高三数学一轮复习练习 4.3挑战真题
- 格式:doc
- 大小:159.00 KB
- 文档页数:3
一、单选题二、多选题三、填空题1. 某三棱锥的三视图如图所示(网格中正方形的边长为1),则其表面积为()A.B.C.D.2. 已知a 、b 是实数,则“a >1,b >2”是“a +b >3且ab >2”的( )A .充分而不必要条件B .必要而不充分条件C .充分且必要条件D .既不充分也不必要条3. 下列函数中,最小正周期为的是( )A.B.C.D.4.设,,那么等于A.B.C.D.5. 在四棱锥P −ABCD 中,底面ABCD 为矩形,PA ⊥底面ABCD ,AB =1,,E 为PD 的中点,点N 在平面PAC 内,且NE ⊥平面PAC ,则点N 到平面PAB 的距离为( )A.B.C.D.6. 如图,在一个的二面角的棱上有两个点,线段分别在这个二面角的两个半平面内,并且都垂直于棱,且,则的长为()A .1B.C.D .27. 下列命题中,错误的是( )A .垂直于同一个平面的两个平面平行B .三个平面两两相交,则交线平行C .一个平面与两个平行平面相交,则交线平行D .平行于同一条直线的两个平面平行8. 已知四棱锥,底面ABCD是正方形,平面,,PC 与底面ABCD 所成角的正切值为,点M 为平面内一点(异于点A),且,则( )A .存在点M ,使得平面B .存在点M ,使得直线与所成角为C.当时,三棱锥的体积最大值为D .当时,以P 为球心,为半径的球面与四棱锥各面的交线长为9. 设常数使方程在闭区间上恰有三个解,,,则________.2023年全国新高考高三押题卷(四)数学试题(高频考点版)2023年全国新高考高三押题卷(四)数学试题(高频考点版)四、解答题10. 如图,四面体ABCD 中,DA =DB =DC =1,且DA 、DB 、DC 两两互相垂直,在该四面体表面上与点A 距离是的点形成一条曲线,这条曲线的长度是____________.11. 化简:____________.12.已知函数若函数在上不是增函数,则a 的一个取值为___________.13.求经过直线与直线的交点M ,且分别满足下列条件的直线方程:(1)与直线平行;(2)与直线垂直.14. 已知集合,,定义两个集合P ,Q 的差运算:.(1)当时,求与;(2)若“”是“”的必要条件,求实数a 的取值范围.15.已知数列中,,,且.(1)求,的值;(2)设,求数列的通项公式;(3)设,求数列的前项和.16. 的内角A ,B ,C 的对边分别为a ,b ,c .已知.(1)求A ;(2)已知,,且边BC 上有一点D 满足,求AD .。
2024届全国高考数学一轮复习好题专项(导数的综合应用)练习一、基础练习1.(2021ꞏ沙坪坝区ꞏ重庆一中高三其他模拟)已知e 为自然对数的底数,a ,b 为实数,且不等式()ln 310x e a x b +-++≤对任意()0,x ∈+∞恒成立,则当3b a+取最大值时,实数a 的值为( ) A .3eB .31e +C .4eD .41e +2.(2021ꞏ湖南高三其他模拟)已知函数()e ax f x =a 的取值范围是( ) A .0,2e ⎛⎫ ⎪⎝⎭B .,2e ⎛⎫+∞⎪⎝⎭C .10,2e ⎛⎫ ⎪⎝⎭D .1,2e ⎛⎫+∞⎪⎝⎭3.(2021ꞏ四川遂宁市ꞏ高三三模(理))已知函数()()2xh x x e =-,()212a a g x x x =-,又当()0h x ≥时,()()h x g x ≥恒成立,则实数a 的取值范围是( )A .(2,e ⎤-∞⎦B .(],e -∞C .(20,e ⎤⎦D .(]0,e4.(2021ꞏ全国高三其他模拟)已知f (x )是定义在区间[﹣2,2]上的偶函数,当x ∈[0,2]时,f (x )=xxe ,若关于x 的方程2f 2(x )+(2a ﹣1)f (x )﹣a =0有且只有2个实数根,则实数a 的取值范围是( )A .[﹣1e ,﹣22e ] B .[﹣1e ,﹣22e ) C .(﹣22e,0)D .(﹣22e ,0)∪{﹣1e}5.(2021ꞏ宁夏银川市ꞏ高三其他模拟(理))平行于x 轴的直线与函数ln ,0,(),0,x x f x e x x>⎧⎪=⎨-<⎪⎩的图像交于,A B 两点,则线段AB 长度的最小值为( ) A .1e e-B .1e e+C .eD .2e6.(2021ꞏ正阳县高级中学高三其他模拟(理))已知2m <-,若关于x 的不等式22e 2x mx n x +<+恒成立,则实数n 的取值范围为( ) A .[)3e,+∞B .)2e ,⎡+∞⎣C .[)e,+∞D .[)2e,+∞7.【多选题】(2021ꞏ河北衡水中学高三其他模拟)已知函数()3e exxx a f x x -=-+-,则下列结论中正确的是( )A .若()f x 在区间[]1,1-上的最大值与最小值分别为M ,m ,则0M m +=B .曲线()y f x =与直线y ax =-相切C .若()f x 为增函数,则a 的取值范围为(],2-∞D .()f x 在R 上最多有3个零点8.(2021ꞏ黑龙江大庆市ꞏ高三一模(理))用总长11m 的钢条制作一个长方体容器的框架,如果所制容器底面一条边比另一条边长1m ,则该容器容积的最大值为________m 3(不计损耗). 9.(2021ꞏ湖南高三其他模拟)中国最早的化妆水是1896年在香港开设的广生行生产的花露水,其具有保湿、滋润、健康皮肤的功效.已知该化妆水容器由一个半球和一个圆柱组成(其中上半球是容器的盖子,化妆水储存在圆柱中),容器轴截面如图所示,上部分是半圆形,中间区域是矩形,其外周长为12cm .则当圆柱的底面半径r =___________时,该容器的容积最大,最大值为___________.10.(2021ꞏ全国高三其他模拟)若函数ln ()1xxf x ae x=--只有一个零点,则实数a 的取值范围是 ________. 二、提升练习1.(2021ꞏ全国高三其他模拟)若不等式ln x ax b ≤+恒成立,则2a b +的最小值为( ) A .2B .3C .ln 2D .52.(2021ꞏ北京高考真题)已知函数()lg 2f x x kx =--,给出下列四个结论: ①若0k =,则()f x 有两个零点; ②0k ∃<,使得()f x 有一个零点; ③0k ∃<,使得()f x 有三个零点; ④0k ∃>,使得()f x 有三个零点. 以上正确结论得序号是_______.3.(2021ꞏ四川省绵阳南山中学高三其他模拟(文))设函数()()222ln xf x x x e aex e x =-+-,其中e 为自然对数的底数,曲线()y f x =在()()22f ,处切线的倾斜角的正切值为2322e e +.(1)求a 的值; (2)证明:()0f x >.4.(2021ꞏ全国高三其他模拟(理))已知函数()()ln e xf x x m x -=+-.(1)若()f x 的图象在点()()1,1f 处的切线与直线20x y -=平行,求m 的值; (2)在(1)的条件下,证明:当0x >时,()0f x >; (3)当1m >时,求()f x 的零点个数.5.(2021ꞏ黑龙江哈尔滨市ꞏ哈尔滨三中高三其他模拟(文))已知函数2211()(1)ln (0)22f x x a x a x a a =-+++>. (1)讨论()f x 的单调性;(2)若函数()y f x =只有一个零点,求实数a 的取值范围.6.(2021ꞏ河北高三其他模拟)已知函数2ln 1()(ln )()2k x f x x k x+=+∈R . (1)当0k =时,求证:()1f x ≤; (2)当0k ≠时,讨论()f x 零点的个数.7.(2021ꞏ重庆市育才中学高三二模)已知函数()x f x e =,()1g x ax =+. (1)已知()()f x g x ≥恒成立,求a 的值;(2)若(0,1)x ∈,求证:21ln 11()x x f x x-+-<. 8.(2021ꞏ全国高三其他模拟)已知函数()()ln x a f x a x+=+,()0,x ∈+∞.(1)当0a =时,讨论函数()f x 的单调性; (2)若函数()f x 存在极大值M ,证明:12M e≤<.9.(2021ꞏ重庆高三二模)已知函数()ln ()f x ax x a R =+∈在1x =处取得极值. (1)若对(0,),()1x f x bx ∀∈+∞≤-恒成立,求实数b 的取值范围;(2)设()()(2)x g x f x x e =+-,记函数()y g x =在1,14⎡⎤⎢⎥⎣⎦上的最大值为m ,证明:(4)(3)0m m ++<. 10.(2021ꞏ江苏南通市ꞏ高三一模)已知函数()()21ln 22f x ax ax x =+-,0a >. (1)求函数()f x 的增区间;(2)设1x ,2x 是函数()f x 的两个极值点,且12x x <,求证:122x x +>. 三、真题练习1.(2021ꞏ全国高考真题(文))设函数22()3ln 1f x a x ax x =+-+,其中0a >. (1)讨论()f x 的单调性;(2)若()y f x =的图像与x 轴没有公共点,求a 的取值范围.2.(2021ꞏ全国高考真题(理))设函数()()ln f x a x =-,已知0x =是函数()y xf x =的极值点. (1)求a ; (2)设函数()()()x f x g x xf x +=.证明:()1g x <.3.(2021ꞏ全国高考真题)已知函数()()1ln f x x x =-. (1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b -=-,证明:112e a b<+<. 4.(2020·山东海南省高考真题)已知函数1()e ln ln x f x a x a -=-+.(1)当a e =时,求曲线y =f (x )在点(1,f (1))处的切线与两坐标轴围成的三角形的面积; (2)若f (x )≥1,求a 的取值范围.5.(2020·浙江省高考真题)已知12a <≤,函数()e xf x x a =--,其中e =2.71828…为自然对数的底数.(Ⅰ)证明:函数()y f x =在(0)+∞,上有唯一零点;(Ⅱ)记x 0为函数()y f x =在(0)+∞,上的零点,证明:0x ≤≤; (ⅱ)00(e )(e 1)(1)x x f a a ≥--.6.(2019·全国高考真题(理))已知函数.(1)讨论f (x )的单调性,并证明f (x )有且仅有两个零点;(2)设x 0是f (x )的一个零点,证明曲线y =ln x 在点A (x 0,ln x 0)处的切线也是曲线的切线.()11ln x f x x x -=-+e x y =参考答案一、基础练习1.(2021ꞏ沙坪坝区ꞏ重庆一中高三其他模拟)已知e 为自然对数的底数,a ,b 为实数,且不等式()ln 310x e a x b +-++≤对任意()0,x ∈+∞恒成立,则当3b a+取最大值时,实数a 的值为( ) A .3e B .31e +C .4eD .41e +【答案】C 【答案解析】不等式(3)10lnx e a x b +-++…对任意(0,)x ∈+∞恒成立,化为不等式31lnx ex ax b +--…对任意(0,)x ∈+∞恒成立,必然有0a >.令1=x e,化为:31b a e +….令4a e =,1b =.利用导数研究函数的单调性极值最值即可得出结论. 【答案详解】解:不等式(3)10lnx e a x b +-++…对任意(0,)x ∈+∞恒成立, 则不等式31lnx ex ax b +--…对任意(0,)x ∈+∞恒成立, 则0a >. 令1=x e,则131a b e -+--…,化为:31b a e +…. 令4a e =,1b =.