得到AE DF =AF DC, ∴AE 2=26,∴AE =23, ∴BE =AB -AE =163. ③如答图⑤,取AB 的中点E ,连结CE ,作EF ⊥CE 交AD 于F ,延长CB 交FE 的延长线于M ,则易证EF 是四边形AECF 的相似对角线.此时BE =3.(第23题答图⑤)综上所述,满足条件的BE 的值为53或163或3. 17。
2020-2021学年浙江省重点高中提前招生考试数学模拟卷一.选择题(共8小题)1.(2020•沙坪坝区自主招生)把有理数a代入|a+4|﹣10得到a1,称为第一次操作,再将a1作为a的值代入得到a2,称为第二次操作,…,若a=23,经过第2020次操作后得到的是()A.﹣7B.﹣1C.5D.11 2.(2020•浙江自主招生)将1,2,3,4,…,12,13这13个整数分为两组,使得一组中所有数的和比另一组中所有数的和大10,这样的分组方法()A.只有一种B.恰有两种C.多于三种D.不存在3.(2020•浙江自主招生)若n(n≠0)是关于x的方程x2+mx+2n=0的根,则m3+n3﹣6mn 的值为()A.﹣2B.8C.﹣6D.﹣8 4.(2020•浙江自主招生)已知方程|x|=ax+1有一个负根而且没有正根,那么a的取值范围是()A.a>﹣1B.a=1C.a≥1D.非上述答案5.(2020•浙江自主招生)已知:二次函数y=x2+2x+a(a为大于0的常数),当x=m时的函数值y1<0;则当x=m+2时的函数值y2与0的大小关系为()A.y2>0B.y2<0C.y2=O D.不能确定6.(2020•浙江自主招生)已知C点在圆O的直径BE的延长线上,CA切圆O于A点,∠ACB的平分线分别交AE、AB于点F、D.则∠ADF的度数为()A.30°B.45°C.60°D.不能确定7.(2020•浙江自主招生)如图,称有一条公共边的两个三角形为一对共边三角形,则图中的共边三角形有()对.A.8B.16C.24D.32 8.(2015•温江区校级自主招生)如图,等腰梯形纸片ABCD,AD∥BC,AD=3,BC=7,折叠纸片,使点B与点D重合,折痕为EF,若DF⊥BC,则下列结论:①EF∥AC;②DE ⊥AC;③△AED~△DAC;④EF=3;⑤梯形ABCD的面积为25,其中正确的是()A.①③④B.①②⑤C.③④D.①⑤二.填空题(共8小题)9.(2020•浙江自主招生)从三边长均为整数且周长为24的三角形中任取一个,它是直角三角形的概率为.10.(2020•浙江自主招生)方程(x﹣1)2+(y﹣1)2=xy+7的所有正整数解有组.11.(2020•浙江自主招生)2011年3月11日13时46分日本发生了9.0级大地震,伴随着就是海啸.山坡上有一颗与水平面垂直的大树,海啸过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面(如图所示).已知山坡的坡角∠AEF=23°,测得树干的倾斜角为∠BAC=38°,大树被折断部分和坡面的角∠ADC=60°,AD=4米.则这棵大树折断前高是米.(注:结果精确到个位)(参考数据:≈1.4,≈1.7,≈2.4)12.(2020•浙江自主招生)如图,正方形EFGH内接于△ABC,设BC=(表示一个两位数),EF=c,三角形中高线AD=d,已知a,b,c,d恰好是从小到大的四个连续正整数,则△ABC的面积为.13.(2020•沙坪坝区自主招生)如图,矩形OABC的顶点A、C分别在x轴、y轴的正半轴上,点D在边OC上,且BD=OC,以BD为边向下作矩形BDEF,使得点E在边OA上,反比例函数y=(k≠0)的图象经过边EF与AB的交点G.若AG=,DE=2,则k 的值为.14.(2017•金牛区校级自主招生)若关于x的分式方程在实数范围内无解,则实数a=.15.(2012•南充自主招生)关于x的方程|=k有四个相异的实数根,则k的取值范围是.16.(2017•杨浦区校级自主招生)在反比例函数y=上存在点C,以点C为圆心,1为半径画圆,圆上存在两点到O点距离为2,则k的取值范围.三.解答题(共5小题)17.(2020•浙江自主招生)令f(n)=.(1)求证:f(n)=;(2)求:f(1)+f(2)+f(3)+…+f(2012)+f(2013)的值;(3)求证:<+++…+<2.18.(2018•即墨区自主招生)如图,在平面直角坐标系中,直线AB与x轴交于点B,与y 轴交于点A,与反比例函数y=的图象在第二象限交于点C,CE⊥x轴于E,且sin∠ABO=,OA=OE=2.(1)求反比例函数的解析式;(2)若点D是反比例函数图象在第四象限上的点,过点D作DF⊥y轴于F,FB⊥AB,连接OD,BF交于点G,求S△DFG.19.(2020•浙江自主招生)如图,已知双曲线C1:y=、抛物线C2:y=x2﹣12,直线l:y=kx+m.(Ⅰ)若直线l与抛物线C2有公共点,求+m的最小值;(Ⅱ)设直线l与双曲线C1的两个交点为A、B,与抛物线C2的两个交点为C、D.是否存在直线l,使得A、B为线段CD的三等分点?若存在,求出直线l的解析式,若不存在,请说明理由.20.(2020•浙江自主招生)如图甲,分别以两个彼此相邻的正方形OABC与CDEF的边OC、OA所在直线为x轴、y轴建立平面直角坐标系(O、C、F三点在x轴正半轴上).若⊙P 过A、B、E三点(圆心在x轴上),抛物线y=x2+bx+c经过A、C两点,与x轴的另一交点为G,M是FG的中点,正方形CDEF的面积为1.(1)求抛物线的解析式;(2)求证:ME是⊙P的切线;(3)设N(x,y)是抛物线上的一个动点(不与C、G重合).当∠CNG≤30°时,请求出点N的横坐标的取值范围.21.(2020•浙江自主招生)已知平面上有两个定点A,B,则平面上满足=k(k是不为1的常数)的动点,P形成一个圆,我们把这样的元叫做定比圆,如图点A(﹣2,)),B(6,0),且满足=,设动点P形成的定比圆为圆M.(1)求圆M的圆心坐标和半径;(2)圆M是否存在P,使△P AB为直角三角形,若存在求出点P坐标;(3)若点Q的坐标为(2,3),求3PQ+PB的最小值.。
中学自主招生数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列图案中,不是中心对称图形的是()A.B.C.D.2.(3分)初步核算并经国家统计局核定,2017年广东全省实现地区生产总值约90000亿元,比上年增长7.5%.将90000亿元用科学记数法表示应为()元.A.9×1011B.9×104C.9×1012D.9×10103.(3分)下列说法正确的是()A.2的相反数是2B.2的绝对值是2C.2的倒数是2D.2的平方根是24.(3分)下列运算正确的是()A.a2+a3=a5B.(a2)3=a5C.a3÷a2=a D.(a﹣b)2=a2﹣b25.(3分)下列不等式组的解集中,能用如图所示的数轴表示的是()A.B.C.D.6.(3分)如图,已知矩形纸片的一条边经过一个含30°角的直角三角尺的直角顶点,若矩形纸片的一组对边分别与直角三角尺的两边相交,∠2=115°,则∠1的度数是()A.75°B.85°C.60°D.65°7.(3分)如图,在⊙O中,OC∥AB,∠A=20°,则∠1等于()A.40°B.45°C.50°D.60°8.(3分)有三张正面分别写有数字﹣1,﹣2,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为()A.B.C.D.9.(3分)点A(t,2)在第二象限,OA与x轴所夹的锐角为α,tanα=,则t的值为()A.﹣B.﹣2C.2D.310.(3分)如图,矩形纸片ABCD中,AB=5,BC=3,点E在AD上,且AE=1,点P是线段AB上一动点,折叠纸片,使点P与点E重合,展开纸片得折痕MN,过点P作PQ⊥AB,交MN所在的直线于点Q.设x=AP,y=PQ,则y关于x的函数图象大致为()A.B.C.D.二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)方程x2=x的解是.12.(4分)因式分解:3x2+6x+3=.13.(4分)把抛物线y=2x2﹣1向上平移一个单位长度后,所得的函数解析式为.14.(4分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,AC=14cm,BD=8cm,AD=6cm,则△OBC的周长是.15.(4分)在△ABC中BC=2,AB=2,AC=b,且关于x的方程x2﹣4x+b=0有两个相等的实数根,则AC边上的中线长为.16.(4分)如图,在平面直角坐标系xOy中,Rt△OA1C1,Rt△OA2C2,Rt△OA3C3,…的斜边都在坐标轴上,∠A1OC1=∠A2OC2=∠A3OC3=∠A4OC4=…=30°.若点A1的坐标为(3,0),OA1=OC2,OA2=OC3,OA3=OC4,…则依此规律,的值为.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.(6分)计算:﹣|﹣3|+﹣4cos30°18.(6分)先化简,后求值:(x﹣)÷,其中x=2.19.(6分)已知等腰△ABC的顶角∠A=36°(如图).(1)请用尺规作图法作底角∠ABC的平分线BD,交AC于点D(保留作图痕迹,不要求写作法);(2)证明:△ABC∽△BDC.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.(7分)在国务院办公厅发布《中国足球发展改革总体方案》之后,某校为了调查本校学生对足球知识的了解程度,随机抽取了部分学生进行一次问卷调查,并根据调查结果绘制了如图的统计图,请根据图中所给的信息,解答下列问题:(1)本次接受问卷调查的学生总人数是;(2)补全折线统计图.(3)扇形统计图中,“了解”所对应扇形的圆心角的度数为,m的值为;(4)若该校共有学生3000名,请根据上述调查结果估算该校学生对足球的了解程度为“不了解”的人数.21.(7分)某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍.(1)求甲、乙两队单独完成这项工程各需几个月?(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元.在保证工程质量的前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程.在完成这项工程中,甲队施工时间是乙队施工时间的2倍,那么,甲队最多施工几个月才能使工程款不超过1500万元?(甲、乙两队的施工时间按月取整数)22.(7分)如图,在正方形ABCD中,边长AB=3,点E(与B,C不重合)是BC边上任意一点,把EA 绕点E顺时针方向旋转90°到EF,连接CF.(1)求证:CF是正方形ABCD的外角平分线;(2)当∠BAE=30°时,求CF的长.五、解答题(三)(本大题共3小题,每小题9分,共27分)23.(9分)如图,在平面直角坐标系中,直线AB:y=kx+b(b为常数)与反比例函数y=(x>0)交于点B,与x轴交于点A,与y轴交于点C,且OB=AB.(1)如图①,若点A的坐标为(6,0)时,求点B的坐标及直线AB的解析式;(2)如图①,若∠OBA=90°,求点A的坐标;(3)在(2)的条件下中,如图②,△P A1A是等腰直角三角形,点P在反比例函数y=(x>0)的图象上,斜边A1A都在x轴上,求点A1的坐标.24.(9分)如图,在菱形ABCD中,∠A=60°,以点D为圆心的⊙D与边AB相切于点E.(1)求证:BC是⊙D的切线;(2)设⊙D与BD相交于点H,与边CD相交于点F,连接HF,若AB=2,求图中阴影部分的面积;(3)假设圆的半径为r,⊙D上一动点M从点F出发,按逆时针方向运动,且∠FDM<90°,连接DM,MF,当S四边形DFHM:S四边形ABCD=3:4时,求动点M经过的弧长.25.(9分)如图①,已知抛物线y=ax2+x+c(a≠0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点A坐标为(﹣1,0),点C坐标为(0,),点D是点C关于抛物线对称轴的对称点,连接CD,过点D作DH⊥x轴于点H,过点A作AE⊥AC交DH的延长线于点E.(1)求a,c的值;(2)求线段DE的长度;(3)如图②,试在线段AE上找一点F,在线段DE上找一点P,且点M为直线PF上方抛物线上的一点,求当△CPF的周长最小时,△MPF面积的最大值是多少?参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列图案中,不是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的定义和各图特点即可解答.【解答】解:只有选项C连接相应各点后是正三角形,绕中心旋转180度后所得的图形与原图形不会重合.故选:C.【点评】本题考查中心对称图形的定义:绕对称中心旋转180度后所得的图形与原图形完全重合,和正奇边形有关的一定不是中心对称图形.2.(3分)初步核算并经国家统计局核定,2017年广东全省实现地区生产总值约90000亿元,比上年增长7.5%.将90000亿元用科学记数法表示应为()元.A.9×1011B.9×104C.9×1012D.9×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:90000亿=9×1012,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3.(3分)下列说法正确的是()A.2的相反数是2B.2的绝对值是2C.2的倒数是2D.2的平方根是2【分析】根据有理数的绝对值、平方根、倒数和相反数解答即可.【解答】解:A、2的相反数是﹣2,错误;B、2的绝对值是2,正确;C、2的倒数是,错误;D、2的平方根是±,错误;故选:B.【点评】此题考查了实数的性质,关键是根据有理数的绝对值、平方根、倒数和相反数解答.4.(3分)下列运算正确的是()A.a2+a3=a5B.(a2)3=a5C.a3÷a2=a D.(a﹣b)2=a2﹣b2【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式不能合并,不符合题意;B、原式=a6,不符合题意;C、原式=a,符合题意;D、原式=a2﹣2ab+b2,不符合题意,故选:C.【点评】此题考查了同底数幂的除法,合并同类项,幂的乘方与积的乘方,以及完全平方公式,熟练掌握公式及法则是解本题的关键.5.(3分)下列不等式组的解集中,能用如图所示的数轴表示的是()A.B.C.D.【分析】先求出每个不等式的解集,再求出不等式组的解集,再根据数轴判断即可.【解答】解:由数轴可得:﹣2<x≤1,故选:D.【点评】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键.6.(3分)如图,已知矩形纸片的一条边经过一个含30°角的直角三角尺的直角顶点,若矩形纸片的一组对边分别与直角三角尺的两边相交,∠2=115°,则∠1的度数是()A.75°B.85°C.60°D.65°【分析】先根据平行线的性质,得出∠3的度数,再根据三角形外角性质进行计算即可.【解答】解:如图所示,∵DE∥BC,∴∠2=∠3=115°,又∵∠3是△ABC的外角,∴∠1=∠3﹣∠A=115°﹣30°=85°,故选:B.【点评】本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.7.(3分)如图,在⊙O中,OC∥AB,∠A=20°,则∠1等于()A.40°B.45°C.50°D.60°【分析】利用平行线的性质即可求得∠C的度数,根据圆周角定理:同弧所对的圆周角等于圆心角的一半求得∠O的度数,再利用三角形的外角的性质即可求解.【解答】解:∵OC∥AB,∴∠C=∠A=20°,又∵∠O=2∠A=40°,∴∠1=∠O+∠C=20°+40°=60°.故选:D.【点评】本题考查了圆周角定理与平行线的性质定理,正确利用圆周角定理求得∠O的度数是关键.8.(3分)有三张正面分别写有数字﹣1,﹣2,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为()A.B.C.D.【分析】画树状图得出所有等可能结果,再从中找到符合条件的结果数,继而利用概率公式可得答案.【解答】解:画树状图如下:由树状图知,共有6种等可能结果,其中点(a,b)在第二象限的有2种结果,所以点(a,b)在第二象限的概率为=,故选:B.【点评】本题主要考查列表法与树状图法,列举法(树形图法)求概率的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.9.(3分)点A(t,2)在第二象限,OA与x轴所夹的锐角为α,tanα=,则t的值为()A.﹣B.﹣2C.2D.3【分析】如图,作AE⊥x轴于E.根据tan∠AOE==,构建方程即可解决问题.【解答】解:如图,作AE⊥x轴于E.由题意:tan∠AOE==,∵A(t,2),∴AE=2,OE=﹣t,∴=,∴t=﹣,故选:A.【点评】本题考查解直角三角形的应用,坐标与图形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.(3分)如图,矩形纸片ABCD中,AB=5,BC=3,点E在AD上,且AE=1,点P是线段AB上一动点,折叠纸片,使点P与点E重合,展开纸片得折痕MN,过点P作PQ⊥AB,交MN所在的直线于点Q.设x=AP,y=PQ,则y关于x的函数图象大致为()A.B.C.D.【分析】过点E作EF⊥QP,垂足为F,连接EQ.由翻折的性质可知QE=QP,从而可表示出QF、EF、EQ的长度,然后在△EFQ中利用勾股定理可得到函数的关系式.【解答】解:如图所示,过点E作EF⊥QP,垂足为F,连接EQ.由翻折的性质可知:EQ=QP=y.∵∠EAP=∠APF=∠PFE=90°,∴四边形EAPF是矩形.∴EF=AP=x,PF=EA=1.∴QF=QP﹣PF=y﹣1.在Rt△EFQ中,由勾股定理可知:EQ2=QF2+EF2,即y2=(y﹣1)2+x2.整理得:y=.故选:D.【点评】本题主要考查的是翻折的性质、矩形的性质和判定、勾股定理的应用,表示出QF、EF、EQ的长度,在△EFQ中利用勾股定理列出函数关系式是解题的关键.二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)方程x2=x的解是x1=0,x2=1.【分析】将方程化为一般形式,提取公因式分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程,求出一次方程的解即可得到原方程的解.【解答】解:x2=x,移项得:x2﹣x=0,分解因式得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x2=1.故答案为:x1=0,x2=1【点评】此题考查了解一元二次方程﹣因式分解法,利用此方法解方程时,首先将方程右边化为0,左边化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.12.(4分)因式分解:3x2+6x+3=3(x+1)2.【分析】原式提取3,再利用完全平方公式分解即可.【解答】解:原式=3(x2+2x+1)=3(x+1)2,故答案为:3(x+1)2【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.(4分)把抛物线y=2x2﹣1向上平移一个单位长度后,所得的函数解析式为y=2x2.【分析】直接运用平移规律“左加右减,上加下减”,在原式上加1即可得新函数解析式y=2x2.【解答】解:∵抛物线y=2x2﹣1向上平移一个单位长度,∴新抛物线为y=2x2.故答案为y=2x2.【点评】此题比较容易,主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.14.(4分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,AC=14cm,BD=8cm,AD=6cm,则△OBC的周长是17cm.【分析】根据平行四边形的对边相等以及对角线互相平分进而求出即可.【解答】解:∵在平行四边形ABCD中,AC=14cm,BD=8cm,AD=6cm,∴CO=AC=7cm,BO=BD=4cm,BC=AD=6cm,∴△OBC的周长=BC+BO+CO=6+7+4=17(cm).故答案为:17cm.【点评】此题主要考查了平行四边形的性质,熟练根据平行四边形的性质得出BO,BC,CO的长是解题关键.15.(4分)在△ABC中BC=2,AB=2,AC=b,且关于x的方程x2﹣4x+b=0有两个相等的实数根,则AC边上的中线长为2.【分析】由根的判别式求出AC=b=4,由勾股定理的逆定理证出△ABC是直角三角形,再由直角三角形斜边上的中线性质即可得出结论.【解答】解:∵关于x的方程x2﹣4x+b=0有两个相等的实数根,∴△=16﹣4b=0,∴AC=b=4,∵BC=2,AB=2,∴BC2+AB2=AC2,∴△ABC是直角三角形,AC是斜边,∴AC边上的中线长=AC=2;故答案为:2.【点评】本题考查了根的判别式,勾股定理的逆定理,直角三角形斜边上的中线性质;证明△ABC是直角三角形是解决问题的关键.16.(4分)如图,在平面直角坐标系xOy中,Rt△OA1C1,Rt△OA2C2,Rt△OA3C3,…的斜边都在坐标轴上,∠A1OC1=∠A2OC2=∠A3OC3=∠A4OC4=…=30°.若点A1的坐标为(3,0),OA1=OC2,OA2=OC3,OA3=OC4,…则依此规律,的值为.【分析】根据含30度的直角三角形三边的关系得OA2====3×;OA3===3×()2;OA4===3×()3,…,于是可得到OA2016=3×()2015,OA2018=3×()2017,代入,化简即可.【解答】解:∵∠A2OC2=30°,OA1=OC2=3,∴OA2====3×;OA3===3×()2;OA4===3×()3,…,∴OA2016=3×()2015,OA2018=3×()2017,∴==()2=.故答案为.【点评】本题考查了规律型,点的坐标,坐标与图形性质,通过从一些特殊的点的坐标发现不变的因素或按规律变化的因素,然后推广到一般情况.也考查了含30度的直角三角形三边的关系及三角函数.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.(6分)计算:﹣|﹣3|+﹣4cos30°【分析】直接利用负指数幂的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案.【解答】解:原式=4﹣3+2018﹣4×=4﹣3+2018﹣2=2015+2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(6分)先化简,后求值:(x﹣)÷,其中x=2.【分析】先计算括号内减法、同时将除法转化为乘法,再约分即可化简,最后代入求值即可.【解答】解:原式=×=×=,当x=2+时,原式===.【点评】本题主要考查分式的化简求值能力,熟练掌握分式的混合运算顺序是解题的关键.19.(6分)已知等腰△ABC的顶角∠A=36°(如图).(1)请用尺规作图法作底角∠ABC的平分线BD,交AC于点D(保留作图痕迹,不要求写作法);(2)证明:△ABC∽△BDC.【分析】(1)利用角平分线的作法作出线段BD即可;(2)先根据等腰三角形的性质得出∠ABC=∠C=72°,再由角平分线的性质得出∠ABD的度数,故可得出∠A=∠CBD=36°,∠C=∠C,据此可得出结论.【解答】解:(1)如图,线段BD为所求出;(2)∵∠A=36°,AB=AC,∴∠ABC=∠C=(180°﹣36°)=72°.∵BD平分∠ABC,∴∠ABD=∠DBC=72°÷2=36°.∵∠A=∠CBD=36°,∠C=∠C,∴△ABD∽△BDC.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法是解答此题的关键.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.(7分)在国务院办公厅发布《中国足球发展改革总体方案》之后,某校为了调查本校学生对足球知识的了解程度,随机抽取了部分学生进行一次问卷调查,并根据调查结果绘制了如图的统计图,请根据图中所给的信息,解答下列问题:(1)本次接受问卷调查的学生总人数是120人;(2)补全折线统计图.(3)扇形统计图中,“了解”所对应扇形的圆心角的度数为30°,m的值为25;(4)若该校共有学生3000名,请根据上述调查结果估算该校学生对足球的了解程度为“不了解”的人数.【分析】(1)根据了解很少的人数以及百分比,求出总人数即可.(2)求出不了解的人数,画出折线图即可.(3)根据圆心角=360°×百分比计算即可.(4)利用样本估计总体的思想解决问题即可.【解答】解:(1)总人数=60÷50%=120(人).(2)不了解的人数=120﹣60﹣30﹣10=20(人),折线图如图所示:(3)了解的圆心角=×360°=30°,基本了解的百分比==25%,∴m=25.故答案为:30,25.(4)3000×=500(人),答:估算该校学生对足球的了解程度为“不了解”的人数为500人.【点评】本题考查折线统计图,样本估计总体,扇形统计图等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.(7分)某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍.(1)求甲、乙两队单独完成这项工程各需几个月?(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元.在保证工程质量的前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程.在完成这项工程中,甲队施工时间是乙队施工时间的2倍,那么,甲队最多施工几个月才能使工程款不超过1500万元?(甲、乙两队的施工时间按月取整数)【分析】(1)设甲队单独完成需要x个月,则乙队单独完成需要x﹣5个月,根据题意列出关系式,求出x的值即可;(2)设甲队施工y个月,则乙队施工y个月,根据工程款不超过1500万元,列出一元一次不等式,解不等式求最大值即可.【解答】解:(1)设甲队单独完成需要x个月,则乙队单独完成需要(x﹣5)个月,由题意得,x(x﹣5)=6(x+x﹣5),解得x1=15,x2=2(不合题意,舍去),则x﹣5=10.答:甲队单独完成这项工程需要15个月,则乙队单独完成这项工程需要10个月;(2)设甲队施工y个月,则乙队施工y个月,由题意得,100y+(100+50)≤1500,解不等式得y≤8.57,∵施工时间按月取整数,∴y≤8,答:完成这项工程,甲队最多施工8个月才能使工程款不超过1500万元.【点评】本题考查了一元二次方程的应用和一元一次不等式的应用,难度一般,解本题的关键是根据题意设出未知数列出方程及不等式求解.22.(7分)如图,在正方形ABCD中,边长AB=3,点E(与B,C不重合)是BC边上任意一点,把EA 绕点E顺时针方向旋转90°到EF,连接CF.(1)求证:CF是正方形ABCD的外角平分线;(2)当∠BAE=30°时,求CF的长.【分析】(1)过点F作FG⊥BC于点G,易证△ABE≌△EGF,所以可得到AB=EG,BE=FG,由此可得到∠FCG=∠45°,即CF平分∠DCG,所以CF是正方形ABCD外角的平分线;(2)首先可求出BE的长,即FG的长,再在Rt△CFG中,利用cos45°即可求出CF的长.【解答】(1)证明:过点F作FG⊥BC于点G.∵∠AEF=∠B=∠90°,∴∠1=∠2.在△ABE和△EGF中,∴△ABE≌△EGF(AAS).∴AB=EG,BE=FG.又∵AB=BC,∴BE=CG,∴FG=CG,∴∠FCG=∠45°,即CF平分∠DCG,∴CF是正方形ABCD外角的平分线.(2)∵AB=3,∠BAE=30°,tan30°=,BE=AB•tan30°=3×,即CG=.在Rt△CFG中,cos45°=,∴CF=.【点评】主要考查了正方形的性质,以及全等三角形的判定和性质、特殊角的三角函数值的运用,题目的综合性较强,难度中等.五、解答题(三)(本大题共3小题,每小题9分,共27分)23.(9分)如图,在平面直角坐标系中,直线AB:y=kx+b(b为常数)与反比例函数y=(x>0)交于点B,与x轴交于点A,与y轴交于点C,且OB=AB.(1)如图①,若点A的坐标为(6,0)时,求点B的坐标及直线AB的解析式;(2)如图①,若∠OBA=90°,求点A的坐标;(3)在(2)的条件下中,如图②,△P A1A是等腰直角三角形,点P在反比例函数y=(x>0)的图象上,斜边A1A都在x轴上,求点A1的坐标.【分析】(1)如图①,作辅助线,根据等腰三角形三线合一得:OC=AC=OA,所以OC=AC=3,根据点B在反比例函数y=(x>0)的图象上,代入解析式可得B的坐标,再利用待定系数法可得直线AB的解析式;(2)如图①,根据△AOB是等腰直角三角形,得BC=OC=OA,设点B(a,a)(a>0),列方程可得a的值,从而得A的坐标;(3)如图②,作辅助线,根据△P A1A是等腰直角三角形,得PD=AD,设AD=m(m>0),则点P的坐标为(4+m,m),列方程可得结论.【解答】解:(1)如图①,过B作BC⊥x轴于C,∵OB=AB,BC⊥x轴,∴OC=AC=OA,∵点A的坐标为(6,0),∴OA=6,∴OC=AC=3,∵点B在反比例函数y=(x>0)的图象上,∴y==4,∴B(3,4),∵点A(6,0),点B(3,4)在y=kx+b的图象上,∴,解得:,∴直线AB的解析式为:y=﹣x+8;(2)如图①,∵∠OBA=90°,OB=AB,∴△AOB是等腰直角三角形,∴BC=OC=OA,设点B(a,a)(a>0),∵顶点B在反比例函数y=(x>0)的图象上,∴a=,解得:a=(负值舍),∴OC=2,∴OA=2OC=4,∴A(4,0);(3)如图②,过P作PD⊥x轴于点D,∵△P A1A是等腰直角三角形,∴PD=AD,设AD=m(m>0),则点P的坐标为(4+m,m),∴m(4+m)=12,解得:x1=2﹣2,m2=﹣2﹣2(负值舍去),∴A1A=2m=4﹣4,∴OA1=OA+AA1=4,∴点A1的坐标是(4,0).【点评】此题是反比例函数与一次函数的综合题,难度适中,解题的关键是:(1)求出点B的坐标;(2)根据点B在反比例函数图象上列方程;(3)设AD=m,表示P的坐标并列方程.解决该题型题目时,找出点的坐标,再利用反比例函数解析式列方程是关键.24.(9分)如图,在菱形ABCD中,∠A=60°,以点D为圆心的⊙D与边AB相切于点E.