不等式31lnx ex ax b +--…对任意(0,)x ∈+∞恒成立,即不等式20lnx ex -+…对任意(0,)x ∈+∞恒成立, 令()2f x lnx ex =-+,则1()1()e x e f x e x x --'=-=,可得:1=x e 时,函数()f x 取得极大值即最大值,1(1120f e=--+=, 满足题意.可以验证其他值不成立. 故选:C .2.(2021ꞏ湖南高三其他模拟)已知函数()e ax f x =a 的取值范围是( ) A .0,2e ⎛⎫ ⎪⎝⎭B .,2e ⎛⎫+∞⎪⎝⎭C .10,2e ⎛⎫ ⎪⎝⎭D .1,2e ⎛⎫+∞ ⎪⎝⎭【答案】C 【答案解析】函数零点即方程ax e =的解,2ax e x =(0x >),取对数得2ln ax x =,此方程有两个解,引入函数()ln 2g x x ax =-,利用导数求得函数的单调性,函数的变化趋势,然后由零点存在定理可得结论.【答案详解】显然(0)1f =,()e ax f x =有两个零点,即方程ax e =,2ax e x =在(0,)+∞上有两个解,两边取对数得到2ln ax x =,令()ln 2g x x ax =-,1()2g x a x '=-,()g x 在10,2a ⎛⎫ ⎪⎝⎭单调递增,在1,2a ⎛⎫+∞ ⎪⎝⎭单调递减,又当0x →时,()g x →-∞,当x →+∞时,()g x →-∞, 因为()g x 有两个零点,则11ln 1022g a a ⎛⎫=->⎪⎝⎭, 解得12e a <.所以正数a 的取值范围是10,2e ⎛⎫⎪⎝⎭. 故选:C .3.(2021ꞏ四川遂宁市ꞏ高三三模(理))已知函数()()2xh x x e =-,()212a a g x x x =-,又当()0h x ≥时,()()h x g x ≥恒成立,则实数a 的取值范围是( )A .(2,e ⎤-∞⎦B .(],e -∞C .(20,e ⎤⎦D .(]0,e【答案】A 【答案解析】首先根据()0h x ≥求出2x ≥,进而参变分离解决恒成立的问题即可. 【答案详解】因为()()2xh x x e =-,所以()0h x ≥,即2x ≥,所以当2x ≥时,()()h x g x ≥恒成立,即()2122xa a x e x x -≥-, 即()()1222xx e x ax -≥-, 当2x =时,()()1222xx e x ax -≥-恒成立,符合题意;当()2,x ∈+∞时,有12xe ax ≥,即2xe xa ≥,令()2x e m x x =,则()()2210x e x m x x-'=>,所以()m x 在()2,x ∈+∞上单调递增,而()22m e =,所以2e a ≥,故选:A.4.(2021ꞏ全国高三其他模拟)已知f (x )是定义在区间[﹣2,2]上的偶函数,当x ∈[0,2]时,f (x )=xxe ,若关于x 的方程2f 2(x )+(2a ﹣1)f (x )﹣a =0有且只有2个实数根,则实数a 的取值范围是( )A .[﹣1e ,﹣22e ]B .[﹣1e ,﹣22e ) C .(﹣22e,0)D .(﹣22e ,0)∪{﹣1e}【答案】D 【答案解析】利用导数研究函数在定义域上的单调性,得出1()f x e≤;结合题意得出()f x 在[]02,有且仅有1个解,计算(0)(2)f f 、的值即可. 【答案详解】当[]02x ∈,时()xxf x e =, 则1()x xf x e-'=令()=0f x ',解得1x =,所以当[]01x ∈,时()0f x '>,()f x 单调递增; 当[]12x ∈,时()0f x '<,()f x 单调递减, 所以max 1()(1)f x f e==,故1()f x e≤在定义域上恒成立,由22()(21)()0f x a f x a +--=有且只有2个实数根, 得方程[]12()()02f x a f x ⎡⎤+-=⎢⎥⎣⎦有2个解,又1()f x e≤,所以111()022f x e -≤-<,则()f x 在[]02,有且仅有1个解, 因为22(0)0(2)f f e ==,,则220a e <-<或1a e-=, 所以220a e-<<或1a e =-,即实数的取值范围是2210e e ⎛⎫⎧⎫--⎨⎬ ⎪⎝⎭⎩⎭,, 故选:D5.(2021ꞏ宁夏银川市ꞏ高三其他模拟(理))平行于x 轴的直线与函数ln ,0,(),0,x x f x e x x>⎧⎪=⎨-<⎪⎩的图像交于,A B 两点,则线段AB 长度的最小值为( ) A .1e e-B .1e e+C .eD .2e【答案】D 【答案解析】画出函数图像,数形结合构造函数,利用导数判断函数单调性并求函数最值即可. 【答案详解】根据题意,画出()f x 的图象如下所示:令()f x t =,(0)t >,故可得lnx t =,解得t x e =;e t x -=,解得e x t=-.故可得(),,,te A e t B t t ⎛⎫- ⎪⎝⎭,(0)t >, 故()teAB g t e t==+,(0)t >, 故可得()2te g t e t ='-,()30te g t e t'=+>'恒成立, 故()g t '是单调递增函数,且()10g '=,关于()0g t '<在()0,1成立,()0g t '>在()1,+∞成立, 故()g t 在()0,1单调递减,在()1,+∞单调递增, 故()()12min g t g e e e ==+=. 即||AB 的最小值为2e . 故选:D6.(2021ꞏ正阳县高级中学高三其他模拟(理))已知2m <-,若关于x 的不等式22e 2x mx n x +<+恒成立,则实数n 的取值范围为( ) A .[)3e,+∞ B .)2e ,⎡+∞⎣C .[)e,+∞D .[)2e,+∞【答案】D 【答案解析】参变分离可得222e x mx x n +-<,研究函数()222exmx xf x +-=,根据导函数()()22e x m x x m f x ⎛⎫--- ⎪⎝⎭'=以及2m <-,可得函数()f x 的极大值为22222e 0e m m f m -⎛⎫==> ⎪⎝⎭,当2x >,()2220ex mx x f x -+=<,所以()2max 2e m f x -⎡⎤=⎣⎦,根据()f x 的最大值的范围即可得解. 【答案详解】由22e 2xmx n x +<+,得222exmx x n +-<, 令()222exmx xf x +-=,则()()22e xm x x m f x ⎛⎫--- ⎪⎝⎭'=,当2m <-时,210m-<<, 函数()f x 在2,m ⎛⎫-∞ ⎪⎝⎭,()2,+∞上单调递增,在2,2m ⎛⎫⎪⎝⎭上单调递减,故函数()f x 的极大值为22222e 0e mm f m -⎛⎫==> ⎪⎝⎭,极小值为()24220e m f -=<, 且2x >时,()2220ex mx x f x -+=<,所以()2max 2e m f x -⎡⎤=⎣⎦,由2m <-, 得22e 2e m -<,由()f x n <恒成立,得2e n ≥, 故选:D .7.【多选题】(2021ꞏ河北衡水中学高三其他模拟)已知函数()3e exxx a f x x -=-+-,则下列结论中正确的是( )A .若()f x 在区间[]1,1-上的最大值与最小值分别为M ,m ,则0M m +=B .曲线()y f x =与直线y ax =-相切C .若()f x 为增函数,则a 的取值范围为(],2-∞D .()f x 在R 上最多有3个零点 【答案】ACD 【答案解析】由定义法确定函数的奇偶性,再求导数判断函数的单调性与切线斜率,以及零点情况. 【答案详解】因为对于任意x ∈R ,都有()()()()3e e x x x x a xf x f -=-+---=--, 所以()f x 为奇函数,其图象关于原点对称,故A 正确.又()2e e 3xxx a f x =++-',令()f x a '=-,得2e e 30x x x -++=(*),因为e 0x >,e 0x ->,所以方程(*)无实数解,即曲线()y f x =的所有切线的斜率都不可能为a -,故B 错误.若()f x 为增函数,则()f x ¢大于等于0,即2e e 3x x a x -≤++,2e e 32x x x -++≥, 当且仅当0x =时等号成立,所以2a ≤,故C 正确.令()0f x =,得0x =或2e e x x x a x --+=(0x ≠).设()2e e x x g x x x--=+,则()()()21e 1e 2x x x x x x g x -'=-+++,令()()()1e 1e x xx x t x -=-++,则()()e exxx x t -='-.当0x >时,()0t x '>,当0x =时,()0t x '=,当0x <时,()0t x '>,所以函数()t x 为增函数,且()00t =,所以当0x >时,()0t x >,从而()0g x ¢>,()g x 单调递增.又因为对于任意0x ≠,都有()()g x g x -=,所以()g x 为偶函数,其图象关于y 轴对称. 综上,()g x 在(),0-?上单调递减,在()0,+?上单调递增,则直线y a =与()y g x =最多有2个交点,所以()f x 在R 上最多有3个零点,故D 正确. 故选ACD .8.(2021ꞏ黑龙江大庆市ꞏ高三一模(理))用总长11m 的钢条制作一个长方体容器的框架,如果所制容器底面一条边比另一条边长1m ,则该容器容积的最大值为________m 3(不计损耗). 【答案】916. 【答案解析】设长方体的底面边长为,a b ,高为h ,由题可得3217244V b b b =--+,求出函数导数,判断单调性,即可求出最值. 【答案详解】设长方体的底面边长为,a b ,高为h ,则由题可得1a b =+,()411a b h ++=,则可得784b h -=,则708b <<, 则该容器容积()32781712444b V abh b b b b b -==+⋅⋅=--+,217176624212V b b b b ⎛⎫⎛⎫'=--+=--+ ⎪⎪⎝⎭⎝⎭,当10,2b ⎛⎫∈ ⎪⎝⎭时,0V '>,V 单调递增;当17,28b ⎛⎫∈ ⎪⎝⎭时,0V '<,V 单调递减, ∴当12b =时,max 916V =,即该容器容积的最大值为916. 故答案为:916.9.(2021ꞏ湖南高三其他模拟)中国最早的化妆水是1896年在香港开设的广生行生产的花露水,其具有保湿、滋润、健康皮肤的功效.已知该化妆水容器由一个半球和一个圆柱组成(其中上半球是容器的盖子,化妆水储存在圆柱中),容器轴截面如图所示,上部分是半圆形,中间区域是矩形,其外周长为12cm .则当圆柱的底面半径r =___________时,该容器的容积最大,最大值为___________.【答案】8 c m 2π+ ()32128 c m 2ππ+ 【答案解析】设圆柱的底面半径为r ,圆柱的高为h ,根据已知条件可得出262h r π+=-,根据柱体的体积公式可得()23262V r r πππ+=-,利用导数可求得V 的最大值及其对应的r 的值,即为所求.【答案详解】设圆柱的底面半径为r ,圆柱的高为h . 则由题意可得2212r h r π++=,所以()1222622r h r ππ-++==-.由0h >,得122r π<+. 故容器的容积()22232212660222V r h r r r r r πππππππ++⎛⎫⎛⎫==-=-<< ⎪ ⎪+⎝⎭⎝⎭,容易忽略上半球是容器的盖子,化妆水储存在圆柱中.()232122V r r πππ+'=-,令0V '=,解得0r =(舍)或82r π=+. 显然当80,2r π⎛⎫∈ ⎪+⎝⎭时,0V '>,函数()23262V r r πππ+=-单调递增; 当812,22r ππ⎛⎫∈⎪++⎝⎭时,0V '<,函数()23262V r r πππ+=-单调递减. 