(1)求证:BC是⊙D的切线;(2)设⊙D与BD相交于点H,与边CD相交于点F,连接HF,若AB=2,求图中阴影部分的面积;(3)假设圆的半径为r,⊙D上一动点M从点F出发,按逆时针方向运动,且∠FDM<90°,连接DM,MF,当S四边形DFHM:S四边形ABCD=3:4时,求动点M经过的弧长.【分析】(1)过D作DQ⊥BC于Q',连接DE.证明DE=DQ,即BC是⊙D的切线;(2)过F作FN⊥DH于N.先证明△ABD为等边三角形,所以∠DAB=60°,AD=BD=AB,再证明△DHF为等边三角形,在Rt△DFN中,FN⊥DH,∠BDC=60°,sin∠BDC=sin60°=,FN=,S阴影=S扇形FDH﹣S△FDH;(3)假设点M运动到某个位置时,符合题意,连接DM、DF,过M作NZ⊥DF于Z,当M运动到离弧最近时,DE=DH=DF=DM=r,证明∠MDC=60°,此时,动点M经过的弧长为πr.【解答】解:(1)证明:过D作DQ⊥BC于Q',连接DE.∵⊙D且AB于E,∴DE⊥AB,∵四边形ABCD是菱形,∴BD平分∠ABC,∴DE=DQ,∴BC是⊙D的切线;(2)过F作FN⊥DH于N.∵四边形ABCD是菱形,AB=2,∴AD=AB=2,DC∥AB,∵在Rt△ADE中,DE⊥AB,∠A=60°,∴sin A=sin60°=,∴DE=3,DH=DF=DE=3∵AD=AB=2,∠A=60°,∴△ABD为等边三角形,∴∠DAB=60°,AD=BD=AB,∵DC∥AB,∴∠BDC=∠DBA=60°,∵DH=DF=3,∴△DHF为等边三角形,在Rt△DFN中,FN⊥DH,∠BDC=60°,∴sin∠BDC=sin60°=,∴FN=,∴S阴影=S扇形FDH﹣S△FDH==;(3)假设点M运动到某个位置时,符合题意,连接DM、DF,过M作NZ⊥DF于Z,当M运动到离弧最近时,DE=DH=DF=DM=r,由(2)在Rt△DFN中,sin∠BDC=sin60°=,∴FN=,S△HDF==,在Rt△ADE中,sin A=sin60°=,∴AD=r,AB=AD=r,∴S菱形ABCD=AB•DE==,∵当S四边形DFHM:S四边形ABCD=3:4,∴S四边形DFHM=,∴S△DFM=S四边形DFHM﹣S△HDF==DF•MZ=rMZ,∴MZ=,在Rt△DMF中,MF⊥CD,sin∠MDC==,∴∠MDC=60°,此时,动点M经过的弧长为πr.【点评】本题考查了圆综合知识,熟练掌握圆的相关知识与菱形的性质以及特殊三角函数值是解题的关键.25.(9分)如图①,已知抛物线y=ax2+x+c(a≠0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点A坐标为(﹣1,0),点C坐标为(0,),点D是点C关于抛物线对称轴的对称点,连接CD,过点D作DH⊥x轴于点H,过点A作AE⊥AC交DH的延长线于点E.(1)求a,c的值;(2)求线段DE的长度;(3)如图②,试在线段AE上找一点F,在线段DE上找一点P,且点M为直线PF上方抛物线上的一点,求当△CPF的周长最小时,△MPF面积的最大值是多少?【分析】(1):(1)将A(﹣1,0),C(0,)代入抛物线y=ax2+x+c(a≠0),求出a、c的值;(2)由(1)得抛物线解析式:y=,点D是点C关于抛物线对称轴的对称点,C (0,),所以D(2,),DH=,再证明△ACO∽△EAH,于是=即=,解得:EH=2,则DE=2;(3)找点C关于DE的对称点N(4,),找点C关于AE的对称点G(﹣2,﹣),连接GN,交AE于点F,交DE于点P,即G、F、P、N四点共线时,△CPF周长=CF+PF+CP=GF+PF+PN最小,根据S△MFP==,m=时,△MPF面积有最大值.【解答】解:(1)将A(﹣1,0),C(0,)代入抛物线y=ax2+x+c(a≠0),,∴a=﹣,c=(2)由(1)得抛物线解析式:y=∵点D是点C关于抛物线对称轴的对称点,C(0,)∴D(2,),∴DH=,令y=0,即﹣x2+x+=0,得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),∵AE⊥AC,EH⊥AH,∴△ACO∽△EAH,∴=即=,解得:EH=2,则DE=2;(3)找点C关于DE的对称点N(4,),找点C关于AE的对称点G(﹣2,﹣),连接GN,交AE于点F,交DE于点P,即G、F、P、N四点共线时,△CPF周长=CF+PF+CP=GF+PF+PN 最小,∴直线GN的解析式:y=x﹣,由(2)得E(2,﹣),A(﹣1,0),∴直线AE的解析式:y=﹣x﹣,联立解得∴F(0,﹣),∵DH⊥x轴,∴将x=2代入直线AE的解析式:y=﹣x﹣,∴P(2,)∴F(0,﹣)与P(2,)的水平距离为2过点M作y轴的平行线交FH于点Q,设点M(m,﹣m2+m+),则Q(m,m﹣)(<m<);∴S△MFP=S△MQF+S△MQP=MQ×2=MQ=(﹣m2+m+)﹣(m﹣),S△MFP==∵对称轴为:直线m=,∵开口向下,<m,∴m=时,△MPF面积有最大值为..【点评】本题考查了二次函数,熟练运用相似三角形的性质与二次函数图象的性质是解题的关键.中学自主招生数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列图案中,不是中心对称图形的是()A.B.C.D.2.(3分)初步核算并经国家统计局核定,2017年广东全省实现地区生产总值约90000亿元,比上年增长7.5%.将90000亿元用科学记数法表示应为()元.A.9×1011B.9×104C.9×1012D.9×10103.(3分)下列说法正确的是()A.2的相反数是2B.2的绝对值是2C.2的倒数是2D.2的平方根是24.(3分)下列运算正确的是()A.a2+a3=a5B.(a2)3=a5C.a3÷a2=a D.(a﹣b)2=a2﹣b25.(3分)下列不等式组的解集中,能用如图所示的数轴表示的是()A.B.C.D.6.(3分)如图,已知矩形纸片的一条边经过一个含30°角的直角三角尺的直角顶点,若矩形纸片的一组对边分别与直角三角尺的两边相交,∠2=115°,则∠1的度数是()A.75°B.85°C.60°D.65°7.(3分)如图,在⊙O中,OC∥AB,∠A=20°,则∠1等于()A.40°B.45°C.50°D.60°8.(3分)有三张正面分别写有数字﹣1,﹣2,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为()A.B.C.D.9.(3分)点A(t,2)在第二象限,OA与x轴所夹的锐角为α,tanα=,则t的值为()A.﹣B.﹣2C.2D.310.(3分)如图,矩形纸片ABCD中,AB=5,BC=3,点E在AD上,且AE=1,点P是线段AB上一动点,折叠纸片,使点P与点E重合,展开纸片得折痕MN,过点P作PQ⊥AB,交MN所在的直线于点Q.设x=AP,y=PQ,则y关于x的函数图象大致为()A.B.C.D.二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)方程x2=x的解是.12.(4分)因式分解:3x2+6x+3=.13.(4分)把抛物线y=2x2﹣1向上平移一个单位长度后,所得的函数解析式为.14.(4分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,AC=14cm,BD=8cm,AD=6cm,则△OBC的周长是.15.(4分)在△ABC中BC=2,AB=2,AC=b,且关于x的方程x2﹣4x+b=0有两个相等的实数根,则AC边上的中线长为.16.(4分)如图,在平面直角坐标系xOy中,Rt△OA1C1,Rt△OA2C2,Rt△OA3C3,…的斜边都在坐标轴上,∠A1OC1=∠A2OC2=∠A3OC3=∠A4OC4=…=30°.若点A1的坐标为(3,0),OA1=OC2,OA2=OC3,OA3=OC4,…则依此规律,的值为.。
2020年浙江省杭州市中考前冲刺练习卷一、选择题1. 如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是()A. 点MB. 点NC. 点PD. 点Q【答案】C【解析】试题分析:∵点M,N表示的有理数互为相反数,∴原点的位置大约在O点,∴绝对值最小的数的点是P点,故选C.考点:有理数大小比较.2.长兴是浙江省的北大门,与苏、皖两省接壤,位于太湖西南岸,全县区域面积1430平方公里,现有户籍人口约64万.将1430用科学记数法表示为()A. 0.143×104B. 1.43×103C. 14.3×102D. 143×10【答案】B【解析】【分析】根据科学记数法的表示方法解答即可.【详解】解:1430=1.43×103.故选:B.【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3.下列图形中,是中心对称图形又是轴对称图形是( )A. B.C. D.【答案】D【解析】【分析】中心对称图形的定义:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形;轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】A是中心对称图形,不是轴对称图形,B是轴对称图形,不是中心对称图形;C是轴对称图形,不是中心对称图形;D是轴对称图形,也是中心对称图形;故选D考点:中心对称图形和轴对称图形点评:本题属于基础应用题,只需学生熟练掌握中心对称图形和轴对称图形的定义,即可完成4. 在我市举行的中学生春季田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:这些运动员跳高成绩的中位数和众数分别是A. 1.70,1.65B. 1.70,1.70C. 1.65,1.70D. 3,4【答案】A【解析】在这15个数中,处于中间位置的第8个数是1.70,所以中位数是1.70;在这一组数据中1.65是出现次数最多的,所以众数是1.65.∴这些运动员跳高成绩的中位数和众数分别是1.70,1.65.故选A.5.下列运算中,正确的是()A. 3a2﹣a2=2B. (a2)3=a5C. a2•a3=a5D. (2a2)2=2a4【答案】C【解析】【分析】直接利用同底数幂的乘法运算法则以及积的乘方运算法则、合并同类项法则分别判断得出答案.【详解】解:A、3a2﹣a2=2a2,故此选项错误;B、(a2)3=a6,故此选项错误;C、a2•a3=a5,正确;D、(2a2)2=4a4,故此选项错误;故选C.【点睛】此题主要考查了同底数幂的乘法运算以及积的乘方运算、合并同类项,正确掌握相关运算法则是解题关键.6.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得()A.11910813x yy x x y=⎧⎨+-+=⎩()()B.108 91311y x x y x y+=+⎧⎨+=⎩C.91181013x yx y y x ()()=⎧⎨+-+=⎩D.91110813 x yy x x y=⎧⎨+-+=⎩()()【答案】D【解析】【分析】根据题意可得等量关系:①9枚黄金的重量=11枚白银的重量;②.10枚白银的重量+1枚黄金的重量)-.1枚白银的重量+8枚黄金的重量)=13两,根据等量关系列出方程组即可.详解】设每枚黄金重x 两,每枚白银重y 两,由题意得:91110813x y y x x y =⎧⎨+-+=⎩()(). 故选D. 【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.7.如图,AB ∥GH ∥CD ,点H 在BC 上,AC 与BD 交于点G ,AB=2,CD=3,则GH 长为( )A. 1B. 1.2C. 2D. 2.5 【答案】B【解析】【分析】由AB ∥GH ∥CD 可得:△CGH ∽△CAB 、△BGH ∽△BDC ,进而得:GH CH AB BC =、GH BH CD BC =,然后两式相加即可.【详解】解:∵AB .GH ,.△CGH ∽△CAB ,∴GH CH AB BC =,即2GH CH BC =①, ∵CD .GH ,.△BGH ∽△BDC ,∴GH BH CD BC =,即3GH BH BC =②, ①+②,得:123GH GH CH BH BC BC +=+=,解得:6 1.25GH ==. 故选:B .【点睛】本题考查了相似三角形的判定和性质,属于基本题型,熟练掌握相似三角形的判定和性质是解题的关键. 【8.解分式方程11x -+1=0,正确的结果是( ) A. x=0B. x=1C. x=2D. 无解【答案】A【解析】【分析】 先去分母化为整式方程,再求解即可. 【详解】11x -+1=0, 1+x-1=0,x=0,经检验:x=0是原方程的根,故选A.考点:解分式方程.9.如图,抛物线2y ax bx c =++ 与x 轴交于点A ..1.0),顶点坐标(1.n ),与y 轴的交点在(0.3...0.4)之间(包含端点),则下列结论:.abc .0..3a +b .0...43≤a ≤.1..a +b ≥am 2+bm .m 为任意实数);.一元二次方程2ax bx c n ++= 有两个不相等的实数根,其中正确的有( )A. 2个B. 3个C. 4个D. 5个【答案】B【解析】 解:.抛物线开口向下,.a .0..顶点坐标(1.n ...对称轴为直线x =1..2b a- =1..b =.2a .0..与y 轴的交点在(0.3...0.4)之间(包含端点),.3≤c ≤4..abc .0,故.错误.3a +b =3a +..2a .=a .0,故.正确..与x 轴交于点A ..1.0...a .b +c =0..a ...2a .+c =0..c =.3a ..3≤.3a ≤4...43≤a ≤.1,故.正确. .顶点坐标为(1.n ...当x =1时,函数有最大值n ..a +b +c ≥am 2+bm +c ..a +b ≥am 2+bm ,故.正确. 一元二次方程2ax bx c n ++=有两个相等的实数根x 1=x 2=1,故.错误.综上所述,结论正确的是...共3个.故选B.点睛:本题考查了抛物线与x 轴的交点,二次函数的性质,主要利用了二次函数的开口方向,对称轴,最值问题,以及二次函数图象上点的坐标特征,关键在于根据顶点横坐标表示出a .b 的关系.10.如图,在矩形ABCD 中,AB.∠BAD 的平分线交BC 于点E.DH ⊥AE 于点H ,连接BH 并延长交CD 于点F ,连接DE 交BF 于点O ,下列结论:①∠AED=∠CED.②OE=OD.③BH=HF.④BC.CF=2HE.⑤AB=HF ,其中正确的有( .A. 2个B. 3个C. 4个D. 5个【答案】C【解析】 【详解】试题分析:∵在矩形ABCD 中,AE 平分∠BAD ,∴∠BAE=∠DAE=45°,∴△ABE 是等腰直角三角形, AB ,AB ,∴AE=AD ,又∠ABE=∠AHD=90°∴△ABE≌△AHD (AAS ), ∴BE=DH ,∴AB=BE=AH=HD,∴∠ADE=∠AED=12(180°﹣45°)=67.5°,∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正确;∵∠AHB=12(180°﹣45°)=67.5°,∠OHE=∠AHB(对顶角相等),∴∠OHE=∠AED,∴OE=OH,∵∠OHD=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠OHD=∠ODH,∴OH=OD,∴OE=OD=OH,故②正确;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD,又BE=DH,∠AEB=∠HDF=45°∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正确;由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD-DF,∴BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正确;∵AB=AH,∠BAE=45°,∴△ABH不是等边三角形,∴AB≠BH,∴即AB≠HF,故⑤错误;综上所述,结论正确的是①②③④共4个.故选C .【点睛】考点:1、矩形的性质;2、全等三角形的判定与性质;3、角平分线的性质;4、等腰三角形的判定与性质二、 填空题11.因式分解:34a 16a -=______.【答案】()()4a a 2a 2+-【解析】解:原式=4a (a 2﹣4)=4a (a +2)(a ﹣2).故答案为4a (a +2)(a ﹣2).12.规定:()a b a b b ⊗=+,如:()2323315⊗=+⨯=,若23x ⊗=,则x .__.【答案】1或-3【解析】【分析】根据a ⊗b=.a+b.b ,列出关于x 的方程(2+x.x=3,解方程即可.【详解】依题意得:(2+x.x=3.整理,得 x 2+2x=3.所以 .x+1.2=4.所以x+1=±2.所以x=1或x=-3.故答案是:1或-3.【点睛】用配方法解一元二次方程的步骤:①把原方程化为ax 2+bx+c=0.a≠0)的形式;②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;③方程两边同时加上一次项系数一半的平方;④把左边配成一个完全平方式,右边化为一个常数;⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解.13.从分别标有1、2、3、4的四张卡片中,一次同时抽2张,其中和为奇数的概率是 .【答案】2 3【解析】【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.【详解】如图,由树状图可知共有4×3=12种可能,和为奇数的有8种,所以概率是82 123.14.已知AB是⊙O的直径,弦CD⊥AB于点E,弦PQ∥AB交弦CD于点M,BE=18,CD=PQ=24,则OM的长为______.【答案】【解析】试题解析:作OF⊥PQ于F,连接OP,∴PF=12PQ=12,∵CD⊥AB,PQ∥AB,∴CD⊥PQ,∴四边形MEOF为矩形,∵CD=PQ,OF⊥PQ,CD⊥AB,∴OE=OF,∴四边形MEOF为正方形,设半径为x,则OF=OE=18-x,在直角△OPF中,x2=122+(18-x)2,解得x=13,则MF=OF=OE=5,∴.15.图甲是小明设计的带菱形图案的花边作品,该作品由形如图乙的矩形图案拼接而成(不重叠,无缝隙).图乙种,67ABBC=,EF=4cm,上下两个阴影三角形的面积之和为54cm2,其内部菱形由两组距离相等的平行线交叉得到,则该菱形的周长为___cm【答案】50 3【解析】试题分析:根据67ABBC=,EF=4可得:AB=和BC的长度,根据阴影部分的面积为542cm可得阴影部分三角形的高,然后根据菱形的性质可以求出小菱形的边长为256,则菱形的周长为:256×4=503.考点:菱形的性质.16.如图所示,Rt△AOB中,∠AOB=90°.OA=4.OB=2,点B在反比例函数y=2x图象上,则图中过点A的双曲线解析式是_____.【答案】y=.8x【解析】【分析】 要求函数的解析式只要求出点A 的坐标就可以,过点A ,B 作AC ⊥x 轴,BD ⊥x 轴,分别于C ,D .设点B 的坐标是(m,n ),然后用待定系数法即可.【详解】过点A ,B 作AC ⊥x 轴,BD ⊥x 轴,分别于C ,D .设点B 的坐标是(m,n ),因为点B 在函数y =2x的图象上,则mn =2, 则BD =n ,OD =m ,则AC =2m ,OC =2n ,设过点A 的双曲线解析式是y =k x , A 点的坐标是(-2n ,2m ), 把它代入得到:2m =2k n -, 则k =-4mn =-8,则图中过点A 的双曲线解析式是y=8x -. 故答案为:y=8x-. 三、 解答题17.“分组合作学习”成为我市推动课堂教学改革,打造自主高效课堂的重要举措.某中学从全校学生中随机抽取100人作为样本,对“分组合作学习”实施前后学生的学习兴趣变化情况进行调查分析,统计如下:分组前学生学习兴趣分组后学生学习兴趣请结合图中信息解答下列问题:(1)求出分组前学生学习兴趣为“高”的所占的百分比为;(2)补全分组后学生学习兴趣的统计图;(3)通过“分组合作学习”前后对比,请你估计全校2000名学生中学习兴趣获得提高的学生有多少人?请根据你的估计情况谈谈对“分组合作学习”这项举措的看法.【答案】(1)30%;(2)见解析;(3)有300人,“分组合作学习”大大提高了学生的学习兴趣,要全力推行这种课堂教学模式.【解析】【分析】(1)用1减去扇形统计图中其它三项所占百分比即得答案;(2)用抽取的100人减去条形统计图中其它三项的人数可得分组后学生学习兴趣为“中”的人数,进而可补全条形统计图;(3)先求出100人中学习兴趣获得提高的学生所占的百分比,再乘以2000即可.【详解】解:(1)1﹣25%﹣25%﹣20%=30%,故答案为:30%;(2)100﹣30﹣35﹣5=30(人),分组后学生学习兴趣的统计图如下:(3)分组前学生学习兴趣为“中”的有100×25%=25(人),分组后提高了30﹣25=5(人);分组前学生学习兴趣为“高”的有100×30%=30(人),分组后提高了35﹣30=5(人);分组前学生学习兴趣为“极高”的有100×25%=25(人),分组后提高了30﹣25=5(人), 2000×555100++=300(人). 答:全校2000名学生中学习兴趣获得提高的学生有300人,“分组合作学习”大大提高了学生的学习兴趣,要全力推行这种课堂教学模式.【点睛】本题考查了条形统计图和扇形统计图以及样本估计总体的知识,属于常考题型,熟练掌握条形统计图和扇形统计图的基本知识和利用样本估计总体的思想是解题的关键.18.已知抛物线23y x bx =+-.b 是常数)经过点(1,0)A -..1)求该抛物线的解析式和顶点坐标..2)抛物线与x 轴另一交点为点B ,与y 轴交于点C ,平行于x 轴的直线l 与抛物线交于点11()P x y .22(,)Q x y ,与直线BC 交于点33(,)N x y .①求直线BC 的解析式.②若312x x x <<,结合函数的图像,求123x x x ++的取值范围.【答案】(1)()214y x =--.顶点坐标为(1,4)-;(2)①直线BL 的解析式为3y x =-;②12312x x x <++<.【解析】【分析】(1)将()1,0A -代入抛物线解析式求得b 的值,即可确定抛物线的解析式,再化为顶点式,即可求得顶点坐标;.2.①令x=0,求得y 的值,得到点C 坐标,由抛物线的对称性,得到点B 坐标,设出直线的一般式,代入求解即可;②由图象可知310x -<<,由抛物线的对称性知122x x +=,即可求解.详解】.1)将()1,0A -代入23y x bx =+-,得:013b =--.∴2b =-.∴223y x x =-- ()214x =--.即顶点坐标为()1,4-..2.①由(1)可知点B 坐标为()3,0,点C 坐标为()0,3-. ∴设直线BC 的解析式为y kx b =+.()0k ≠.代入()3,0.()0,3-,得:0363k b =+⎧⎨-=⎩. ∴13k b =⎧⎨=-⎩. ∴直线BL 的解析式为3y x =-.②直线l 为y t =.则43t -<<-.∴310x -<<.∵1x .2x 关于对称轴对称, ∴1212x x +=. ∴122x x +=.∴12312x x x <++<.点睛:本题为二次函数综合应用,涉及的知识点有待定系数法、抛物线的对称性即抛物线与坐标轴的交点,灵活运用所学知识解决问题是解决问题的关键.19.如图,一次函数y=kx+b.k≠0)的图象与x 轴,y 轴分别交于A..9.0..B.0.6)两点,过点C.2.0)作直线l 与BC 垂直,点E 在直线l 位于x 轴上方的部分..1)求一次函数y=kx+b.k≠0)的表达式;.2)若△ACE 的面积为11,求点E 的坐标;.3)当∠CBE=∠ABO时,点E的坐标为.【答案】.1)一次函数y=kx+b的表达式为y=23 x.6..2.E.8.2...3..11.3..【解析】【分析】.1)利用待定系数法进行求解即可得;.2)如图,记直线l与y轴的交点为D,通过证明△OBC∽△OCD,根据相似三角形的性质可求得OD的长,继而可得点D的坐标,再根据点C坐标利用待定系数法求出直线l的解析式为y=13x.23,设E.t.13t.23t..然后根据S△ACE=12AC×y E=11.求得t的值即可得解;.3)如图,过点E作EF⊥x轴于F.可证得△ABO∽△EBC.从而可得23BC BOCE AO==.再证明△BOC∽△CFE.可得23BO OC BCCF EF CE===.从而可得出CF=9.EF=3.继而得到OF=11.即可得点E坐标.【详解】(1.∵一次函数y=kx+b.k≠0)的图象与x轴,y轴分别交于A..9.0..B.0.6)两点,∴906k bb-+=⎧⎨=⎩.∴236kb⎧=⎪⎨⎪=⎩.∴一次函数y=kx+b的表达式为y=23 x.6..2)如图,记直线l与y轴的交点为D.∵BC⊥l.∴∠BCD=90°=∠BOC.∴∠OBC+∠OCB=∠OCD+∠OCB.∴∠OBC=∠OCD.∵∠BOC=∠COD.∴△OBC∽△OCD.∴OB OC OC OD=.∵B.0.6..C.2.0..∴OB=6.OC=2.∴622OD =.∴OD=2 3.∴D.0..23..∵C.2.0..∴直线l的解析式为y=13x.23.设E.t.13t.23t..∵A..9.0..C.2.0..∴S△ACE=12AC×y E=12×11×.13t.23.=11.∴t=8.∴E.8.2...3)如图,过点E作EF⊥x轴于F.∵∠ABO=∠CBE.∠AOB=∠BCE=90°∴△ABO∽△EBC.∴23 BC BOCE AO==.∵∠BCE=90°=∠BOC.∴∠BCO+∠CBO=∠BCO+∠ECF.∴∠CBO=∠ECF.∵∠BOC=∠EFC=90°.∴△BOC∽△CFE.∴23 BO OC BCCF EF CE===.∴6223 CF EF==.∴CF=9.EF=3.∴OF=11.∴E.11.3..故答案为(11.3..【点睛】本题考查了一次函数的性质、相似三角形的判定与性质等,熟练掌握待定系数法、相似三角形的判定与性质是解题的关键.20.某化工车间发生有害气体泄漏,自泄漏开始到完全控制利用了40min ,之后将对泄漏有害气体进行清理,线段DE 表示气体泄漏时车间内危险检测表显示数据y 与时间x.min )之间的函数关系(0≤x≤40),反比例函数y=k x对应曲线EF 表示气体泄漏控制之后车间危险检测表显示数据y 与时间x.min )之间的函数关系(40≤x≤?).根据图象解答下列问题:.1)危险检测表在气体泄漏之初显示的数据是 ..2)求反比例函数y=k x的表达式,并确定车间内危险检测表恢复到气体泄漏之初数据时对应x 的值.【答案】(1)20;(2)对应x 的值是160.【解析】试题分析:.1)当040x ≤≤时,设y 与x 之间函数关系式为y ax b =+,把点()()10,35,30,60代入,求出,a b 的值,即可得到函数解析式,把x =0代入,求得y .即危险检测表在气体泄漏之初显示的数据. ()2将x =40代入y =1.5x +20,求得点E 的坐标,把点E 代入反比例函数k y x=,求得反比例函数的解析式,把y =20代入反比例函数,即可求得车间内危险检测表恢复到气体泄漏之初数据时对应x 的值.试题解析:(1)当040x ≤≤时,设y 与x 之间的函数关系式为y ax b =+,把点()()10,35,30,60代入,得 10353065,a b a b +=⎧⎨+=⎩ 得 1.520.a b =⎧⎨=⎩ .的∴ 1.520y x =+,当x =0时. 1.502020y =⨯+=,故答案为20..2)将x =40代入y =1.5x +20,得y =80.∴点E .40.80..∵点E 在反比例函数k y x =的图象上, ∴80,40k =得k =3200. 即反比例函数3200y x=. 当y =20时,320020,x=得x =160. 即车间内危险检测表恢复到气体泄漏之初数据时对应x 的值是160.21.已知△ABC,以AB 为直径的⊙O 分别交AC 于D ,BC 于E ,连接ED ,若ED=EC(1)求证:AB=AC ;(2)若AB=4,BC=CD 的长.【答案】(1)证明过程见解析;(2)【解析】 试题分析:(1)由等腰三角形的性质得到∠EDC=∠C ,由圆外接四边形的性质得到∠EDC=∠B ,由此推得∠B=∠C ,由等腰三角形的判定即可证得结论;(2)连接AE ,由AB 为直径,可证得AE⊥BC ,由(1)知AB=AC ,由“三线合一”定理得到BE=CE=BC=,由割线定理可证得结论.试题解析:(1)∵ED=EC , ∴∠EDC=∠C , ∵∠EDC=∠B , ∴∠B=∠C , ∴AB=AC ;(2)连接AE , ∵AB 为直径, ∴AE⊥BC , 由(1)知AB=AC , ∴BE=CE=BC=,∵CE•CB=CD•CA ,AC=AB=4, ∴•2=4CD , ∴CD=.考点:(1)圆周角定理;(2)等腰三角形的判定与性质;(3)勾股定理.22.在同一直角坐标系中画出二次函数2113=+y x 与二次函数2113=--y x 的图形. (1)从抛物线的开口方向、形状、对称轴、顶点等方面说出两个函数图象的相同点与不同点; (2)说出两个函数图象的性质的相同点与不同点.【答案】(1)见解析;(2)见解析.【解析】【分析】(1)根据二次函数的图象解答即可;(2)从开口大小和增减性两个方面作答即可.【详解】(1)解:如图:,2113=+y x 与2113=--y x 图象的相同点是:形状都是抛物线,对称轴都是y 轴, 2113=+y x 与2113=--y x 图象的不同点是:2113=+y x 开口向上,顶点坐标是(0,1),2113=--y x 开口向下,顶点坐标是(0,﹣1);(2)解:两个函数图象的性质的相同点:开口程度相同,即开口大小一样; 不同点:2113=+y x ,当x <0时,y 随x 的增大而减小,当x >0时,y 随x 的增大而增大;2113=--y x ,当x <0时,y 随x 的增大而增大,当x >0时,y 随x 的增大而减小.【点睛】本题考查了二次函数的图象与性质,属于基础题型,熟练掌握抛物线的图象与性质是解答的关键.23.如图1,O 为正方形ABCD 的中心,分别延长OA 、OD 到点F 、E ,使OF =2OA ,OE =2OD ,连接EF .将△EOF 绕点O 逆时针旋转a 角得到△E 1OF 1(如图2).(1)探究AE 1与BF 1的数量关系,并给予证明;(2)当a =30°时,求证:△AOE 1为直角三角形.【答案】(1)AE 1=BF 1;证明见解析(2)见解析【解析】【分析】(1)利用旋转不变量找到相等的角和线段,证得11E AO F BO ≅V V 后即可证得结论; (2)利用已知角,得出1130GAE GE A ∠=∠=︒,从而证明直角三角形.【详解】(1)11AE BF =,证明如下.证明:Q O 为正方形ABCD 的中心,∴OA OD =,Q 2OF OA =,2OE OD =,∴OE OF =,Q 将EOF △绕点O 逆时针旋转α角得到11E OF V , ∴11OE OF =,Q 11F OB E OA ∠=∠,OA OB =,∴11E AO F BO ≅V V ,∴11AE BF =;(2)证明:Q 取1OE 中点G ,连接AG ,Q 90AOD ∠=︒,30α=︒,∴19060E OA α∠=︒-=︒,Q 12OE OA =,∴OA OG =,∴160E OA AGO OAG ∠=∠=∠=︒,∴1AG GE =,∴1130GAE GE A ∠=∠=︒,∴190E AO ∠=︒,∴1AOE V 为直角三角形.【点睛】本题考查了正方形的性质,利用正方形的特殊性质求解.结合了三角形全等的问题,并且涉及到探究性的问题,属于综合性比较强的问题,要求解此类问题就要对基本的知识点有很清楚的认识,熟练掌握.。