所以当8cm 2r π=+时,V 取得最大值, 此时2862cm 22h ππ+=-⨯=+,()23281282cm 22V ππππ⎛⎫=⨯= ⎪+⎝⎭+. 故答案为:8 c m 2π+;()32128 c m 2ππ+. 10.(2021ꞏ全国高三其他模拟)若函数ln ()1xxf x ae x=--只有一个零点,则实数a 的取值范围是 ________. 【答案】0a ≤或1a e= 【答案解析】将函数的零点转化为方程ln (0)x x x a x xe +=>的根,令ln ()xx xg x xe +=,利用导数研究函数的图象特征,即可得到答案; 【答案详解】ln ln 10(0)x x x x xae a x x xe +--=⇔=>, 令ln ()xx x g x xe+=,则'2()(1ln )()x x x x g x x e +--=, ''()01ln 0,()01ln 0,g x x x g x x x >⇔--><⇔--<令()1ln u x x x =--,则'1()10u x x=--<在0x >恒成立, ∴()1ln u x x x =--在(0,)+∞单调递减,且(1)0u =, ∴''()001,()01g x x g x x >⇒<<<⇒>,∴()g x 在(0,1)单调递增,在(1,)+∞单调递减,且1(1)g e=,当x →+∞时,()0g x →, 如图所示,可得当0a ≤或1a e =时,直线y a =与ln xx x y xe +=有且仅有一个交点, 故答案为:0a ≤或1a e=1.(2021ꞏ全国高三其他模拟)若不等式ln x ax b ≤+恒成立,则2a b +的最小值为( ) A .2 B .3C .ln 2D .5【答案】C 【答案解析】构造函数()ln f x ax x b =-+,根据函数的单调性及最值可得ln 1b a ≥--,故22ln 1a b a a +≥--,再构造()2ln 1g x x x =--,求得函数()g x 的最小值即可. 【答案详解】由ln x ax b ≤+恒成立,得ln 0ax x b -+≥, 设()ln f x ax x b =-+,()1f x a x'=-, 当0a ≤时,()0f x ¢<,()f x 在()0,+?上单调递减,不成立;当0a >时,令()0f x ¢=,解得1x a=,故函数()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增, 故()10f x f a ⎛⎫≥≥⎪⎝⎭,即11ln 0a b a a ⎛⎫⋅-+≥ ⎪⎝⎭,ln 1b a ≥--,练提升22ln 1a b a a +≥--,设()2ln 1g x x x =--,()12g x x'=-, 令()0g x ¢=,12x =, 故()g x 在10,2⎛⎫ ⎪⎝⎭上单调递减,在1,2⎛⎫+∞ ⎪⎝⎭上单调递增, 故()1112ln 1ln 2222g x g ⎛⎫⎛⎫≥=⨯--=⎪ ⎪⎝⎭⎝⎭, 即2ln 2a b +≥, 故选:C.2.(2021ꞏ北京高考真题)已知函数()lg 2f x x kx =--,给出下列四个结论: ①若0k =,则()f x 有两个零点; ②0k ∃<,使得()f x 有一个零点; ③0k ∃<,使得()f x 有三个零点; ④0k ∃>,使得()f x 有三个零点. 以上正确结论得序号是_______. 【答案】①②④ 【答案解析】由()0f x =可得出lg 2x kx =+,考查直线2y kx =+与曲线()lg g x x =的左、右支分别相切的情形,利用方程思想以及数形结合可判断各选项的正误. 【答案详解】对于①,当0k =时,由()lg 20f x x =-=,可得1100x =或100x =,①正确; 对于②,考查直线2y kx =+与曲线()lg 01y x x =-<<相切于点(),lg P t t -,对函数lg y x =-求导得1ln10y x '=-,由题意可得2lg 1ln10kt t k t +=-⎧⎪⎨=-⎪⎩,解得100100lg e t k e e ⎧=⎪⎪⎨⎪=-⎪⎩, 所以,存在100lg 0k e e=-<,使得()f x 只有一个零点,②正确; 对于③,当直线2y kx =+过点()1,0时,20k +=,解得2k =-,所以,当100lg 2e k e-<<-时,直线2y kx =+与曲线()lg 01y x x =-<<有两个交点, 若函数()f x 有三个零点,则直线2y kx =+与曲线()lg 01y x x =-<<有两个交点,直线2y kx =+与曲线()lg 1y x x =>有一个交点,所以,100lg 220e k ek ⎧-<<-⎪⎨⎪+>⎩,此不等式无解, 因此,不存在0k <,使得函数()f x 有三个零点,③错误;对于④,考查直线2y kx =+与曲线()lg 1y x x =>相切于点(),lg P t t ,对函数lg y x =求导得1ln10y x '=,由题意可得2lg 1ln10kt t k t +=⎧⎪⎨=⎪⎩,解得100lg 100t ee k e =⎧⎪⎨=⎪⎩,所以,当lg 0100ek e<<时,函数()f x 有三个零点,④正确.故答案为:①②④.3.(2021ꞏ四川省绵阳南山中学高三其他模拟(文))设函数()()222ln xf x x x e aex e x =-+-,其中e 为自然对数的底数,曲线()y f x =在()()22f ,处切线的倾斜角的正切值为2322e e +. (1)求a 的值; (2)证明:()0f x >.【答案】(1)2a =;(2)证明见答案解析. 【答案解析】(1)求出函数的导函数,再代入计算可得;(2)依题意即证()()2222ln 0xf x x x e ex e x =-+->,即()12ln 2x x x e e x--+>,构造函数()()222x g x x e e-=-+,()ln xh x x =,利用导数说明其单调性与最值,即可得到()()>g x h x ,从而得证; 【答案详解】解:(1)因为()()222ln xf x x x e aex e x =-+-,所以()()222xef x x e ae x'=-+-,()22332222e ef ae e =+=+',解得2a =.(2)由(1)可得()()2222ln xf x x x e ex e x =-+-即证()()()2212ln 22ln 02x x x f x x x e ex e x x e e x-=-+->⇔-+>. 令()()222x g x x e e-=-+,()()21x g x x e -=-',于是()g x 在()0,1上是减函数,在()1,+∞上是增函数,所以()()11g x g e≥=(1x =取等号). 又令()ln x h x x =,则()21ln xh x x -'=,于是()h x 在()0,e 上是增函数,在(),e +∞上是减函数,所以()()1h x h e e≤=(x e =时取等号).所以()()>g x h x ,即()0f x >.4.(2021ꞏ全国高三其他模拟(理))已知函数()()ln e xf x x m x -=+-.(1)若()f x 的图象在点()()1,1f 处的切线与直线20x y -=平行,求m 的值; (2)在(1)的条件下,证明:当0x >时,()0f x >; (3)当1m >时,求()f x 的零点个数.【答案】(1)1m =;(2)证明见答案解析;(3)有一个零点. 【答案解析】(1)利用导数的几何意义求解即可(2)利用导数,得到()f x 在()0,∞+上单调递增,由()00f =,即可证明()0f x >在()0,∞+上恒成立 (3)由(2)可知当1m >且0x >时,()()ln 1e0xf x x x ->+->,即()f x 在()0,∞+上没有零点,再根据,0x m +>,得到x m >-, 对(),0x m ∈-进行讨论,即可求解 【答案详解】解:(1)因为()f x 的图象在点()()1,1f 处的切线与直线20x y -=平行,所以()112f '=, 因为()()11e x f x x x m -+-'=+, 所以()11112f m ='=+,解得1m =. (2)由(1)得当1m =时,()()()21e 11e 11ex xx x f x x x x -+-=+-=++', 当0x >时,因为()0f x '>,所以()f x 在()0,∞+上单调递增, 因为()00f =,所以()0f x >在()0,∞+上恒成立. (3)由(2)可知当1m >且0x >时,()()ln 1e 0xf x x x ->+->,即()f x 在()0,∞+上没有零点,当(),0x m ∈-时,()()()()2e 111e e x xxx m x m f x x x m x m -++--=+-=++',令()()2e 1xg x x m x m =++--,(),0x m ∈-,则()e 21xg x x m =++-'单调递增,且()e21e 10mm g m m m m ---=-+-=--<',()00g m '=>,所以()g x '在(),0m -上存在唯一零点,记为0x ,且()0,x m x ∈-时,()0g x '<,()0,0x x ∈时,()0g x '>, 所以()g x 在()0,m x -上单调递减,在()0,0x 上单调递增, 因为1m >, 所以()e0mg m --=>,()010g m =-<,因为()()00g x g <,所以()00g x <,所以()g x 在()0,m x -上存在唯一零点1x ,且在()0,0x 上恒小于零, 故()1,x m x ∈-时,()0g x >;()1,0x x ∈时,()0g x <,所以()f x 在()1,m x -上单调递增,在()1,0x 上单调递减,且()0ln 0f m =>, 所以()f x 在(),0m -上至多有一个零点, 取()e 2e ,0mm x m m -=-+∈-, 则有()()22ln e 0mf x x m m <++=,所以由零点存在定理可知()f x 在(),0m -上只有一个零点, 又f (0)不为0,所以()f x 在(),m -+∞上只有一个零点.5.(2021ꞏ黑龙江哈尔滨市ꞏ哈尔滨三中高三其他模拟(文))已知函数2211()(1)ln (0)22f x x a x a x a a =-+++>. (1)讨论()f x 的单调性;(2)若函数()y f x =只有一个零点,求实数a 的取值范围.【答案】(1)答案见答案解析;(2)01a <<+或a e >.【答案解析】 (1)求得()'fx ,对a 进行分类讨论,由此求得()f x 的单调区间.(2)根据(1)的结论,结合函数的极值以及零点个数,求得a 的取值范围. 【答案详解】 (1)()()()'1x x a f x x--=,当01a <<时,由()'00f x x a >⇒<<或1x >,所以()f x 在()0,a ,()1,+∞单调递增,由()'01fx a x <⇒<<,所以()f x 在(),1a 单调递减;当1a >时,由()'001fx x >⇒<<或x a >,所以()f x 在()0,1,(),a +∞单调递增,由()'01f x x a <⇒<<,所以()f x 在()1,a 单调递减;当1a =时,()()2'10x f x x-=≥⇒()f x 在()0,∞+单调递增.(2)1(1)(1(12f a a ⎡⎤⎡⎤=--⎣⎦⎣⎦,()(ln 1)f a a a =-, 由(1)知当01a <<时,()f x 在x a =处,有极大值,且()0f a <,此时函数有一个零点; 当1a =时,()f x 在()0,∞+单调递增,且()10f <,此时函数有一个零点;当1a >时,()0,1,(),a +∞单调递增,()1,a 单调递减,()f x 在x a =处,有极小值,()f x 在1x =处,有极大值,则当()10f <,或()0f a >时函数有一个零点,有11a <<或a e >.综上:01a <<+或a e >.6.(2021ꞏ河北高三其他模拟)已知函数2ln 1()(ln )()2k x f x x k x+=+∈R . (1)当0k =时,求证:()1f x ≤; (2)当0k ≠时,讨论()f x 零点的个数.【答案】(1)证明过程见解答;(2)当0k <时,()f x 有两个零点,当0k >时,()f x 有一个零点. 【答案解析】(1)将0k =代入,对()f x 求导,得到其单调性,判断其最值,即可得证;(2)令t lnx =,则()0f x =即为2102t k t t e ++=,显然0t ≠,进一步转化为212t k t t e +-=,令21()(0)t t h t t t e+=≠,利用导数作出()h t 的大致图象,进而图象判断方程解的情况,进而得到函数()f x 零点情况. 【答案详解】(1)证明:当0k =时,1()(0)lnx f x x x +=>,则2()lnxf x x'=-, ∴当(0,1)x ∈时,()0f x '>,()f x 单增,当(1,)x ∈+∞时,()0f x '<,()f x 单减,()f x f ∴…(1)1=,即得证;(2)令t lnx =,则()0f x =即为2102t k t t e++=,当0t =,即1x =时,该方程不成立,故1x =不是()f x 的零点; 接下来讨论0t ≠时的情况,当0t ≠时,方程可化为212tk t t e +-=, 令21()(0)t t h t t t e +=≠,则222()tt th t t e++'=-,当0t <时,22220t t ++-=-<…,当且仅当t =当0t >时,22220t t +++=+>…,当且仅当t =时取等号,∴当0t <时,()0h t '>,()h t 单增,当0t >时,()0h t '<,()h t 单减,且当0t →时,()h t →+∞,(1)0h -=,当1t <-时,()0h t <,当0t >时,()0h t >, 函数()h t 的大致图象如下:由图象可知,当02k -<,即0k >时,212t k t t e +-=只有一个解,则()f x 有一个零点,当02k ->,即0k <时,212tk t t e +-=有两个解,则()f x 有两个零点. 综上,当0k <时,()f x 有两个零点,当0k >时,()f x 有一个零点. 7.(2021ꞏ重庆市育才中学高三二模)已知函数()x f x e =,()1g x ax =+. (1)已知()()f x g x ≥恒成立,求a 的值;(2)若(0,1)x ∈,求证:21ln 11()x x f x x-+-<. 【答案】(1)1a =;(2)证明见答案解析. 【答案解析】(1)作差,设()()()1x h x f x g x e ax =-=--,利用导数求出()h x 的最小值为(ln )ln 10h a a a a =--≥,只需1ln 10a a +-≤;设1()ln 1a a aϕ=+-,利用导数求出min ()(1)0a ϕϕ==,解出1a =; (2)利用1x e x >+把原不等式转化为证明1ln 111x x x x -+-<+,即证:21ln 10x x x-++>, 设21()ln 1F x x x x=-++,利用导数求出最小值,即可证明.【答案详解】(1)设()()()1x h x f x g x e ax =-=--,()x h x e a '=-,当0a ≤时,()0x h x e a '=->,()h x 单增,当,()x h x →-∞→-∞,不满足恒成立 当0a >,()h x 在(,ln )x a ∈-∞单减,()h x 在(ln ,)x a ∈+∞单增, 所以()h x 的最小值为(ln )ln 10h a a a a =--≥,即11ln 0a a --≥,即1ln 10a a+-≤ 设1()ln 1a a a ϕ=+-,21()a a aϕ-'=,所以()ϕx 在(0,1)x ∈单减,()ϕx 在(1,)+∞单增, 即min()(1)0a ϕϕ==,故1ln 10a a+-≤的解只有1a =,综上1a =(2)先证当(0,1)x ∈时,1x e x >+恒成立.令()1x h x e x =--,求导()10x h x e '=->,所以()h x 在(0,1)x ∈上单调递增,()(0)0h x h >=,所以1x e x >+所以要证1ln 11x x x e x -+-<,即证1ln 111x x x x-+-<+, 即证211ln 1x x x x x x +-++-<+,即证:21ln 10x x x -++>, 设21()ln 1F x x x x=-++,求导22111()2(1)20F x x x x x x x '=--=--<,所以()F x 在(0,1)上单调递减,所以()(1)10F x F >=>,即原不等式成立.所以当(0,1)x ∈时,如1ln 11()x x f x x-+-<成立. 8.(2021ꞏ全国高三其他模拟)已知函数()()ln x a f x a x+=+,()0,x ∈+∞.(1)当0a =时,讨论函数()f x 的单调性; (2)若函数()f x 存在极大值M ,证明:12M e≤<. 【答案】(1)当()0,x e ∈时,()f x 单调递增;当(),x e ∈+∞时,()f x 单调递减;(2)证明见答案解析. 【答案解析】(1)将0a =代入函数,并求导即可分析单调性;(2)求导函数,讨论当0a =,01a <<与1a ≥时分析单调性,并判断是否有极大值,再求解极大值,即可证明.【答案详解】(1)()f x 的定义域是()0,∞+ 当0a =时,()ln x f x x =,()21ln xf x x -'=, 令()0f x '=,得x e =,所以当()0,x e ∈时,()0f x '>,()f x 单调递增; 当(),x e ∈+∞时,()0f x '<,()f x 单调递减;(2)()()()()()22ln ln xx a x x a x ax a f x x x x a -+-+++'==+, 令()()()()ln ,0,g x x x a x a x =-++∈+∞, 则()()ln g x x a '=-+,由()f x 的定义域是()0,∞+,易得0a ≥,当0a =时,由(1)知,()f x 在x e =处取得极大值,所以()1==M f e e. 当1a ≥时,()0g x '<在()0,x ∈+∞上恒成立,所以()g x 在()0,∞+上单调递减,()ln 0g x a a <-<,所以()0f x '<,故()f x 没有极值. 当01a <<时,令()0g x '=,得1x a =-,所以当()0,1x a ∈-时,()0g x '>,()g x 单调递增;当()1,x a ∈-+∞时,()0g x '<,()g x 单调递减. 所以当()0,1x a ∈-时,()ln 0g x a a >->,又()110g a a -=->,()0-=-<g e a a ,且1-<-e a a ,所以存在唯一()01,∈--x a e a ,使得()()()0000ln g x x x a x a =-+⋅+,当()00,x x ∈时,()0g x >,即()0f x '>,()f x 单调递增;当()0,x x ∈+∞时,()0g x <,即()0f x '<,()f x 单调递减.所以当0x x =时,()f x 取得极大值,所以()()000ln x a M f x a x +==+,所以()()()()000000011ln M x a x x a x a x a x a x a=++-=++-+⋅+++. 令0x a t +=,则()1,t e ∈,设()1ln h t t t t t=+-,()1,t e ∈, 则()21ln 0h t t t'=--<, 所以()h t 在()1,e 上单调递减, 所以()12<<h t e ,所以12<<M e. 综上,若函数()f x 存在极大值M ,则12M e≤<. 9.(2021ꞏ重庆高三二模)已知函数()ln ()f x ax x a R =+∈在1x =处取得极值. (1)若对(0,),()1x f x bx ∀∈+∞≤-恒成立,求实数b 的取值范围;(2)设()()(2)x g x f x x e =+-,记函数()y g x =在1,14⎡⎤⎢⎥⎣⎦上的最大值为m ,证明:(4)(3)0m m ++<. 【答案】(1)211b e -≤;(2)证明见答案解析. 【答案解析】(1)由条件求出a ,然后由()1f x bx ≤-可得1ln 1+x b x x≤-,然后用导数求出右边对应函数的最小值即可;(2)11()(1)e 1(1)(xx g x x x e x x'=--+=--,令()1e x h x x =-,然后可得存在01(,1)2x ∈使得()00h x =,即01ex x =,即00ln x x =-,然后可得0max 000000000012()()(2)ln (2)12x m g x g x x e x x x x x x x x ===--+=---=--,然后判断出函数2()12G x x x=--的单调性即可. 【答案详解】 (1)∵1()f x a x'=+,(1)10f a '=+=,∴1a =-,由已知()1f x bx ≤-,即ln 1x x bx -≤-,即1ln 1+x b x x≤-对()0,x ∀∈+∞恒成立, 令1ln ()1x t x x x =+-,则22211ln ln 2()x x t x x x x --'=--=,易得()t x 在2(0,)e 上单调递减,在2(,)e +∞上单调递增, ∴2min 21()()1t x t e e==-,即211b e -≤. (2)()()(2)e (2)e ln x x g x f x x x x x =+-=--+,则11()(1)e 1(1)(xx g x x x e x x'=--+=--. 当114x <<时,10x -<,令()1e xh x x=-, 则21()e 0xh x x'=+>,所以()h x 在1[,1]4上单调递增.∵121(()e 202h h x ==-<,(1)10h e =->,∴存在01(,1)2x ∈使得()00h x =,即01ex x =,即00ln x x =-. ∴当01(,)4x x ∈时,()0h x <,此时()0g x '>; 当0(,1)x x ∈时,()0h x >,此时()0g x '<; 即()g x 在01(,)4x 上单调递增,在0(),1x 上单调递减,则0max 000000000012()()(2)ln (2)12xm g x g x x e x x x x x x x x ===--+=---=--. 令2()12G x x x =--,1(,1)2x ∈,则22222(1)()20x G x x x '-=-=>,∴()G x 在1(,1)2x ∈上单调递增,则1()(42G x G >=-,()(1)3G x G <=-, ∴43m -<<-.∴()()430m m ++<.10.(2021ꞏ江苏南通市ꞏ高三一模)已知函数()()21ln 22f x ax ax x =+-,0a >. (1)求函数()f x 的增区间;(2)设1x ,2x 是函数()f x 的两个极值点,且12x x <,求证:122x x +>.【答案】(1)答案见答案解析;(2)证明见答案解析. 