2020年浙江省杭州市中考一模试卷数学试卷一、选择题(本大题共10小题,共30分)1.实数2019的相反数是()A. 2019B. −12019C. 12019D. −20192.2019年春节期间,杭州市共接待游客总量约4700000人次;用科学记数法表示的结果是()A. 4.7×106 B. 4.7×105 C. 0.47×106 D. 0.47×1073.下列各图中,经过折叠不能围成一个棱柱的是()A. B. C. D.4.下列各式变形中,正确的是()A. 3a2−a=2aB. 1a+1−1a=1a(a+1)C. a2⋅a3=a6 D. (−a−b)2=a2+2ab+b25.已知a=b≠0,则()A. ca =cbB. ac=bcC. a|c+1|>b|c+2|D. a+c>b−c6.学校组织植树活动,已知在甲处植树的有23人,在乙处植树的有17人.现调20人去支援,使在甲处植树的人数是乙处植树人数的2倍.设调往甲处植树x人,则可列方程()A. 23−x=2(17+20−x)B. 23−x=2(17+20+x)C. 23+x=2(17+20−x)D. 23+x=2(17+20+x)7.年龄13141516频数5713■中位数可能是14中位数可能是14.5C. 平均数可能是14D. 众数可能是168.地面上铺设了长为20cm,宽为10cm的地砖,长方形地毯的位置如图所示.那么地毯的长度最接近多少?()A.50cmB. 100cmC. 150cmD. 200cm9.如图是由7个形状、大小完全相同的正六边形组成的网格,正六边形的顶点称为格点,△ABC的顶点都在格点上.设定AB边如图所示,则△ABC是直角三角形的个数有()A. 4个B. 6个C. 8个D. 10个10.如图,以△ABC的一边AB为直径作⊙O,交于BC的中点D,过点D作直线EF与⊙O相切,交AC于点E,交AB的延长线于点F.若△ABC的面积为△CDE的面积的8倍,则下列结论中,错误的是()A. AC=2AOB. EF=2AEC. AB=2BFD. DF=2DE二、填空题(本大题共6小题,共24分)11.请写出一个比2小的无理数是______.12.有一枚质地均匀的骰子,六个面分别标有1到6的点数,任意将它抛掷一次,朝上面的点数小于3的概率是______.13.如图,在△ABC中,AD是BC边上的高线,CE是一条角平分线,且相交于点P.已知∠APE=55°,∠AEP=80°,则∠B为______度.14.在平面直角坐标系中,已知点A(−1,0),B(0,−1),C(−3,−1),D(−2,1),移动点A,使得顺次连结这四个点的图形是平行四边形,则移动后点A的坐标为______.15.如图,已知矩形ABCD,E,F分别是边AB,CD的中点,M,N分别是边AD,AB上两点,将△AMN沿MN对折,使点A落在点E上.若AB=a,BC=b,且N是FB的中点,则b的值为______.a(k≠0)的一个交点为16.在平面直角坐标系中,直线y=x与双曲线y=kxP(√2,n).将直线向上平移b(0>0)个单位长度后,与x轴,y轴分别交于点A,点B,与双曲线的一个交点为Q.若AQ=3AB,则b=______.三、解答题(本大题共7小题,共66分)17.如果某蓄水池的进水管每小时进水8m3,那么6小时可将空水池蓄满水.(1)求将空水池蓄满水所需的时间y关于每小时进水量x的函数表达式;(2)如果准备在5小时内将空水池蓄满水,那么每小时的进水量至少为多少?18.下面是甲、乙两校男、女生人数的统计图.根据统计图回答问题:(1)若甲校男生人数为273人,求该校女生人数;(2)方方同学说:“因为甲校女生人数占全校人数的40%,而乙校女生人数占全校人数的55%,所以甲校的女生人数比乙校女生人数少”,你认为方方同学说的对吗?为什么?19.如图,在△ABC中,AD、BE是中线,它们相交于点F,EG//BC,交AD于点G.(1)求证:△FGE∽△FDB;(2)求AG的值.DF20.已知A、B两地之间的笔直公路上有一处加油站C(靠近B地),一辆客车和一辆货车分别从A、B两地出发,朝另一地前进,两车同时出发,匀速行驶.如图所示是客车、货车离加油站C的距离y1,y2(千米)与行驶时间x(小时)之间的函数关系图象.(1)求客车和货车的速度;(2)图中点E代表的实际意义是什么,求点E的横坐标.21.有一块等腰三角形白铁皮余料ABC,它的腰AB=10cm,底边BC=12cm.(1)圆圆同学想从中裁出最大的圆,请帮他求出该圆的半径;(2)方方同学想从中裁出最大的正方形,请帮他求出该正方形的边长.22.已知二次函数y=x2−2(k−1)x+2.(1)当k=3时,求函数图象与x轴的交点坐标;(2)函数图象的对称轴与原点的距离为2,当−1≤x≤5时,求此时函数的最小值;(3)函数图象交y轴于点B,交直线x=4于点C,设二次函数图象上的一点P(x,y)满足0≤x≤4时,y≤2,求k的取值范围.23.如图,在正方形ABCD中,点E,F分别在BC,AB上,且DE=DF,连结AC,分别交DE,DF于点M,N.(1)求证:△ADF≌△CDE;(2)设△DMN和△AFN的面积分别为S1和S2;①若∠ADF=∠EDF,求S2:S1的值.②若S2=2S1,求tan∠ADF.答案和解析1.【答案】D【解析】解:因为a的相反数是−a,所以2019的相反数是−2019.故选:D.根据相反数的意义,直接可得结论.本题考查了相反数的意义.理解a的相反数是−a,是解决本题的关键.2.【答案】A【解析】解:4700000=4.7×106,故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】B【解析】解:A、C、D可以围成四棱柱,B选项不能围成一个棱柱.故选:B.由平面图形的折叠及正方体的展开图解题.此题主要考查了展开图折成几何体,同学们应熟知常见几种几何体的展开图及其变式图形.4.【答案】D【解析】解:(A)原式=3a2−a,故A错误;(B)原式=aa(a+1)−a+1a(a+1)=−1a(a+1),故B错误;(C)原式=a5,故C错误;故选:D.根据整式的运算法则以及分式的运算法则即可求出答案.本题考查学生的运算能力,解题的关键熟练运用运算法则,本题属于基础题型.5.【答案】A【解析】解:A、因为a=b≠0,所以ca =cb,正确;B、当c=0时,无意义,错误;C、因为a=b≠0时,c的值无法确定,|c+1|与|c+2|的大小不能确定,错误;D、因为a=b≠0时,c的值无法确定,所以a+c与a−c不能确定大小,错误;故选:A.根据等式的性质和不等式的性质解答即可.此题考查不等式的性质,关键是根据等式的性质和不等式的性质解答.6.【答案】C【解析】解:设应调往甲处植树x人,则调往乙处植树(20−x)人,根据题意得:23+x=2(17+20−x).故选:C.设应调往甲处x人,则调往乙处(20−x)人,根据使在甲处植树的人数是乙处植树人数的2倍,即可得出关于x的一元一次方程,此题得解.本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.7.【答案】D【解析】解:5+7+13=25,由列表可知,人数大于25人,则中位数是15或(15+16)÷2=15.5或16.平均数应该大于14,综上,D选项正确;故选:D.分别求得该组数据的中位数、平均数及众数即可确定正确的选项.本题考查的是列表和中位数的概念,读懂列表,从中得到必要的信息、掌握中位数的概念是解决问题的关键.8.【答案】C【解析】解:长方形地毯的长为10×10√2=100√2≈141.4cm,故选:C.根据等腰直角三角形的性质即可得到结论.本题考查了生活中的平移现象,等腰直角三角形的性质,正确的识别图形是解题的关键.9.【答案】D【解析】解:如图,AB是直角边时,点C共有6个位置,即有6个直角三角形,AB是斜边时,点C共有4个位置,即有4个直角三角形,综上所述,△ABC是直角三角形的个数有6+4=10个.故选:D.根据正六边形的性质,分AB是直角边和斜边两种情况确定出点C的位置即可得解.本题考查了正多边形和圆,难点在于分AB是直角边和斜边两种情况讨论,熟练掌握正六边形的性质是解题的关键,作出图形更形象直观.10.【答案】B【解析】解:连接OD、AD,∵OB=OA,BD=DC,∴AC=2OD,∵OA=OD,∴AC=2OD,A正确,不符合题意;∵EF是⊙O的切线,∴OD⊥EF,∵OB=OA,BD=DC,∴OD//AC,∴AE⊥EF,∵△ABC的面积为△CDE的面积的8倍,D是BC的中点,∴△ADC的面积为△CDE的面积的4倍,∴△ADE的面积为△CDE的面积的3倍,∴AE=3EC,∴ODAE =23,∵OD//AC,∴FOFA =ODAE=23,∴FA=2AE,B错误,符合题意;AB=2BF,C正确,不符合题意;DF EF =ODAE=23,∴DF=2DE,D正确,不符合题意;故选:B.连接OD、AD,根据三角形中位线定理判断A;根据切线的性质、三角形的面积公式判断B;根据平行线分线段成比例定理判断C、D.本题考查的是切线的性质、平行线分线段成比例定理,掌握圆的切线垂直于经过切点的半径是解题的关键.11.【答案】√2(答案不唯一)【解析】解:比2小的无理数是√2,故答案为:√2(答案不唯一).根据无理数的定义写出一个即可.本题考查了无理数的定义,能熟记无理数是指无限不循环小数是解此题的关键,此题是一道开放型的题目,答案不唯一.12.【答案】13【解析】解:一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,点数小于3的有1,2,共2种,∴掷得朝上一面的点数小于3的概率为26=13;故答案为:13.由于骰子六个面出现的机会相同,所以只需先求出骰子向上的一面点数小于3的情况有几种,再直接应用求概率的公式求解即可.此题考查了概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.13.【答案】45【解析】解:∵AD⊥BC,∴∠PDC=90°,∵∠CPD=∠APE=55°,∴∠PCD=90°−55°=35°,∵∠AEP=∠B+∠ECB,∴∠B=80°−35°=45°,故答案为45.根据∠AEP=∠B+∠ECB,只要求出∠ECB即可解决问题.本题考查三角形内角和定理,三角形的外角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.14.【答案】(1,1)【解析】解:∵B(0,−1),C(−3,−1),∴BC=3,∵四边形ABCD是平行四边形,∴AD=BC=3,∵D(−2,1),移动点A,使得顺次连结这四个点的图形是平行四边形,如图所示:∴A(1,1);故答案为:(1,1).由题意得出BC=3,由平行四边形的性质得出AD=BC=3,再由题意即可得出结果.本题考查了平行四边形的性质、坐标与图形性质;熟练掌握平行四边形的性质是解题的关键.15.【答案】√22【解析】解:∵四边形ABCD是矩形∴AB=CD,AB//CD,∠A=90°∵E,F分别是边AB,CD的中点,N是FB的中点,∴DE=AF=BF=12AB=12a,FN=14AB=14a,∴AN=AF+FN=34a∵AF=DE,DC//AB,∠A=90°∴四边形ADEF是矩形∴AD=EF=b,∠EFB=90°∵将△AMN沿MN对折,使点A落在点E上∴AN=EN=34a,在Rt△EFN中,EN2=EF2+FN2,∴916a2=b2+116a2,∴b=√22a∴ba=√22故答案为:√22由题意可证四边形ADEF是矩形,可得AD=EF=b,∠EFB=90°,由折叠性质可得AN=EN=34a,由勾股定理可求解.本题考查了翻折变换,矩形的性质和判定,勾股定理,熟练运用折叠的性质是本题的关键.16.【答案】√33或√66【解析】解:(1)∵直线y =x 经过P(√2,n). ∴n =√2, ∴P(√2,√2),∵点P(√2,√2)在y =kx (k ≠0)上,∴k =√2×√2=2.∵直线y =x 向上平移b(b >0)个单位长度后的解析式为y =x +b ,∴OA =OB =b , ∵AQ =3AB , 作QC ⊥x 轴于C , ∴QC//y 轴,∴△ABO∽△AQC , ∴OB QC=OA AC=AB AQ =13, ∴点Q 坐标(2b,3b)或(−4b,−3b)∴6b 2=2或−4b ⋅(−3b)=2 b =±√33或b =±√66∵b >0, ∴b =√33或b =√66 故答案为√33或√66.将点P 的坐标代入y =x 即可求得n =√2,然后把P(√2,√2)代入y =kx (k ≠0)即可求得k 的值;根据题意设平移后的直线为y =x +b ,然后根据△ABO∽△AQC 和AQ =3AB ,求得Q 点的坐标,代入y =2x ,即可求得b .本题考查了一次函数与反比例函数的交点坐标等关系,相似三角形的判定和性质,由点的坐标求函数的解析式以及平移问题. 17.【答案】解:(1)由题意可得, y =8×6x=48x,即将空水池蓄满水所需的时间y 关于每小时进水量x 的函数表达式是y =48x;(2)当y =5时, 5=48x,得x =9.6,即每小时的进水量至少9.6m 3.【解析】(1)根据题意可以得到y 与x 的函数关系式,本题得以解决; (2)将y =5代入(1)中的函数解析式,即可解答本题. 本题考查反比例函数的应用,解答本题的关键是明确题意,利用反比例函数的性质解答. 18.【答案】解:(1)∵甲校中男生有273人,占60%,∴总人数为:273÷60%=455人,则女生有455−273=182人;(2)不是同一个扇形统计图,因为总体不一定相同,所以没法比较人数的多少,所以方方同学说的对.【解析】(1)首先求得总人数,然后乘以女生所占的百分比即可;(2)扇形统计图只能得出两学校的女生所占的比例,如果要知道数量还要知道两学校的学生人数.此题考查了扇形统计图的知识,扇形统计图直接反映部分占总体的百分比大小,在比较各部分的大小时,必须在总体相同的情况下才能做比较.19.【答案】(1)证明:∵GE//BC,∴∠GEF=∠DBF.又∵∠GFE=∠DFB,∴△FGE∽△FDB;(2)∵AD、BE是中线,EG//BC,∴GE为△ADC的中位线,BD=DC,∴GE=12DC=12BD,AG=DG.