【答案解析】(1)求函数的导数,分类讨论,解不等式即可求解;(2)根据极值点可转化为1x ,2x 是方程2210-+=ax x 的两个不相等的正实数根,可得12x >且1x ≠,要证122x x +>,只要证212x x >-,利用构造函数的单调性证明即可. 【答案详解】(1)由题意得()21212ax ax x f x x x-+=+='-(0x >). 令()0f x '>,则2210ax x -+>.①当()2240a ∆=--≤,即1a ≥时,2210ax x -+>在()0,∞+上恒成立,即()f x 的增区间为()0,∞+;②当()2240a ∆=-->,即01a <<时,10x a -<<或1x a+>,即()f x 的增区间为10,a ⎛⎫ ⎪ ⎪⎝⎭和1,a ⎛⎫++∞ ⎪ ⎪⎝⎭.综上,当1a ≥时,()f x 的增区间为()0,∞+;当01a <<时,()f x 的增区间为10,a ⎛⎫- ⎪ ⎪⎝⎭和1,a ⎛⎫++∞ ⎪ ⎪⎝⎭. (2)因为()221x x ax xf -+'=(0x >),()f x 有两个极值点1x ,2x , 所以1x ,2x 是方程2210-+=ax x 的两个不相等的正实数根,可求出 从而()2240a ∆=-->,0a >,解得01a <<. 由2210-+=ax x 得221x a x -=. 因为01a <<,所以12x >且1x ≠.令()221x g x x -=,12x >且1x ≠,则()()321x g x x-'=,所以当112x <<时,()0g x '>,从而()g x 单调递增;当1x >时,()0g x '<,从而()g x 单调递减, 于是1222122121x x a x x --==(12112x x <<<). 要证122x x +>,只要证212x x >-,只要证明()()212g x g x <-. 因为()()12g x g x =,所以只要证()()112g x g x <-. 令()()()()()1111122112212122x x F x g x g x x x ---=--=-- 则()()()()1113311212212x x F x xx --⎡⎤-⎣⎦'=+-()()()11331121212x x x x --=+- ()()1331111212x x x ⎡⎤=--⎢⎥-⎢⎥⎣⎦()()()()22211111331141222x x x x x x x ⎡⎤--+-+⎣⎦=-.因为1112x <<, 所以()10F x '>,即()1F x 在1,12⎛⎫⎪⎝⎭上单调递增,所以()()110F x F <=,即()()112g x g x <-, 所以212x x >-,即122x x +>.1.(2021ꞏ全国高考真题(文))设函数22()3ln 1f x a x ax x =+-+,其中0a >. (1)讨论()f x 的单调性;(2)若()y f x =的图像与x 轴没有公共点,求a 的取值范围. 【答案】(1)()f x 的减区间为10,a ⎛⎫ ⎪⎝⎭,增区间为1,+a ⎛⎫∞ ⎪⎝⎭;(2)1a e >. 练真题(1)求出函数的导数,讨论其符号后可得函数的单调性.(2)根据()10f >及(1)的单调性性可得()min 0f x >,从而可求a 的取值范围. 【答案详解】(1)函数的定义域为()0,∞+,又()23(1)()ax ax f x x+-'=,因为0,0a x >>,故230ax +>, 当10x a <<时,()0f x '<;当1x a>时,()0f x '>; 所以()f x 的减区间为10,a ⎛⎫ ⎪⎝⎭,增区间为1,+a ⎛⎫∞ ⎪⎝⎭.(2)因为()2110f a a =++>且()y f x =的图与x 轴没有公共点, 所以()y f x =的图象在x 轴的上方, 由(1)中函数的单调性可得()min 1133ln 33ln f x f a a a ⎛⎫==-=+ ⎪⎝⎭, 故33ln 0a +>即1a e>. 2.(2021ꞏ全国高考真题(理))设函数()()ln f x a x =-,已知0x =是函数()y xf x =的极值点. (1)求a ; (2)设函数()()()x f x g x xf x +=.证明:()1g x <.【答案】1;证明见答案详解 【答案解析】(1)由题意求出'y ,由极值点处导数为0即可求解出参数a ; (2)由(1)得()()ln 1()ln 1x x g x x x +-=-,1x <且0x ≠,分类讨论()0,1x ∈和(),0x ∈-∞,可等价转化为要证()1g x <,即证()()ln 1ln 1x x x x +->-在()0,1x ∈和(),0x ∈-∞上恒成立,结合导数和换元法即可求解(1)由()()()n 1'l a f x a x f x x ⇒==--,()()'ln xy a x x ay xf x ⇒=-=+-, 又0x =是函数()y xf x =的极值点,所以()'0ln 0y a ==,解得1a =; (2)由(1)得()()ln 1f x x =-,()()ln 1()()()ln 1x x x f x g x xf x x x +-+==-,1x <且0x ≠,当 ()0,1x ∈时,要证()()ln 1()1ln 1x x g x x x +-=<-,()0,ln 10x x >-< , ()ln 10x x ∴-<,即证()()ln 1ln 1x x x x +->-,化简得()()1ln 10x x x +-->;同理,当(),0x ∈-∞时,要证()()ln 1()1ln 1x x g x x x +-=<-,()0,ln 10x x <-> , ()ln 10x x ∴-<,即证()()ln 1ln 1x x x x +->-,化简得()()1ln 10x x x +-->;令()()()1ln 1h x x x x =+--,再令1t x =-,则()()0,11,t ∈+∞ ,1x t =-, 令()1ln g t t t t =-+,()'1ln 1ln g t t t =-++=,当()0,1t ∈时,()'0g x <,()g x 单减,假设()1g 能取到,则()10g =,故()()10g t g >=; 当()1,t ∈+∞时,()'0g x >,()g x 单增,假设()1g 能取到,则()10g =,故()()10g t g >=; 综上所述,()()ln 1()1ln 1x x g x x x +-=<-在()(),00,1x ∈-∞ 恒成立3.(2021ꞏ全国高考真题)已知函数()()1ln f x x x =-. (1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b -=-,证明:112e a b<+<. 【答案】(1)()f x 的递增区间为()0,1,递减区间为()1,+∞;(2)证明见答案解析. 【答案解析】(1)求出函数的导数,判断其符号可得函数的单调区间; (2)设1211,x x a b==,原不等式等价于122x x e <+<,前者可构建新函数,利用极值点偏移可证,后者可设21x tx =,从而把12x x e +<转化为()()1ln 1ln 0t t t t -+-<在()1,+∞上的恒成立问题,利用导数可。
2019-2020年高考数学学业水平测试一轮复习模拟测试卷(四)(含解析)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019-2020年高考数学学业水平测试一轮复习模拟测试卷(四)(含解析))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019-2020年高考数学学业水平测试一轮复习模拟测试卷(四)(含解析)的全部内容。
高中学业水平考试模拟测试卷(四)(时间:90分钟满分100分)一、选择题(共15小题,每小题4分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合P={1,2},Q={2,3},全集U={1,2,3},则∁U(P∩Q)等于() A.{3}B.{2,3} C.{2} D.{1,3}解析:因为全集U={1,2,3},集合P={1,2},Q={2,3},所以P∩Q={2},所以∁U(P∩Q)={1,3},故选D.答案:D2.圆x2+y2-4x+6y+11=0的圆心和半径分别是()A.(2,-3);错误!B.(2,-3);2C.(-2,3);1 D.(-2,3);错误!解析:圆x2+y2-4x+6y+11=0的标准方程为(x-2)2+(y+3)2=2,据此可知圆心坐标为(2,-3),圆的半径为错误!,故选A。
答案:A3.已知a⊥b,|a|=2,|b|=3且向量3a+2b与ka-b互相垂直,则k的值为()A.-错误! B.错误!C.±错误!D.1解析:因为3a+2b与ka-b互相垂直,所以(3a+2b)·(ka-b)=0,所以3ka2+(2k-3)a·b-2b2=0,因为a⊥b,所以a·b=0,所以12k-18=0,k=错误!。
一、选择题(每题5分,共50分)1. 若函数f(x) = ax^2 + bx + c在x=1时取得最小值,则下列选项中正确的是()A. a > 0, b = 0, c < 0B. a < 0, b = 0, c > 0C. a > 0, b ≠ 0, c > 0D. a < 0, b ≠ 0, c < 02. 下列各数中,无理数是()A. √3B. -√2C. 3/4D. 1.4143. 若复数z满足|z - 2i| = 3,则复数z在复平面内对应的点的轨迹是()A. 圆B. 线段C. 直线D. 双曲线4. 已知函数f(x) = log2(x - 1),则f(x)的定义域是()A. (1, +∞)B. (0, 1)C. (1, 2]D. (2, +∞)5. 若等差数列{an}的前n项和为Sn,且S3 = 9,S5 = 21,则该数列的公差d是()A. 2B. 3C. 4D. 56. 下列命题中,正确的是()A. 若两个函数的图像关于y轴对称,则这两个函数互为反函数B. 若两个函数的图像关于x轴对称,则这两个函数互为反函数C. 若两个函数的图像关于原点对称,则这两个函数互为反函数D. 若两个函数的图像关于直线y = x对称,则这两个函数互为反函数7. 已知函数f(x) = x^3 - 3x,若存在实数a和b,使得f(a) + f(b) = 0,则a + b的值为()A. 0B. 1C. -1D. 28. 下列方程中,无解的是()A. x^2 + 2x + 1 = 0B. x^2 + 2x - 1 = 0C. x^2 - 2x + 1 = 0D. x^2 - 2x - 1 = 09. 若不等式x^2 - 4x + 3 < 0的解集是()A. (1, 3)B. (-∞, 1) ∪ (3, +∞)C. (-∞, 1) ∩ (3, +∞)D. (1, +∞) ∪ (-∞, 3)10. 已知函数f(x) = (x - 1)/(x + 1),则f(-1)的值为()A. 0B. 1C. -1D. 不存在二、填空题(每题5分,共50分)11. 已知等差数列{an}的前n项和为Sn,若a1 = 2,d = 3,则S10 = ________.12. 若复数z = a + bi(a, b ∈ R),则|z|^2 = ________.13. 函数f(x) = log2(3 - 2x)的定义域为 ________.14. 若等比数列{an}的公比q = -2,且a1 = 3,则第5项a5 = ________.15. 已知函数f(x) = x^2 - 2x + 3,则f(-1) = ________.16. 若不等式x^2 - 4x + 3 ≤ 0的解集为A,则不等式x^2 - 4x + 3 > 0的解集为 ________.17. 已知函数f(x) = 2x - 1,则f(-3) + f(2) = ________.18. 若复数z满足|z - 2i| = 3,则复数z在复平面内对应的点的坐标是________.19. 已知函数f(x) = (x - 1)/(x + 1),则f(1)的值为 ________.20. 若等差数列{an}的前n项和为Sn,且S3 = 9,S5 = 21,则该数列的第4项a4 = ________.三、解答题(每题20分,共60分)21. (本题满分20分)已知函数f(x) = ax^2 + bx + c(a ≠ 0),若f(1) = 2,f(2) = 5,求a,b,c的值。
第4章 第3节一、选择题1.(2010·江西文)函数y =sin 2x +sin x -1的值域为( ) A .[-1,1]B .[-54,-1]C .[-54,1]D .[-1,54][答案] C[解析] 本题考查了换元法,一元二次函数闭区间上的最值问题,通过sin x =t 换元转化为t 的一元二次函数的最值问题,体现了换元思想和转化的思想,令t =sin x ∈[-1,1],y =t 2+t -1,(-1≤t ≤1),显然-54≤y ≤1,选C.2.函数y =sin2x +a cos2x 的图像关于直线x =-π8对称,则a 的值为( )A. 2 B .- 2 C .1D .-1[答案] D[解析] 解法1:由y =sin2x +a cos2x 可联想到形如y =A sin(ωx +φ)的函数.又知其对称轴为x =-π8,故此直线必经过函数图像的波峰或波谷.从而将x =-π8代入原式,可使函数取最大值或最小值.即-22+22a =±a 2+1,∴a =-1. 解法2:由于函数图像关于直线x =-π8对称∴f (0)=f (-π4),∴a =-1,故选D.3.(2010·重庆文)下列函数中,周期为π,且在[π4,π2]上为减函数的是( )A .y =sin (2x +π2)B .y =cos (2x +π2)C .y =sin(x +π2)D .y =cos(x +π2)[答案] A[解析] 本题考查三角函数的周期性、单调性以及诱导公式.选项A :y =sin(2x +π2)=cos2x ,周期为π,在[π4,π2]为减函数;选项B :y =cos(2x +π2)=-sin2x ,周期为π.在[π4,π2]为增函数;选项C :y =sin(x +π2)=cos x ,周期为2π;选项D :y =cos(x +π2)=-sin x ,周期为2π.故选A.4.已知函数f (x )=3sin πx R图像上相邻的一个最大值点与一个最小值点恰好都在圆x2+y 2=R 2上,则f (x )的最小正周期为( )A .1B .2C .3D .4[答案] D[解析] f (x )的周期T =2ππR=2R ,f (x )的最大值是3,结合图形分析知R >3,则2R >23>3,只有2R =4这一种可能,故选D.5.函数y =2tan x -1tan x的图像关于( )A .点⎝ ⎛⎭⎪⎫-π8,0对称 B .点⎝ ⎛⎭⎪⎫π4,0对称 C .直线x =-π4对称D .直线x =π2对称[答案] B[解析] y =2tan x -1tan x =2tan xtan 2x -1=-tan2x ⎝⎛⎭⎪⎫x ≠k π4,k ∈Z .函数图像大致如下图,显见它不是轴对称图形,而是关于点⎝ ⎛⎭⎪⎫k π4,0对称的中心对称图形,故选B.6.已知函数y =2sin(ωx +θ)为偶函数(0<θ<π),其图像与直线y =2的交点的横坐标为x 1、x 2,若|x 1-x 2|的最小值为π,则( )A .ω=2,θ=π2B .ω=12,θ=π2C .ω=12,θ=π4D .ω=2,θ=π4[答案] A[解析] y =2sin(ωx +θ)为偶函数且0<θ<π, 所以θ=π2,y =2cos ωx ,∴y ∈[-2,2].又∵|x 1-x 2|min =π,故y =2与y =2cos ωx 的交点为最高点,于是最小正周期为π.即2πω=π,所以ω=2.故选A.7.(2010·新课标理)如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为P 0(2,-2),角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图像大致为( )[答案] C[解析] 本小题考查了任意角的三角函数的概念、三角函数的图像,结合物理学的角速度问题,考查学科知识交汇点,解答此题的关键是找到点P 运动后对应的坐标.方法一:(排除法)当t =0时,P 点到x 轴的距离为2,排除A 、D ,由角速度为1知,当t =π4或t =3π4时,P 点落在x 轴上,即P 点到x 轴的距离为0,故选C. 方法二:由题意知P ⎝ ⎛⎭⎪⎫2cos ⎝ ⎛⎭⎪⎫t -π4,2sin ⎝⎛⎭⎪⎫t -π4,∴P 点到x 轴的距离为d =|y 0|=2⎪⎪⎪⎪⎪⎪sin ⎝⎛⎭⎪⎫t -π4,当t =0时,d =2;当t =π4时,d =0.故选C.8.函数f (x )=3cos(3x -θ)-sin(3x -θ)是奇函数,则θ等于( ) A .k π (k ∈Z )B .k π+π6 (k ∈Z )C .k π+π3 (k ∈Z )D .k π-π3(k ∈Z )[答案] D[解析] 解法1:由两角和与差的三角公式得f (x )=2sin ⎝ ⎛⎭⎪⎫π3-3x +θ.由f (x )是奇函数得π3+θ=k π(k ∈Z )⇒θ=k π-π3(k ∈Z ).故选D.解法2:∵函数f (x )为奇函数,定义域为R . ∴f (0)=0,即3cos θ+sin θ=0, ∴sin ⎝ ⎛⎭⎪⎫θ+π3=0,∴θ+π3=k π, ∴θ=k π-π3(k ∈Z ).二、填空题9.比较大小:(1)sin ⎝ ⎛⎭⎪⎫-π18________sin ⎝ ⎛⎭⎪⎫-π10. (2)cos ⎝ ⎛⎭⎪⎫-23π5________cos ⎝⎛⎭⎪⎫-17π4.[答案] (1)> (2)<[解析] (1)∵-π2<-π10<-π18<π2,y =sin x 在⎣⎢⎡⎦⎥⎤-π2,π2上是增函数,∴sin ⎝ ⎛⎭⎪⎫-π10<sin ⎝ ⎛⎭⎪⎫-π18,即sin ⎝ ⎛⎭⎪⎫-π18>sin ⎝ ⎛⎭⎪⎫-π10.(2)cos ⎝ ⎛⎭⎪⎫-23π5=cos 23π5=cos ⎝ ⎛⎭⎪⎫4π+3π5=cos 3π5, cos ⎝ ⎛⎭⎪⎫-17π4=cos 17π4=cos ⎝ ⎛⎭⎪⎫4π+π4=cos π4. ∵0<π4<3π5<π,且函数y =cos x 在[0,π]上是减函数,∴cos π4>cos 3π5,即cos ⎝ ⎛⎭⎪⎫-17π4>cos ⎝⎛⎭⎪⎫-23π5, 即cos ⎝ ⎛⎭⎪⎫-23π5<cos ⎝ ⎛⎭⎪⎫-17π4. 10.函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图像与直线y =k 有且仅有两个不同的交点,则k 的取值范围是________.[答案] (1,3)[解析] f (x )=sin x +2|sin x |=⎩⎪⎨⎪⎧3sin x , 0≤x ≤π,-sin x ,π<x ≤2π.在同一坐标系中,作出函数f (x )与y =k 的图像可知1<k <3.11.(2010·安徽理)动点A (x ,y )在圆x 2+y 2=1上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周.已知时间t =0时点A 的坐标是(12,32),则当0≤t ≤12时,动点A 的纵坐标y 关于t (单位:秒)的函数的单调递增区间是________.[答案] [0,1]和[7,12][解析] 设点A 的纵坐标y 关于t 的函数为y =sin(ωt +φ). ∵T =12=2πω,∴ω=π6.当t =0时,sin φ=32,cos φ=12,∴φ可取π3. ∴y =sin(π6t +π3),由正弦函数的单调性知.2k π-π2≤π6t +π3≤2k π+π2(k ∈Z )2k π-5π6≤π6t ≤2k π+π6(k ∈Z ).∴12k -5≤t ≤12k +1(k ∈Z ). 当k =0时 ,-5≤t ≤1; 当k =1时,7≤t ≤13又∵0≤t ≤12,∴单调增区间为[0,1]和[7,12]. 三、解答题12.(2011·深圳模拟)已知函数f (x )=sin x +a cos 2x 2,a 为常数,a ∈R ,且x =π2是方程f (x )=0的解.(1)求函数f (x )的最小正周期;(2)当x ∈[0,π]时,求函数f (x )的值域. [解析] (1)f ⎝ ⎛⎭⎪⎫π2=sin π2+a cos 2π4=0,则1+12a =0,解得a =-2.所以f (x )=sin x -2cos 2x2=sin x -cos x -1,则f (x )=2sin ⎝⎛⎭⎪⎫x -π4-1.所以函数f (x )的最小正周期为2π.(2)由x ∈[0,π],得x -π4∈⎣⎢⎡⎦⎥⎤-π4,3π4,则sin ⎝ ⎛⎭⎪⎫x -π4∈⎣⎢⎡⎦⎥⎤-22,1,则2sin ⎝⎛⎭⎪⎫x -π4-1∈[-2,2-1], 所以y =f (x )值域为[-2,2-1].13.(2010·北京理)已知函数f (x )=2cos2x +sin 2x -4cos x . (1)求f (π3)的值;(2)求f (x )的最大值和最小值.[解析] 本题考查了三角函数的化简求值及二次函数在区间上的最值.(1)可直接求解,(2)化简后转化为关于cos x 的二次函数,求值即可.(1)f (π3)=2cos 2π3+sin 2π3-4cos π3=-1+34-2=-94.(2)f (x )=2(2cos 2x -1)+(1-cos 2x )-4cos x =3cos 2x -4cos x -1 =3(cos x -23)2-73,x ∈R因为cos x ∈[-1,1],所以当cos x =-1时,f (x )取最大值6;当cos x =23时,取最小值-73.14.(2011·福建四地六校联考)已知函数f (x )=-1+23sin x cos x +2cos 2x . (1)求f (x )的单调递减区间;(2)求f (x )图像上与原点最近的对称中心的坐标; (3)若角α,β的终边不共线,且f (α)=f (β), 求tan(α+β)的值.[解析] f (x )=3sin2x +cos2x =2sin ⎝ ⎛⎭⎪⎫2x +π6, (1)由2k π+π2≤2x +π6≤2k π+3π2(k ∈Z )得k π+π6≤x ≤k π+2π3(k ∈Z ), ∴f (x )的单调减区间为⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3(k ∈Z ). (2)由sin ⎝ ⎛⎭⎪⎫2x +π6=0得2x +π6=k π(k ∈Z ),即x =k π2-π12(k ∈Z ), ∴f (x )图像上与原点最近的对称中心坐标是⎝ ⎛⎭⎪⎫-π12,0. (3)由f (α)=f (β)得:2sin ⎝ ⎛⎭⎪⎫2α+π6=2sin ⎝ ⎛⎭⎪⎫2β+π6, 又∵角α与β不共线,∴⎝⎛⎭⎪⎫2α+π6+⎝ ⎛⎭⎪⎫2β+π6=2k π+π(k ∈Z ),即α+β=k π+π3(k ∈Z ),∴tan(α+β)= 3.15.已知函数f (x )=log 12(sin x -cos x ).(1)求它的定义域和值域; (2)求它的单调区间; (3)判断它的奇偶性;(4)判断它的周期性,如果是周期函数,求出它的最小正周期.[分析] 对于(1),(2)可以从sin x -cos x =2sin ⎝⎛⎭⎪⎫x -π4入手.对于(3)则看f (x )的定义域是否关于原点对称.对于(4)可利用f (x +T )=f (x )先验证T 是一个周期,再证T 是最小正周期.[解析] (1)由题意得sin x -cos x >0,即2sin ⎝⎛⎭⎪⎫x -π4>0,从而得2k π<x -π4<2k π+π(k ∈Z ).∴函数f (x )的定义域为⎩⎨⎧⎭⎬⎫x |2k π+π4<x <2k π+54π,k ∈Z .∵0<sin ⎝⎛⎭⎪⎫x -π4≤1,∴0<sin x -cos x ≤2, 即有log 122≤log 12(sin x -cos x ).故函数f (x )的值域是⎣⎢⎡⎭⎪⎫-12,+∞.(2)∵sin x -cos x =2sin ⎝⎛⎭⎪⎫x -π4在f (x )的定义域上的单调递增区间为⎝ ⎛⎭⎪⎫2k π+π4,2k π+3π4(k ∈Z ),单调递减区间为⎣⎢⎡⎭⎪⎫2k π+3π4,2k π+5π4(k ∈Z ).∴f (x )的单调递增区间是⎣⎢⎡⎭⎪⎫2k π+3π4,2k π+5π4(k ∈Z ); 单调递减区间是⎝ ⎛⎭⎪⎫2k π+π4,2k π+3π4(k ∈Z ).(3)∵f (x )的定义域在数轴上对应的点关于原点不对称,∴函数f (x )是非奇非偶函数. (4)∵f (x +2π)=log 12[sin(x +2π)-cos(x +2π)]=log 12(sin x -cos x )=f (x ),∴函数f (x )的最小正周期T =2π.[点评] 本题综合考查了三角函数的性质,解题的关键是把sin x -cos x 化为A sin(ωx +φ)的形式.。