∵△FGE∽△FDB,∴GFDF =GEDB=12,∴DF=23DG,∴AGDF =DG23DG=32.【解析】(1)由GE//BC,可得出∠GEF=∠DBF,再结合对顶角相等即可得出△FGE∽△FDB;(2)根据三角形中位线定理以及中线的定义得出GE=12BD、AG=DG,再利用相似三角形的性质得出DF=23DG,进而即可得出AGDF=32.本题考查了相似三角形的判定与性质、三角形中线的定义以及中位线定理,解题的关键是:(1)由GE//BC利用相似三角形的判定定理证出△EGF∽△BDF;(2)根据相似三角形的性质结合中位线定理得出DF=23DG、AG=DG.20.【答案】解:(1)由图可得,客车的速度为:360÷6=60km/ℎ,货车的速度为:80÷2=40km/ℎ;(2)图中点E代表的实际意义是此时客车与货车相遇,设点E的横坐标为t,60t+40(t−2)=360,解得,t=4.4,即点E的横坐标为4.4.【解析】(1)根据题意和函数图象中的数据可以求得客车和货车的速度;(2)根据图象可以写出点E代表的实际意义并写出点E的横坐标.本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.21.【答案】解:(1)如图1,⊙O为等腰△ABC的内切圆,作AD⊥BC于D,∵AB=AC,∴BD=CD=6,在Rt△ABD中,AD=√102−62=8,设⊙O的半径为R,1 2×r×(AB+AC+BC)=∵S△ABC=12AD×BC,∴r=8×1210+10+12=3,答:等腰三角形中裁出最大的圆的半径为3cm;(2)如图2,正方形EFGH为等腰△ABC的最大内接正方形,作高AD交EH于M,设正方形的边长为xcm,由(1)得AD=8,则AM=8−x,∵EH//BC,∴△AEH∽△ABC,∴EHBC =AMAD,即x12=8−x8,解得x=245.答:等腰三角形中裁出最大的正方形的边长为245cm.【解析】(1)如图1,⊙O为等腰△ABC的内切圆,作AD⊥BC于D,利用等腰三角形的性质得BD=CD=6,利用勾股定理得AD=8,设⊙O的半径为R,利用切线的性质和三角形面积公式得到12×r×(AB+AC+BC)=12AD×BC,从而可求出r;(2)如图2,正方形EFGH为等腰△ABC的最大内接正方形,作高AD交EH于M,设正方形的边长为xcm,证明△AEH∽△ABC,利用相似比得到x12=8−x8,然后解方程即可.本题考查了三角形的内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了等腰三角形的性质和正方形的性质.22.【答案】解:(1)∵k=3,∴y=x2−4x+2,令y=0,则x2−4x+2=0,解得x=2±√2,∴函数图象与x轴的交点坐标为(2−√2,0),(2+√2,0);(2)∵函数图象的对称轴与原点的距离为2,∴−−2(k−1)2×1=±2,解得k=3或−1,当对称轴为直线x=−2时,则k=−1,把x=−1代入得,y=−1,∴此时函数的最小值为−1;当对称轴为x=2时,则k=3,∵y=x2−4x+2=(x−2)2−2∴此时函数的最小值为−2;(3)由二次函数y=x2−2(k−1)x+2可知B(0,2),开口向上,设二次函数图象上的一点P(x,y),若满足0≤x≤4时,y≤2,则−−2(k−1)2≥2∴k≥3.【解析】(1)令y=0,得到关于x的方程,解方程即可;(2)分两种情况讨论求得即可;(3)由题意可知−−2(k−1)2≥2,解不等式即可求得.本题考查了二次函数图象上点的坐标特征,二次函数的图象和系数的关系,二次函数的最值,以及二次函数与x轴的交点,二次函数图象上点的坐标适合解析式是关键.23.【答案】(1)证明:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠DAF=∠DCE=∠ADC=90°,∵DF=DE,∴Rt△ADF≌Rt△CDE(HL).(2)①如图,作NH⊥AB于H.设FH=a.∵Rt△ADF≌Rt△CDE(HL),∵∠ADF=∠CDE,∵∠ADF=∠DEF,∴∠ADF=∠EDF=∠CDE=30°,∴∠AFD=60°,∵∠NHF=90°,∴∠FNH=30°,∴HN=√3a,∵∠NAH=45°,∠AHN=90°,∴∠NAH=∠ANH=45°,∴HA=HN=√3a,∴AF=(1+√3)a,AD=√3AF=(3+√3)a,∴S2=12⋅AF⋅NH=12⋅(1+√3)a⋅√3a=3+√32a2,∵∠ADN=∠CDM,AD=DC,∠DAN=∠DCM=45°,∴△ADN≌△CDM(ASA),∴S△ADN=S△DCM,∴S1=S△ADC−2S△ADN=12⋅[(3+√3)a]2−2×12⋅(3+√3)a⋅√3a=(9+6√3)a2,∴S2S1=3+√32a2(9+6√3)a2=√3−16.(3)如图,作NH⊥AB于H.∵∠FHN=∠FAD=90°,∴HN//AD,∴∠ADF=∠HNF,设tan∠ADF=tan∠FNH=k,设NH=AH=b,则FH=kb,∴AF=b+kb,∴AD=b+bkk =1+kkb,∴S2=12[(1+k)b]2,S1=S△ADC−2S△ADN=12(1+kkb)2−2×12⋅1+kkb⋅b,∵S2=2S1,∴12(1+k)b]2=2⋅[12(1+kkb)2−2×12⋅1+kkb⋅b]整理得:k2+2k−2=0,解得:k=√3−1或−√3−1(舍弃),∴tan∠ADF=k=√3−1.【解析】(1)根据HL证明三角形全等即可.(2)①如图,作NH⊥AB于H.设FH=a.利用参数表示S2,S1即可.②如图,作NH⊥AB于H.易证∠ADF=∠HNF,设tan∠ADF=tan∠FNH=k,设NH= AH=b,则FH=kb,利用面积关系构建方程求出k即可解决问题.本题属于相似形综合题,考查了正方形的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.。
中学自主招生数学试卷一.选择题(每题3分,满分36分)1.﹣的倒数是()A.B.﹣C.D.﹣2.下列标志的图形中,是轴对称图形的是但不是中心对称图形的是()A.B.C.D.3.下列运算中,结果是a6的式子是()A.a2•a3B.a12﹣a6C.(a3)3D.(﹣a)64.下列调查方式,你认为最合适的是()A.了解北京市每天的流动人口数,采用抽样调查方式B.旅客上飞机前的安检,采用抽样调查方式C.了解北京市居民”一带一路”期间的出行方式,采用全面调查方式D.日光灯管厂要检测一批灯管的使用寿命,采用全面调查方式5.若x=﹣4,则x的取值范围是()A.2<x<3 B.3<x<4 C.4<x<5 D.5<x<66.已知|a|=3,b2=16,且|a+b|≠a+b,则代数式a﹣b的值为()A.1或7 B.1或﹣7 C.﹣1或﹣7 D.±1或±7 7.无论a取何值时,下列分式一定有意义的是()A.B.C.D.8.在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是()A.(﹣1,1)B.(﹣1,﹣2)C.(﹣1,2)D.(1,2)9.如图,△ABO∽△CDO,若BO=6,DO=3,CD=2,则AB的长是()A.2 B.3 C.4 D.510.如图,AB为半圆O的直径,C是半圆上一点,且∠COA=60°,设扇形AOC、△COB、弓形BmC的面积为S1、S2、S3,则它们之间的关系是()A.S1<S2<S3B.S2<S1<S3C.S1<S3<S2D.S3<S2<S111.如图,已知菱形ABCD中,∠A=40°,则∠ADB的度数是()A.40°B.50°C.60°D.70°12.已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是()A.abc>0 B.b2﹣4ac<0 C.9a+3b+c>0 D.c+8a<0二.填空题(满分18分,每小题3分)13.据测算,我国每年因沙漠造成的直接经济损失超过5 400 000万元,这个数用科学记数法表示为万元.14.已知扇形的弧长为4π,圆心角为120°,则它的半径为.15.如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=2cm,∠BCD=22°30′,则⊙O 的半径为 cm .16.如图,将直线y =x 向下平移b 个单位长度后得到直线l ,l 与反比例函数y =(x >0)的图象相交于点A ,与x 轴相交于点B ,则OA 2﹣OB 2的值为 .17.若一次函数y =(1﹣2m )x +m 的图象经过点A (x 1,y 1)和点B (x 2,y 2),当x 1<x 2时,y 1<y 2,且与y 轴相交于正半轴,则m 的取值范围是 .18.如图(1)是重庆中国三峡博物馆,又名重庆博物馆,中央地方共建国家级博物馆图(2)是侧面示意图.某校数学兴趣小组的同学要测量三峡博物馆的高GE .如(2),小杰身高为1.6米,小杰在A 处测得博物馆楼顶G 点的仰角为27°,前进12米到达B 处测得博物馆楼顶G 点的仰角为39°,斜坡BD 的坡i =1:2.4,BD 长度是13米,GE ⊥DE ,A 、B 、D 、E 、G 在同一平面内,则博物馆高度GE 约为 米.(结果精确到1米,参考数据tan27°≈0.50,tan39°≈0.80)三.解答题19.(6分)计算:(1)sin30°﹣cos45°+tan260°(2)2﹣2+﹣2sin60°+|﹣|20.(6分)求不等式组的非负整数解.21.(8分)如图,在平行四边形ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△△CDF;(2)当线段AB与线段AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.22.(8分)今年西宁市高中招生体育考试测试管理系统的运行,将测试完进行换算统分改为计算机自动生成,现场公布成绩,降低了误差,提高了透明度,保证了公平.考前张老师为了解全市初三男生考试项目的选择情况(每人限选一项),对全市部分初三男生进行了调查,将调查结果分成五类:A、实心球(2kg);B、立定跳远;C、50米跑;D、半场运球;E、其它.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)将上面的条形统计图补充完整;(2)假定全市初三毕业学生中有5500名男生,试估计全市初三男生中选50米跑的人数有多少人?(3)甲、乙两名初三男生在上述选择率较高的三个项目:B、立定跳远;C、50米跑;D、半场运球中各选一项,同时选择半场运球、立定跳远的概率是多少?请用列表法或画树形图的方法加以说明并列出所有等可能的结果.23.(9分)随着经济水平的不断提升,越来越多的人选择到电影院去观看电影,体验视觉盛宴,并且更多的人通过淘票票,猫眼等网上平台购票,快捷且享受更多优惠,电影票价格也越来越便宜.2018年从网上平台购买5张电影票的费用比在现场购买3张电影票的费用少10元,从网上平台购买4张电影票的费用和现场购买2张电影票的费用共为190元.(1)请问2018年在网上平台购票和现场购票的每张电影票的价格各为多少元?(2)2019年“元旦”当天,南坪上海城的“华谊兄弟影院”按照2018年在网上平台购票和现场购票的电影票的价格进行销售,当天网上和现场售出电影票总票数为600张.“元旦”假期刚过,观影人数出现下降,于是该影院决定将1月2日的现场购票的价格下调,网上购票价格保持不变,结果发现现场购票每张电影票的价格每降价0.5元,则当天总票数比“元旦”当天总票数增加4张,经统计,1月2日的总票数中有通过网上平台售出,其余均由电影院现场售出,且当天票房总收益为19800元,请问该电影院在1月2日当天现场购票每张电影票的价格下调了多少元?24.(9分)如图所示,△ABC内接于⊙O,AB是⊙O的直径,点D在⊙O上,过点C的切线交AD的延长线于点E,且AE⊥CE,连接CD.(1)求证:DC=BC;(2)若AB=5,AC=4,求tan∠DCE的值.25.(10分)若关于x的二次函数y=ax2+bx+c(a,b,c为常数)与x轴交于两个不同的点A(x1,0),B(x2,0)与y轴交于点C,其图象的顶点为点M,O是坐标原点.(1)若A(﹣2,0),B(4,0),C(0,3)求此二次函数的解析式并写出二次函数的对称轴;(2)如图1,若a>0,b>0,△ABC为直角三角形,△ABM是以AB=2的等边三角形,试确定a,b,c的值;(3)设m,n为正整数,且m≠2,a=1,t为任意常数,令b=3﹣mt,c=﹣3mt,如果对于一切实数t,AB≥|2t+n|始终成立,求m、n的值.26.(10分)已知:如图,抛物线y=ax2+bx+3与坐标轴分别交于点A,B(﹣3,0),C(1,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线解析式;(2)当点P运动到什么位置时,△PAB的面积最大?(3)过点P作x轴的垂线,交线段AB于点D,再过点P作PE∥x轴交抛物线于点E,连接DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求点P的坐标;若不存在,说明理由.参考答案一.选择题1.解:﹣的倒数是:﹣.故选:B.2.解:A、不是轴对称图形,不是中心对称图形,不合题意;B、不是轴对称图形,不是中心对称图形,不合题意;C、不是轴对称图形,不是中心对称图形,不合题意;D、是轴对称图形,不是中心对称图形,符合题意.故选:D.3.解:A、a2•a3=a5,故本选项错误;B、不能进行计算,故本选项错误;C、(a3)3=a9,故本选项错误;D、(﹣a)6=a6,正确.故选:D.4.解:A、了解北京市每天的流动人口数,采用抽样调查方式,正确;B、旅客上飞机前的安检,采用全面调查方式,故错误;C、了解北京市居民”一带一路”期间的出行方式,抽样调查方式,故错误;D、日光灯管厂要检测一批灯管的使用寿命,采用抽样调查方式,故错误;故选:A.5.解:∵36<37<49,∴6<<7,∴2<﹣4<3,故x的取值范围是2<x<3.故选:A.6.解:∵|a|=3,∴a=±3;∵b2=16,∴b=±4;∵|a+b|≠a+b,∴a+b<0,∴a=3,b=﹣4或a=﹣3,b=﹣4,(1)a=3,b=﹣4时,a﹣b=3﹣(﹣4)=7;(2)a=﹣3,b=﹣4时,a﹣b=﹣3﹣(﹣4)=1;∴代数式a﹣b的值为1或7.故选:A.7.解:当a=0时,a2=0,故A、B中分式无意义;当a=﹣1时,a+1=0,故C中分式无意义;无论a取何值时,a2+1≠0,故选:D.8.解:∵将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,∴点A′的横坐标为1﹣2=﹣1,纵坐标为﹣2+3=1,∴A′的坐标为(﹣1,1).故选:A.9.解:∵△ABO∽△CDO,∴=,∵BO=6,DO=3,CD=2,∴=,解得:AB=4.故选:C.10.解:作OD⊥BC交BC与点D,∵∠COA=60°,∴∠COB=120°,则∠COD=60°.=;∴S扇形AOCS=.扇形BOC在三角形OCD中,∠OCD=30°,∴OD=,CD=,BC=R,∴S△OBC =,S弓形==,>>,∴S2<S1<S3.故选:B.11.解:∵四边形ABCD是菱形,∴AB∥CD,∠ADB=∠CDB,∴∠A+∠ADC=180°,∵∠A=40°,∴∠ADC=140°,∴∠ADB=×140°=70°,故选:D.12.