一、单选题二、多选题1. 已知集合,,则集合中元素的个数为( )A .2B .3C .4D .52. 历史上数列的发展,折射出许多有价值的数学思想方法,对时代的进步起了重要的作用,比如意大利数学家斐波那契以兔子繁殖为例,引入“兔子数列”:,,,,,,,,,,,,即,此数列在现代物理、准晶体结构及化学等领域有着广泛的应用,若此数列被4整除后的余数构成一个新的数列,则的值为( ).A.B.C.D.3.已知等比数列的前项积为,若,,则当取得最大值时,的值为A .2B .3C .4D .64. 函数的部分图象如图所示,则()A .1B.C.D.5. 若向量,则( )A .-36B .36C .12D .-126. 已知,,,则( )A .a >b >cB .b >a >cC .a >c >bD .b >c >a7. 中国书法历史悠久、源远流长.书法作为一种艺术,以文字为载体,不断地反映和丰富着华夏民族的自然观、宇宙观和人生观.谈到书法艺术,就离不开汉字.汉字是书法艺术的精髓.汉字本身具有丰富的意象和可塑的规律性,使汉字书写成为一门独特的艺术.我国书法大体可分为篆、隶、楷、行、草五种书体,如图:以“国”字为例,现有甲乙两名书法爱好者分别从五种书体中任意选两种进行研习,且甲乙选书体互相独立,则甲不选隶书体,乙不选草书体的概率为().A.B.C.D.8. 设函数满足,若存在零点,则下列选项中一定错误的是A.B.C.D.9. 函数的两个极值点分别是,则下列结论正确的是( )A.B.C.D.10. 下列说法正确的是( )A .已知经验回归方程,则当时,的估计值为12.22B .在回归分析中,残差点分布的带状区域的宽度越窄表示拟合效果越差2023年全国新高考高三押题卷(四)数学试题三、填空题四、解答题C .在经验回归方程中,当解释变量每增加1个单位时,响应变量将平均减少0.3个单位D .在一元线性回归模型分析中,决定系数用来刻画模型的拟合效果,若的值越小,则模型的拟合效果越好11.已知数列满足,,为数列的前项和.若对任意实数,都有成立.则实数的可能取值为( )A .4B .3C .2D .112. 已知函数的最小正周期为,且满足,,若在上有三个不同的零点,则的取值可以是( )A.B.C.D .313.在四面体中,,,向量与的夹角为,若,则该四面体外接球的表面积为_____________.14. 已知函数的定义域为,且,当时,.若存在,使得,则的取值范围为________.15. 已知定义在上的函数满足,且,则下列说法正确的是________.①是奇函数②③④时,16. 已知,,、、是的内角;(1)当时,求的值;(2)若,,当取最大值时,求的大小及边的长.17.已知单调递减的正项数列,时满足.为前n 项和.(1)求的通项公式;(2)证明:.18. 已知椭圆的焦距为4,经过点的直线与椭圆交于不同的两点,,当直线轴时,的面积为(为坐标原点).(1)求椭圆的方程;(2)与直线垂直的直线也过点,且与椭圆交于不同的两点,,求的取值范围.19. 某国在实弹演习中分析现有导弹技术发展方案的差异,有以下两种方案:方案1:发展一弹多头主动制导技术,即一枚一弹多头导弹的弹体含有3个弹头,每个弹头独立命中的概率均为0.415,一枚弹体至少有一个弹头命中即认为该枚导弹命中,演习中发射该导弹10枚;方案2:发展一弹一头导弹的机动性和隐蔽性,即一枚一弹一头导弹的弹体只含一个弹头,演习中发射该导弹30枚,其中22枚命中.(1)求一枚一弹多头导弹命中的概率(精确到0.001),并据此计算本次实战演习中一弹多头导弹的命中枚数(取,结果四舍五入取整数);(2)结合(1)的数据,根据小概率值的独立性检验,判断本次实战演习中两种方案的导弹命中率是否存在明显差异.附,其中.0.1000.0500.0100.0050.0012.7063.841 6.6357.87910.82820. 已知三棱柱中,侧面是矩形,是的菱形,且平面平面,,,分别是,,的中点.(1)证明:平面;(2)若,求二面角的余弦值.21. 已知函数,.(Ⅰ)当时,求的图象在点处的切线;(Ⅱ)求函数的单调区间;(Ⅲ)判断函数在区间上的单调性.。
新教材老高考适用2023高考数学一轮总复习:单元质检卷四三角函数(时间:120分钟满分:150分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若θ=cos 2 021π,则角θ的终边在()A.第一象限B.第二象限C.第三象限D.第四象限2.已知角α的顶点为坐标原点,始边与x轴的非负半轴重合,终边上有一点A(3cos α,2),则sin α的值等于()A.√53B.23C.-23D.-√533.(2021湖南师大附中高三月考)已知1+sin2α2cos2α+sin2α=2,则tan 2α=()A.-34B.-43C.34D.434.(2021山西太原高三月考)在△ABC中,内角A,B,C的对边分别为a,b,c,且b sin(π-C)-√2c cos(π+B)=0,则tan B=()A.√22B.√2 C.-√22D.-√25.(2021安徽合肥高三期末)已知函数f(x)=tanωx+π6(ω>0)的图象上相邻两个对称中心的距离为π4,若将f(x)的图象向右平移π12个单位长度得到函数g(x)的图象,则函数g(x)的单调递增区间为()A.kπ2−π4,kπ2+π4(k∈Z)B.kπ2−7kπ24,kπ2+5π24(k∈Z)C.kπ-7π12,kπ+5π12(k∈Z)D.kπ-π2,kπ+π2(k∈Z)6.如图,一个大风车的半径为8 m,12 min旋转一周,它的最低点P0离地面2 m,风车翼片的一个端点P 从P0开始按逆时针方向旋转,则点P离地面的距离h(单位:m)与时间t(单位:min)之间的函数关系式是()A.h(t)=-8sinπ6t+10B.h(t)=-cosπ6t+10C.h(t)=-8sinπ6t+8D.h(t)=-8cosπ6t+107.(2021天津和平高三期中)已知函数f(x)=a sin(ωx+φ)+cos(ωx+φ)ω>0,|φ|<π2的最小正周期为π,其最小值为-2,且满足f(x)=-fπ2-x,则φ=()A.±π3B.±π6C.π6或π3D.-π6或-π38.已知锐角三角形ABC中,角A,B,C所对边分别为a,b,c,若cos 2C=1-c 2b2,则角B等于()A.π4B.3π4C.π6D.π39.设α是三角形的一个内角,则下列哪些值可能为正值()①sin(π-α)②cos(-α)③tan(π+α)④tanα2−3π2A.①②B.②③C.③④D.①④10.若将函数f(x)=cos2x+π12的图象向左平移π8个单位长度,得到函数g(x)的图象,则下列说法不正确的是()A.g (x )的最小正周期为πB.g (x )在区间0,π2上单调递减C.x=π12不是函数g (x )图象的对称轴 D.g (x )在-π6,π6上的最小值为-1211.已知tan(α+β)=tan α+tan β,其中α≠k π2(k ∈Z )且β≠m π2(m ∈Z ),则下列结论一定正确的是( ) A.sin(α+β)=1 B.cos(α+β)=1 C.sin 2α2+sin 2β2=1D.sin 2α+cos 2β=112.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin 2C=tan A (2sin 2C+cos C-2),则下列结论中错误的是( )A.△ABC 可能是直角三角形B.角B 是锐角C.必有A=2BD.可能有a=2b二、填空题:本题共4小题,每小题5分,共20分.13.(2021山东德州高三月考)若函数f (x )=√2sin(2ωx-θ)(ω>0,-π<θ<0)是周期为π2的偶函数,则fπ6= .14.(2021北京海淀高三月考)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若sin C=2sin A ,b 2-a 2=12ac ,则sin B 等于 .15.已知sin(α-β)=25,sin(α+β)=12,则tanαtanβ= .16.如图所示,在平面四边形ABCD 中,AB ⊥BD ,AB=BD ,BC=CD ,AD=2,在△ABC 中,角A ,B ,C 的对应边分别为a ,b ,c ,若c 2=2ab cos ∠BCA ,则△ACD 的面积为 .三、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)(2021福建泉州高三月考)已知f (θ)=sin(3π2+θ)cos(π2-θ)sin(π+θ)cos(2π-θ)(1-cos2θ)2.(1)化简f (θ);(2)若tan θ=12,求f θ-3π4的值.18.(12分)(2021安徽六安高三期中)已知函数f (x )=A sin(ωx+φ)+B A>0,ω>0,|φ|<π2的部分图象如图所示.(1)求f (x )的解析式及对称中心坐标; (2)设α∈(0,π),且f α2=-2,求α的值.19.(12分)△ABC的内角A,B,C所对的边分别为a,b,c,已知a=√3,b=2.(1)若A=π6,求cos 2B;(2)当A取得最大值时,求△ABC的面积.20.(12分)(2021河北石家庄高三二模)已知函数f(x)=cos x+π2cos x+5π4.(1)求函数f(x)的最小正周期及单调递增区间;(2)将函数f(x)的图象向右平移π4个单位长度,再将横坐标扩大为原来的2倍得到g(x)的图象,求函数g(x)在[0,π]上的值域.21.(12分)(2021福建宁德高三二模)如图,准备在河岸一侧建造一个观景台P,已知射线AB,AC为两边夹角为120°的公路(长度均超过√3千米),在两条公路AB,AC上分别设立游客上下点M,N,从观景台P到M,N建造两条观光线路PM,PN,测得AM=√3千米,AN=√3千米.(1)求线段MN的长度;(2)若∠MPN=60°,求两条观光线路PM与PN之和的最大值.22.(12分)如图,平面四边形ABCD ,点B ,C ,D 均在半径为5√33的圆上,且∠BCD=π3.(1)求BD 的长度;(2)若AD=3,∠ADB=2∠ABD ,求△ABD 的面积.单元质检卷四 三角函数1.D 解析:因为θ=cos2021π=-1∈-π2,0,所以角θ的终边在第四象限,故选D . 