解:A、∵二次函数的图象开口向下,图象与y轴交于y轴的正半轴上,∴a<0,c>0,∵抛物线的对称轴是直线x=1,∴﹣=1,∴b=﹣2a>0,∴abc<0,故本选项错误;B、∵图象与x轴有两个交点,∴b2﹣4ac>0,故本选项错误;C、∵对称轴是直线x=1,与x轴一个交点是(﹣1,0),∴与x轴另一个交点的坐标是(3,0),把x=3代入二次函数y=ax2+bx+c(a≠0)得:y=9a+3b+c=0,故本选项错误;D、∵当x=3时,y=0,∵b=﹣2a,∴y=ax2﹣2ax+c,把x=4代入得:y=16a﹣8a+c=8a+c<0,故选:D.二.填空题13.解:5 400 000=5.4×106万元.故答案为5.4×106.14.解:因为l=,l=4π,n=120,所以可得:4π=,解得:r=6,故答案为:615.解:连结OB,如图,∵∠BCD=22°30′,∴∠BOD=2∠BCD=45°,∵AB⊥CD,∴BE=AE=AB=×2=,△BOE为等腰直角三角形,∴OB=BE=2(cm).故答案为:2.16.解:∵平移后解析式是y=x﹣b,代入y=得:x﹣b=,即x2﹣bx=5,y =x ﹣b 与x 轴交点B 的坐标是(b ,0),设A 的坐标是(x ,y ),∴OA 2﹣OB 2=x 2+y 2﹣b 2=x 2+(x ﹣b )2﹣b 2=2x 2﹣2xb=2(x 2﹣xb )=2×5=10,故答案为:10.17.解:∵当1<2时,y 1<y 2,∴函数值y 随x 的增大而增大,∴1﹣2m >0,解得m <∵函数的图象与y 轴相交于正半轴,∴m >0,故m 的取值范围是0<m <故答案为0<m <18.解:如图,延长CF 交GE 的延长线于H ,延长GE 交AB 的延长线于J .设GE =xm .在Rt △BDK 中,∵BD =13,DK :BK =1:2.4,∴DK =5,BK =12,∵AC =BF =HJ =1.6,DK =EJ =5,∴EH =5﹣1.6=3.4,∵CH ﹣FH =CF ,∴﹣=12,∴﹣=12,∴x=12.6≈13(m),故答案为13.三.解答题19.解:(1)原式==(2)原式==20.解:解不等式组得﹣2<x≤5,所以原不等式组的非负整数解为0,1,2,3,4,5.21.证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,OB=OD,OA=OC,∴∠ABE=∠CDF,∵点E,F分别为OB,OD的中点,∴BE=OB,DF=OD,∴BE=DF,在△ABE和△CDF中,∴△ABE≌△CDF(SAS);(2)解:当AC=2AB时,四边形EGCF是矩形;理由如下:∵AC=2OA,AC=2AB,∴AB=OA,∵E是OB的中点,∴AG⊥OB,∴∠OEG=90°,同理:CF⊥OD,∴AG∥CF,∴EG∥CF,∵EG=AE,OA=OC,∴OE是△ACG的中位线,∴OE∥CG,∴EF∥CG,∴四边形EGCF是平行四边形,∵∠OEG=90°,∴四边形EGCF是矩形.22.解:(1)被调查的学生总人数:150÷15%=1000人,选择B的人数:1000×(1﹣15%﹣20%﹣40%﹣5%)=1000×20%=200;补全统计图如图所示;(2)5500×40%=2200人;(3)根据题意画出树状图如下:所有等可能结果有9种:BB、BC、BD、CB、CC、CD、DB、DC、DD,同时选择B 和D 的有2种可能,即BD 和DB ,P (同时选择B 和D )=.23.解:(1)设现场购买每张电影票为x 元,网上购买每张电影票为y 元.依题意列二元一次方程组∵经检验解得(2)设1月2日该电影院影票现场售价下调m 元,那么会多卖出张电影票.依题意列一元二次方程:(45﹣m )[(600+)×(1﹣)]=19800﹣25×(600+)(1﹣)整理得:16m 2﹣120m =0m (16m ﹣120)=0解得m 1=0(舍去) m 2=7.5 答:(1)2018年在网上平台购票和现场购票的每张电影票的价格分别为25元和45元;(2)1月2日当天现场购票每张电影票的价格下调了7.5元.24.(1)证明:连接OC . (1分)∵OA =OC ,∴∠OAC =∠OCA .∵CE 是⊙O 的切线,∴∠OCE =90°. (2分)∵AE ⊥CE ,∴∠AEC =∠OCE =90°.∴OC ∥AE .∴∠OCA =∠CAD .∴∠CAD =∠BAC . (4分)∴.∴DC =BC . (5分)(2)解:∵AB 是⊙O 的直径,∴∠ACB =90°.∴BC==3.(6分)∵∠CAE=∠BAC,∠AEC=∠ACB=90°,∴△ACE∽△ABC.(7分)∴.∴,.(8分)∵DC=BC=3,∴.(9分)∴tan∠DCE=.(10分)25.解:(1)函数的表达式为:y=a(x+2)(x﹣4)=a(x2﹣2x﹣8),则﹣8a=3,解得:a=﹣,故抛物线的表达式为:y=﹣x2+x+3;(2)如图所示,△ABC为直角三角形,则∠ACB=90°,∵△AMB是等边三角形,则点C是MB的中点,则BC =MC =1,则BO =BC =,同理OC =,OA =2﹣=,则点A 、B 、C 的坐标分别为(﹣,0)、(,0),(0,﹣),则函数的表达式为:y =a (x +)(x ﹣)=a (x 2+x ﹣),即﹣a =﹣,解得:a =,则函数表达式为:y =x 2+x ﹣;(3)y =ax 2+bx +c =x 2+(3﹣mt )x ﹣3mt ,则x 1+x 2=mt ﹣3,x 1x 2=﹣3mt ,AB =x 2﹣x 1==|mt +3|≥|2t +n |,则m 2t 2+6mt +9≥4t 2+4tn +n 2, 即:(m 2﹣4)t 2+(6m ﹣4n )t +(9﹣n 2)≥0,由题意得:m 2﹣4>0,△=(6m ﹣4n )2﹣4(m 2﹣4)(9﹣n 2)≤0,解得:mn =6,故:m =3,n =2或m =6,n =1.26.解:(1)∵抛物线y =ax 2+bx +3过点B (﹣3,0),C (1,0)∴ 解得:∴抛物线解析式为y =﹣x 2﹣2x +3(2)过点P 作PH ⊥x 轴于点H ,交AB 于点F∵x =0时,y =﹣x 2﹣2x +3=3∴A (0,3)∴直线AB 解析式为y =x +3∵点P 在线段AB 上方抛物线上∴设P (t ,﹣t 2﹣2t +3)(﹣3<t <0)∴F (t ,t +3)∴PF =﹣t 2﹣2t +3﹣(t +3)=﹣t 2﹣3t∴S△PAB =S△PAF+S△PBF=PF•OH+PF•BH=PF•OB=(﹣t2﹣3t)=﹣(t+)2+∴点P运动到坐标为(﹣,),△PAB面积最大(3)存在点P使△PDE为等腰直角三角形设P(t,﹣t2﹣2t+3)(﹣3<t<0),则D(t,t+3)∴PD=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t∵抛物线y=﹣x2﹣2x+3=﹣(x+1)2+4∴对称轴为直线x=﹣1∵PE∥x轴交抛物线于点E∴y E=y P,即点E、P关于对称轴对称∴=﹣1∴x E=﹣2﹣x P=﹣2﹣t∴PE=|x E﹣x P|=|﹣2﹣2t|∵△PDE为等腰直角三角形,∠DPE=90°∴PD=PE①当﹣3<t≤﹣1时,PE=﹣2﹣2t∴﹣t2﹣3t=﹣2﹣2t解得:t1=1(舍去),t2=﹣2∴P(﹣2,3)②当﹣1<t<0时,PE=2+2t ∴﹣t2﹣3t=2+2t解得:t1=,t2=(舍去)∴P(,)综上所述,点P坐标为(﹣2,3)或(,)时使△PDE为等腰直角三角形.中学自主招生数学试卷一.选择题(每题3分,满分36分)1.﹣的倒数是()A.B.﹣C.D.﹣2.下列标志的图形中,是轴对称图形的是但不是中心对称图形的是()A.B.C.D.3.下列运算中,结果是a6的式子是()A.a2•a3B.a12﹣a6C.(a3)3D.(﹣a)64.下列调查方式,你认为最合适的是()A.了解北京市每天的流动人口数,采用抽样调查方式B.旅客上飞机前的安检,采用抽样调查方式C.了解北京市居民”一带一路”期间的出行方式,采用全面调查方式D.日光灯管厂要检测一批灯管的使用寿命,采用全面调查方式5.若x=﹣4,则x的取值范围是()A.2<x<3 B.3<x<4 C.4<x<5 D.5<x<66.已知|a|=3,b2=16,且|a+b|≠a+b,则代数式a﹣b的值为()A.1或7 B.1或﹣7 C.﹣1或﹣7 D.±1或±7 7.无论a取何值时,下列分式一定有意义的是()A.B.C.D.8.在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是()A.(﹣1,1)B.(﹣1,﹣2)C.(﹣1,2)D.(1,2)9.如图,△ABO∽△CDO,若BO=6,DO=3,CD=2,则AB的长是()A.2 B.3 C.4 D.510.如图,AB为半圆O的直径,C是半圆上一点,且∠COA=60°,设扇形AOC、△COB、弓形BmC的面积为S1、S2、S3,则它们之间的关系是()A.S1<S2<S3B.S2<S1<S3C.S1<S3<S2D.S3<S2<S111.如图,已知菱形ABCD中,∠A=40°,则∠ADB的度数是()A.40°B.50°C.60°D.70°12.已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是()A.abc>0 B.b2﹣4ac<0 C.9a+3b+c>0 D.c+8a<0二.填空题(满分18分,每小题3分)13.据测算,我国每年因沙漠造成的直接经济损失超过5 400 000万元,这个数用科学记数法表示为万元.14.已知扇形的弧长为4π,圆心角为120°,则它的半径为.15.如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=2cm,∠BCD =22°30′,则⊙O的半径为cm.16.如图,将直线y=x向下平移b个单位长度后得到直线l,l与反比例函数y=(x>0)的图象相交于点A,与x轴相交于点B,则OA2﹣OB2的值为.17.若一次函数y =(1﹣2m )x +m 的图象经过点A (x 1,y 1)和点B (x 2,y 2),当x 1<x 2时,y 1<y 2,且与y 轴相交于正半轴,则m 的取值范围是 .18.如图(1)是重庆中国三峡博物馆,又名重庆博物馆,中央地方共建国家级博物馆图(2)是侧面示意图.某校数学兴趣小组的同学要测量三峡博物馆的高GE .如(2),小杰身高为1.6米,小杰在A 处测得博物馆楼顶G 点的仰角为27°,前进12米到达B 处测得博物馆楼顶G 点的仰角为39°,斜坡BD 的坡i =1:2.4,BD 长度是13米,GE ⊥DE ,A 、B 、D 、E 、G 在同一平面内,则博物馆高度GE 约为 米.(结果精确到1米,参考数据tan27°≈0.50,tan39°≈0.80)三.解答题19.(6分)计算:(1)sin30°﹣cos45°+tan 260° (2)2﹣2+﹣2sin60°+|﹣|20.(6分)求不等式组的非负整数解.21.(8分)如图,在平行四边形ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△△CDF;(2)当线段AB与线段AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.22.(8分)今年西宁市高中招生体育考试测试管理系统的运行,将测试完进行换算统分改为计算机自动生成,现场公布成绩,降低了误差,提高了透明度,保证了公平.考前张老师为了解全市初三男生考试项目的选择情况(每人限选一项),对全市部分初三男生进行了调查,将调查结果分成五类:A、实心球(2kg);B、立定跳远;C、50米跑;D、半场运球;E、其它.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)将上面的条形统计图补充完整;(2)假定全市初三毕业学生中有5500名男生,试估计全市初三男生中选50米跑的人数有多少人?(3)甲、乙两名初三男生在上述选择率较高的三个项目:B、立定跳远;C、50米跑;D、半场运球中各选一项,同时选择半场运球、立定跳远的概率是多少?请用列表法或画树形图的方法加以说明并列出所有等可能的结果.23.(9分)随着经济水平的不断提升,越来越多的人选择到电影院去观看电影,体验视觉盛宴,并且更多的人通过淘票票,猫眼等网上平台购票,快捷且享受更多优惠,电影票价格也越来越便宜.2018年从网上平台购买5张电影票的费用比在现场购买3张电影票的费用少10元,从网上平台购买4张电影票的费用和现场购买2张电影票的费用共为190元.(1)请问2018年在网上平台购票和现场购票的每张电影票的价格各为多少元?(2)2019年“元旦”当天,南坪上海城的“华谊兄弟影院”按照2018年在网上平台购票和现场购票的电影票的价格进行销售,当天网上和现场售出电影票总票数为600张.“元旦”假期刚过,观影人数出现下降,于是该影院决定将1月2日的现场购票的价格下调,网上购票价格保持不变,结果发现现场购票每张电影票的价格每降价0.5元,则当天总票数比“元旦”当天总票数增加4张,经统计,1月2日的总票数中有通过网上平台售出,其余均由电影院现场售出,且当天票房总收益为19800元,请问该电影院在1月2日当天现场购票每张电影票的价格下调了多少元?24.(9分)如图所示,△ABC内接于⊙O,AB是⊙O的直径,点D在⊙O上,过点C的切线交AD的延长线于点E,且AE⊥CE,连接CD.(1)求证:DC=BC;(2)若AB=5,AC=4,求tan∠DCE的值.25.(10分)若关于x的二次函数y=ax2+bx+c(a,b,c为常数)与x轴交于两个不同的点A(x1,0),B(x2,0)与y轴交于点C,其图象的顶点为点M,O是坐标原点.(1)若A(﹣2,0),B(4,0),C(0,3)求此二次函数的解析式并写出二次函数的对称轴;(2)如图1,若a>0,b>0,△ABC为直角三角形,△ABM是以AB=2的等边三角形,试确定a,b,c的值;(3)设m,n为正整数,且m≠2,a=1,t为任意常数,令b=3﹣mt,c=﹣3mt,如果对于一切实数t,AB≥|2t+n|始终成立,求m、n的值.26.(10分)已知:如图,抛物线y=ax2+bx+3与坐标轴分别交于点A,B(﹣3,0),C(1,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线解析式;(2)当点P运动到什么位置时,△PAB的面积最大?(3)过点P作x轴的垂线,交线段AB于点D,再过点P作PE∥x轴交抛物线于点E,连接DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求点P的坐标;若不存在,说明理由.参考答案一.选择题1.解:﹣的倒数是:﹣.故选:B.2.解:A、不是轴对称图形,不是中心对称图形,不合题意;B、不是轴对称图形,不是中心对称图形,不合题意;C、不是轴对称图形,不是中心对称图形,不合题意;D、是轴对称图形,不是中心对称图形,符合题意.故选:D.3.解:A、a2•a3=a5,故本选项错误;B、不能进行计算,故本选项错误;C、(a3)3=a9,故本选项错误;D、(﹣a)6=a6,正确.故选:D.4.解:A、了解北京市每天的流动人口数,采用抽样调查方式,正确;B、旅客上飞机前的安检,采用全面调查方式,故错误;C、了解北京市居民”一带一路”期间的出行方式,抽样调查方式,故错误;D、日光灯管厂要检测一批灯管的使用寿命,采用抽样调查方式,故错误;故选:A.5.解:∵36<37<49,∴6<<7,∴2<﹣4<3,故x的取值范围是2<x<3.故选:A.6.解:∵|a|=3,∴a=±3;∵b2=16,∴b=±4;∵|a+b|≠a+b,∴a+b<0,∴a=3,b=﹣4或a=﹣3,b=﹣4,(1)a=3,b=﹣4时,a﹣b=3﹣(﹣4)=7;(2)a=﹣3,b=﹣4时,a﹣b=﹣3﹣(﹣4)=1;∴代数式a﹣b的值为1或7.故选:A.7.解:当a=0时,a2=0,故A、B中分式无意义;当a=﹣1时,a+1=0,故C中分式无意义;无论a取何值时,a2+1≠0,故选:D.8.解:∵将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,∴点A′的横坐标为1﹣2=﹣1,纵坐标为﹣2+3=1,∴A′的坐标为(﹣1,1).故选:A.9.解:∵△ABO∽△CDO,∴=,∵BO=6,DO=3,CD=2,∴=,解得:AB=4.故选:C.10.解:作OD⊥BC交BC与点D,∵∠COA=60°,∴∠COB=120°,则∠COD=60°.=;∴S扇形AOCS=.扇形BOC在三角形OCD中,∠OCD=30°,∴OD=,CD=,BC=R,∴S△OBC =,S弓形==,>>,∴S2<S1<S3.故选:B.11.解:∵四边形ABCD是菱形,∴AB∥CD,∠ADB=∠CDB,∴∠A+∠ADC=180°,∵∠A=40°,∴∠ADC=140°,∴∠ADB=×140°=70°,故选:D.12.解:A、∵二次函数的图象开口向下,图象与y轴交于y轴的正半轴上,∴a<0,c>0,∵抛物线的对称轴是直线x=1,∴﹣=1,∴b=﹣2a>0,∴abc<0,故本选项错误;B、∵图象与x轴有两个交点,∴b2﹣4ac>0,故本选项错误;C、∵对称轴是直线x=1,与x轴一个交点是(﹣1,0),∴与x轴另一个交点的坐标是(3,0),把x=3代入二次函数y=ax2+bx+c(a≠0)得:y=9a+3b+c=0,故本选项错误;D、∵当x=3时,y=0,∵b=﹣2a,∴y=ax2﹣2ax+c,把x=4代入得:y=16a﹣8a+c=8a+c<0,故选:D.二.填空题13.解:5 400 000=5.4×106万元.故答案为5.4×106.14.解:因为l=,l=4π,n=120,所以可得:4π=,解得:r=6,故答案为:615.解:连结OB,如图,∵∠BCD=22°30′,∴∠BOD=2∠BCD=45°,∵AB⊥CD,∴BE=AE=AB=×2=,△BOE为等腰直角三角形,∴OB=BE=2(cm).故答案为:2.16.解:∵平移后解析式是y=x﹣b,代入y=得:x﹣b=,即x2﹣bx=5,y =x ﹣b 与x 轴交点B 的坐标是(b ,0),设A 的坐标是(x ,y ),∴OA 2﹣OB 2=x 2+y 2﹣b 2=x 2+(x ﹣b )2﹣b 2=2x 2﹣2xb=2(x 2﹣xb )=2×5=10,故答案为:10.17.解:∵当1<2时,y 1<y 2,∴函数值y 随x 的增大而增大,∴1﹣2m >0,解得m <∵函数的图象与y 轴相交于正半轴,∴m >0,故m 的取值范围是0<m <故答案为0<m <18.解:如图,延长CF 交GE 的延长线于H ,延长GE 交AB 的延长线于J .设GE =xm .在Rt △BDK 中,∵BD =13,DK :BK =1:2.4,∴DK =5,BK =12,∵AC =BF =HJ =1.6,DK =EJ =5,∴EH =5﹣1.6=3.4,∵CH ﹣FH =CF ,∴﹣=12,∴﹣=12,∴x=12.6≈13(m),故答案为13.三.解答题19.解:(1)原式==(2)原式==20.解:解不等式组得﹣2<x≤5,所以原不等式组的非负整数解为0,1,2,3,4,5.21.证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,OB=OD,OA=OC,∴∠ABE=∠CDF,∵点E,F分别为OB,OD的中点,∴BE=OB,DF=OD,∴BE=DF,在△ABE和△CDF中,∴△ABE≌△CDF(SAS);(2)解:当AC=2AB时,四边形EGCF是矩形;理由如下:∵AC=2OA,AC=2AB,∴AB=OA,∵E是OB的中点,∴AG⊥OB,∴∠OEG=90°,同理:CF⊥OD,∴AG∥CF,∴EG∥CF,∵EG=AE,OA=OC,∴OE是△ACG的中位线,∴OE∥CG,∴EF∥CG,∴四边形EGCF是平行四边形,∵∠OEG=90°,∴四边形EGCF是矩形.22.解:(1)被调查的学生总人数:150÷15%=1000人,选择B的人数:1000×(1﹣15%﹣20%﹣40%﹣5%)=1000×20%=200;补全统计图如图所示;(2)5500×40%=2200人;(3)根据题意画出树状图如下:所有等可能结果有9种:BB、BC、BD、CB、CC、CD、DB、DC、DD,同时选择B 和D 的有2种可能,即BD 和DB ,P (同时选择B 和D )=.23.解:(1)设现场购买每张电影票为x 元,网上购买每张电影票为y 元. 依题意列二元一次方程组∵经检验解得(2)设1月2日该电影院影票现场售价下调m 元,那么会多卖出张电影票.依题意列一元二次方程:(45﹣m )[(600+)×(1﹣)]=19800﹣25×(600+)(1﹣)整理得:16m 2﹣120m =0 m (16m ﹣120)=0 解得m 1=0(舍去) m 2=7.5答:(1)2018年在网上平台购票和现场购票的每张电影票的价格分别为25元和45元;(2)1月2日当天现场购票每张电影票的价格下调了7.5元. 24.(1)证明:连接OC . (1分) ∵OA =OC , ∴∠OAC =∠OCA . ∵CE 是⊙O 的切线,∴∠OCE =90°. (2分) ∵AE ⊥CE ,∴∠AEC =∠OCE =90°.∴OC ∥AE . ∴∠OCA =∠CAD .∴∠CAD =∠BAC . (4分) ∴.∴DC =BC . (5分)(2)解:∵AB 是⊙O 的直径, ∴∠ACB =90°.∴BC==3.(6分)∵∠CAE=∠BAC,∠AEC=∠ACB=90°,∴△ACE∽△ABC.(7分)∴.∴,.(8分)∵DC=BC=3,∴.(9分)∴tan∠DCE=.(10分)25.解:(1)函数的表达式为:y=a(x+2)(x﹣4)=a(x2﹣2x﹣8),则﹣8a=3,解得:a=﹣,故抛物线的表达式为:y=﹣x2+x+3;(2)如图所示,△ABC为直角三角形,则∠ACB=90°,∵△AMB是等边三角形,则点C是MB的中点,则BC =MC =1,则BO =BC =,同理OC =,OA =2﹣=,则点A 、B 、C 的坐标分别为(﹣,0)、(,0),(0,﹣),则函数的表达式为:y =a (x +)(x ﹣)=a (x 2+x ﹣), 即﹣a =﹣,解得:a =,则函数表达式为:y =x 2+x ﹣;(3)y =ax 2+bx +c =x 2+(3﹣mt )x ﹣3mt , 则x 1+x 2=mt ﹣3,x 1x 2=﹣3mt ,AB =x 2﹣x 1==|mt +3|≥|2t +n |,则m 2t 2+6mt +9≥4t 2+4tn +n 2,即:(m 2﹣4)t 2+(6m ﹣4n )t +(9﹣n 2)≥0,由题意得:m 2﹣4>0,△=(6m ﹣4n )2﹣4(m 2﹣4)(9﹣n 2)≤0, 解得:mn =6,故:m =3,n =2或m =6,n =1.26.解:(1)∵抛物线y =ax 2+bx +3过点B (﹣3,0),C (1,0) ∴解得:∴抛物线解析式为y =﹣x 2﹣2x +3(2)过点P 作PH ⊥x 轴于点H ,交AB 于点F ∵x =0时,y =﹣x 2﹣2x +3=3 ∴A (0,3)∴直线AB 解析式为y =x +3 ∵点P 在线段AB 上方抛物线上 ∴设P (t ,﹣t 2﹣2t +3)(﹣3<t <0) ∴F (t ,t +3)∴PF =﹣t 2﹣2t +3﹣(t +3)=﹣t 2﹣3t∴S△PAB =S△PAF+S△PBF=PF•OH+PF•BH=PF•OB=(﹣t2﹣3t)=﹣(t+)2+∴点P运动到坐标为(﹣,),△PAB面积最大(3)存在点P使△PDE为等腰直角三角形设P(t,﹣t2﹣2t+3)(﹣3<t<0),则D(t,t+3)∴PD=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t∵抛物线y=﹣x2﹣2x+3=﹣(x+1)2+4∴对称轴为直线x=﹣1∵PE∥x轴交抛物线于点E∴y E=y P,即点E、P关于对称轴对称∴=﹣1∴x E=﹣2﹣x P=﹣2﹣t∴PE=|x E﹣x P|=|﹣2﹣2t|∵△PDE为等腰直角三角形,∠DPE=90°∴PD=PE①当﹣3<t≤﹣1时,PE=﹣2﹣2t∴﹣t2﹣3t=﹣2﹣2t解得:t1=1(舍去),t2=﹣2∴P(﹣2,3)②当﹣1<t<0时,PE=2+2t ∴﹣t2﹣3t=2+2t解得:t1=,t2=(舍去)∴P(,)综上所述,点P坐标为(﹣2,3)或(,)时使△PDE为等腰直角三角形.中学自主招生数学试卷一.选择题(每题3分,满分36分)1.﹣的倒数是()A.B.﹣C.D.﹣2.下列标志的图形中,是轴对称图形的是但不是中心对称图形的是()A.B.C.D.3.下列运算中,结果是a6的式子是()A.a2•a3B.a12﹣a6C.(a3)3D.(﹣a)64.下列调查方式,你认为最合适的是()A.了解北京市每天的流动人口数,采用抽样调查方式B.旅客上飞机前的安检,采用抽样调查方式C.了解北京市居民”一带一路”期间的出行方式,采用全面调查方式D.日光灯管厂要检测一批灯管的使用寿命,采用全面调查方式5.若x=﹣4,则x的取值范围是()A.2<x<3 B.3<x<4 C.4<x<5 D.5<x<66.已知|a|=3,b2=16,且|a+b|≠a+b,则代数式a﹣b的值为()A.1或7 B.1或﹣7 C.﹣1或﹣7 D.±1或±7 7.无论a取何值时,下列分式一定有意义的是()A.B.C.D.8.在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是()A.(﹣1,1)B.(﹣1,﹣2)C.(﹣1,2)D.(1,2)9.如图,△ABO∽△CDO,若BO=6,DO=3,CD=2,则AB的长是()A.2 B.3 C.4 D.510.如图,AB为半圆O的直径,C是半圆上一点,且∠COA=60°,设扇形AOC、△COB、弓形BmC的面积为S1、S2、S3,则它们之间的关系是()A.S1<S2<S3B.S2<S1<S3C.S1<S3<S2D.S3<S2<S111.如图,已知菱形ABCD中,∠A=40°,则∠ADB的度数是()A.40°B.50°C.60°D.70°12.已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是()A.abc>0 B.b2﹣4ac<0 C.9a+3b+c>0 D.c+8a<0二.填空题(满分18分,每小题3分)13.据测算,我国每年因沙漠造成的直接经济损失超过5 400 000万元,这个数用科学记数法表示为万元.14.已知扇形的弧长为4π,圆心角为120°,则它的半径为.15.如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=2cm,∠BCD =22°30′,则⊙O的半径为cm.16.如图,将直线y=x向下平移b个单位长度后得到直线l,l与反比例函数y=(x>0)的图象相交于点A,与x轴相交于点B,则OA2﹣OB2的值为.17.若一次函数y =(1﹣2m )x +m 的图象经过点A (x 1,y 1)和点B (x 2,y 2),当x 1<x 2时,y 1<y 2,且与y 轴相交于正半轴,则m 的取值范围是 .18.如图(1)是重庆中国三峡博物馆,又名重庆博物馆,中央地方共建国家级博物馆图(2)是侧面示意图.某校数学兴趣小组的同学要测量三峡博物馆的高GE .如(2),小杰身高为1.6米,小杰在A 处测得博物馆楼顶G 点的仰角为27°,前进12米到达B 处测得博物馆楼顶G 点的仰角为39°,斜坡BD 的坡i =1:2.4,BD 长度是13米,GE ⊥DE ,A 、B 、D 、E 、G 在同一平面内,则博物馆高度GE 约为 米.(结果精确到1米,参考数据tan27°≈0.50,tan39°≈0.80)三.解答题 19.(6分)计算: (1)sin30°﹣cos45°+tan 260°(2)2﹣2+﹣2sin60°+|﹣|20.(6分)求不等式组的非负整数解.21.(8分)如图,在平行四边形ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△△CDF;(2)当线段AB与线段AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.22.(8分)今年西宁市高中招生体育考试测试管理系统的运行,将测试完进行换算统分改为计算机自动生成,现场公布成绩,降低了误差,提高了透明度,保证了公平.考前张老师为了解全市初三男生考试项目的选择情况(每人限选一项),对全市部分初三男生进行了调查,将调查结果分成五类:A、实心球(2kg);B、立定跳远;C、50米跑;D、半场运球;E、其它.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)将上面的条形统计图补充完整;(2)假定全市初三毕业学生中有5500名男生,试估计全市初三男生中选50米跑的人数有多少人?(3)甲、乙两名初三男生在上述选择率较高的三个项目:B、立定跳远;C、50米跑;D、半场运球中各选一项,同时选择半场运球、立定跳远的概率是多少?请用列表法或画树形图的方法加以说明并列出所有等可能的结果.23.(9分)随着经济水平的不断提升,越来越多的人选择到电影院去观看电影,体验视觉盛宴,并且更多的人通过淘票票,猫眼等网上平台购票,快捷且享受更多优惠,电影票价格也越来越便宜.2018年从网上平台购买5张电影票的费用比在现场购买3张电影票的费用少10元,从网上平台购买4张电影票的费用和现场购买2张电影票的费用共为190元.(1)请问2018年在网上平台购票和现场购票的每张电影票的价格各为多少元?(2)2019年“元旦”当天,南坪上海城的“华谊兄弟影院”按照2018年在网上平台购票和现场购票的电影票的价格进行销售,当天网上和现场售出电影票总票数为600张.“元旦”假期刚过,观影人数出现下降,于是该影院决定将1月2日的现场购票的价格下调,网上购票价格保持不变,结果发现现场购票每张电影票的价格每降价0.5元,则当天总票数比“元旦”当天总票数增加4张,经统计,1月2日的总票数中有通过网上平台售出,其余均由电影院现场售出,且当天票房总收益为19800元,请问该电影院在1月2日当天现场购票每张电影票的价格下调了多少元?24.(9分)如图所示,△ABC内接于⊙O,AB是⊙O的直径,点D在⊙O上,过点C的切线交AD的延长线于点E,且AE⊥CE,连接CD.(1)求证:DC=BC;(2)若AB=5,AC=4,求tan∠DCE的值.25.(10分)若关于x的二次函数y=ax2+bx+c(a,b,c为常数)与x轴交于两个不同的点A(x1,0),B(x2,0)与y轴交于点C,其图象的顶点为点M,O是坐标原点.(1)若A(﹣2,0),B(4,0),C(0,3)求此二次函数的解析式并写出二次函数的对称轴;(2)如图1,若a>0,b>0,△ABC为直角三角形,△ABM是以AB=2的等边三角形,试确定a,b,c的值;(3)设m,n为正整数,且m≠2,a=1,t为任意常数,令b=3﹣mt,c=﹣3mt,如果对于一切实数t,AB≥|2t+n|始终成立,求m、n的值.。