2.B 解析:由三角函数定义得tan α=23cosα,即sinαcosα=23cosα,所以sin α=23,故选B .3.A 解析:因为1+sin2α2cos 2α+sin2α=1+2sinαcosα2cos 2α+2sinαcosα=(sinα+cosα)22cosα(sinα+cosα)=sinα+cosα2cosα=12tan α+12=2,所以tanα=3,从而可得tan2α=2tanα1−tan 2α=61−9=-34,故选A .4.D 解析:由已知得b sin C+√2c cos B=0,即sin B sin C+√2sin C cos B=0,因为sin C ≠0,所以sin B+√2cos B=0,故tan B=-√2,故选D .5.A 解析:依题意得T2=π4,所以T=π2,所以πω=π2,解得ω=2,所以f (x )=tan 2x+π6,把f (x )的图象向右平移π12个单位长度,得到函数g (x )=tan 2x-π12+π6=tan2x 的图象,令k π-π2<2x<k π+π2,k∈Z ,解得k π2−π4<x<k π2+π4,k ∈Z ,所以函数g (x )的单调递增区间为k π2−π4,k π2+π4(k ∈Z ),故选A .6.D 解析:设h=A sin(ωt+φ)+B A>0,ω>0,|φ|≤π2,由题意可得h max =18,h min =2,T=12,∴A=ℎmax -ℎmin2=8,B=ℎmax +ℎmin2=10,ω=2πT=π6,则h=8sinπt 6+φ+10.当t=0时,8sin φ+10=2,得sin φ=-1,则φ=-π2,所以h=8sin π6t-π2+10=-8cos π6t+10.故选D . 7.A 解析:由最小正周期为π,可得ω=2.∵最小值为-2,∴√a 2+1=2,a=±√3. ∵f (x )=-fπ2-x ,∴函数图象关于点π4,0对称.①若a=√3,则f (x )=√3sin(2x+φ)+cos(2x+φ)=2sin 2x+φ+π6.∵2×π4+φ+π6=k π(k ∈Z ),∴φ=k π-2π3(k ∈Z ).令k=1,得φ=π3.②若a=-√3,则f (x )=-√3sin(2x+φ)+cos(2x+φ)=-2sin 2x+φ-π6,∵2×π4+φ-π6=k π(k ∈Z ),则φ=k π-π3(k ∈Z ).令k=0,得φ=-π3. 综上可得,φ=±π3,故选A .8.A 解析:由cos2C=1-c 2b2,结合正弦定理可得1-2sin 2C=1-sin 2Csin 2B,整理得sin 2B-2sin 2C sin 2B=sin 2B-sin 2C.又C 为锐角,故sin C ≠0.于是sin 2B=12,从而sin B=√22.又因为三角形ABC 是锐角三角形,所以B=π4.9.B 解析由已知可得0<α<π,则0<α2<π2,sin(π-α)=sin α>0,故①不正确,tan3π2−α2=tanπ2−α2=1tanα2>0,故④不正确;当π2<α<π时,cos(-α)=cos α<0,tan(π+α)=tan α<0,故②③正确.故选B .10.B 解析:由题意可得g (x )=cos 2x+π8+π12=cos 2x+π3,∴函数g (x )的最小正周期为π,故A 正确;当x ∈0,π2时,2x+π3∈π3,4π3,故g (x )在区间0,π2上不单调,故B 不正确;∵g π12=0,故x=π12不是函数g (x )图象的对称轴,故C 正确;当x ∈-π6,π6时,2x+π3∈0,2π3,∴当2x+π3=2π3,即x=π6时,g (x )取得最小值-12,故D 正确,故选B .11.D 解析:因为tan(α+β)=tanα+tanβ1−tanα·tanβ,且tan(α+β)=tan α+tan β,所以1-tan α·tan β=1,即tan α·tan β=0,所以α=k 1π(k 1∈Z )或β=m 1π(m 1∈Z ),sin(α+β)=sin(k 1π+m 1π)=0(k 1,m 1∈Z ),故A 错误;cos(α+β)=cos(k 1π+m 1π)=±1(k 1,m 1∈Z ),故B 错误; sin 2α2+sin 2β2=sin2k 1π2+sin 2m 1π2,令k 1=m 1=1,则sin 2π2+sin 2π2=2,故C 错误;由A 知sin(α+β)=0,则α+β=n π(n ∈Z ),故sin 2α+cos 2β=sin 2α+cos 2(n π-α)=sin 2α+cos 2α=1(n ∈Z ),故D 正确,故选D .12.C 解析:依题意得2sin C cos C=sinAcosA(2-2cos 2C+cos C-2),即2sin C cos C=sinAcosA·cos C (1-2cos C ),整理得cos C ·[2(sin A cos C+cos A sin C )-sin A ]=0,即cos C ·(2sin B-sin A )=0,所以cos C=0或sin A=2sin B.当cos C=0时,△ABC 是直角三角形,故A 选项正确;而当sin A=2sin B 时,由正弦定理可得a=2b ,故C 选项错误,D 选项正确;无论cos C=0或sin A=2sin B ,均可得角B 为锐角,故B 选项正确. 13.-√22解析:依题意可得2π2ω=π2,θ=-π2,即ω=2,θ=-π2,于是f (x )=√2cos4x ,因此fπ6=√2cos4×π6=-√22.14.√74解析:∵sin C=2sin A ,∴c=2a.又b 2-a 2=12ac ,∴b 2=2a 2,即b=√2a.由余弦定理可得,cos B=a 2+c 2-b 22ac=a 2+4a 2-2a 22a ·2a=34.又0<B<π,∴sin B=√1−cos 2B =√1−(34) 2=√74. 15.9 解析:由题得sin αcos β-cos αsin β=25,sin αcos β+cos αsin β=12,两式相加得sin αcos β=920,两式相减得cos αsin β=120,因此tanαtanβ=sinαcosβcosαsinβ=920120=9.16.√22 解析:∵AB=BD ,AB ⊥BD ,∴在等腰直角三角形ABD 中,AD=√2AB=√2c.在△ABC 中,由余弦定理得a 2+b 2-2ab cos ∠BCA=c 2,又已知c 2=2ab cos ∠BCA ,∴a 2+b 2=2c 2.又a=BC=CD ,b=AC ,AD=√2c ,∴AC 2+CD 2=AD 2,∴AC ⊥CD.作CF ⊥BD 分别交BD ,AD 于点F ,E ,∵BC=CD ,E ,F 分别为线段AD ,BD 的中点,∴∠CED=45°,CE=ED=1,∴S △ACD =2S △ECD =2×12×EC ×ED ×sin45°=√22.17.解(1)f (θ)=sin(3π2+θ)cos(π2-θ)sin(π+θ)cos(2π-θ)(1-cos2θ)2=-cosθsinθ(-sinθ)cosθ(2sin 2θ)2=cosθsinθsinθcosθ4sin 4θ=cosθcosθ4sin 2θ=14tan 2θ.(2)因为tan θ=12, 所以tan θ-3π4=tanθ-tan3π41+tanθtan3π4=12-(-1)1+12×(−1)=3,所以f θ-3π4=14tan 2(θ-3π4)=14×32=136.18.解(1)由函数图象可知A+B=1,B-A=-3, 则A=2,B=-1.又T2=7π12−π12=π2,即T=π,所以ω=2πT=2,从而函数f (x )=2sin(2x+φ)-1.把π12,1代入f (x )解析式得π6+φ=π2+2k π,φ=π3+2k π(k ∈Z ).又|φ|<π2,故φ=π3,所以函数解析式为f (x )=2sin 2x+π3-1.由2x+π3=k π(k ∈Z )得x=-π6+k π2(k ∈Z ),所以对称中心坐标为k π2−π6,-1(k ∈Z ).(2)因为fα2=2sin α+π3-1=-2,所以sin α+π3=-12.又α∈(0,π),则α+π3∈π3,4π3,所以α+π3=7π6,即α=5π6.19.解(1)由正弦定理asinA =b sinB得,√312=2sinB,解得sin B=√33,∴cos2B=1-2sin 2B=1-23=13. (2)由余弦定理得cos A=b 2+c 2-a 22bc=c 2+14c,∵c 2+14c≥2c4c =12,当且仅当c=1时,等号成立,∴cos A ≥12,则0<A ≤π3,即A 的最大值为π3, 此时S △ABC =12bc sin A=12×2×1×√32=√32. 20.解(1)f (x )=cos x+π2·cos x+5π4=(-sin x )·-cos x+π4=sin x√22cos x-√22sin x=√22sin x cos x-√22sin 2x=√24sin2x-√22×1−cos2x2=√24sin2x+√24cos2x-√24=12sin 2x+π4-√24,所以函数f (x )的最小正周期为2π2=π.由-π2+2k π≤2x+π4≤π2+2k π(k ∈Z ),得-3π8+k π≤x ≤π8+k π(k ∈Z ),故函数的单调递增区间为-3π8+k π,π8+k π(k ∈Z ).(2)函数f (x )的图象向右平移π4个单位长度,得到y=12sin 2x-π4+π4-√24=12sin 2x-π4-√24,再将横坐标扩大为原来的2倍得到g (x )=12sin x-π4-√24.因为x ∈[0,π],则x-π4∈-π4,3π4,则sin x-π4∈-√22,1,故g (x )∈-√22,12−√24.故函数g (x )在[0,π]上的值域为-√22,12−√24.21.解(1)在△AMN 中,由余弦定理得MN 2=AM 2+AN 2-2AM ·AN cos120°=3+3-2×√3×√3×-12=9, 所以MN=3,故线段MN 的长度为3千米.(2)设∠PMN=α,因为∠MPN=60°,所以∠PNM=120°-α. 在△PMN 中,由正弦定理得MNsin ∠MPN=PM sin(120°−α)=PN sinα=3sin60°=2√3,所以PM=2√3sin(120°-α),PN=2√3sin α. 因此PM+PN=2√3sin(120°-α)+2√3sin α=2√3√32cos α+12sin α+2√3sin α=3√3sin α+3cos α=6sin(α+30°).由于0°<α<120°,所以30°<α+30°<150°. 所以当α+30°=90°,即α=60°时,PM+PN 取到最大值6. 即两条观光线路距离之和的最大值为6千米. 22.解(1)由题意可知,△BCD 的外接圆半径为5√33,由正弦定理BD sin ∠BCD=2R=5√33×2,解得BD=5.(2)(方法1)在△ABD 中,设∠ABD=α,α为锐角,则∠ADB=2α, 因为AB sin2α=AD sinα,所以AB2sinαcosα=3sinα, 所以AB=6cos α.因为AD 2=AB 2+BD 2-2AB ·BD ·cos α,即9=36cos 2α+25-60cos 2α,11 所以cos α=√63.则AB=6cos α=2√6,sin α=√33,所以S △ABD =12AB ·BD ·sin α=5√2.(方法2)在△ABD 中,因为∠ADB=2∠ABD , 所以sin ∠ADB=sin2∠ABD=2sin ∠ABD cos ∠ABD ,所以AB=2AD ·cos ∠ABD=2AD ·AB 2+BD 2-AD 22AB ·BD ,因为BD=5,AD=3,所以AB=2√6, 所以cos ∠ABD=√63,则sin ∠ABD=√33,所以S △ABD =12AB ·BD ·sin ∠ABD=5√2.。
一、选择题(每题5分,共50分)1. 下列函数中,在其定义域内是增函数的是()A. y = x^2B. y = 2^xC. y = log2(x)D. y = -x2. 已知等差数列{an}的首项为a1,公差为d,则下列等式中不正确的是()A. a1 + a2 = 2a1 + dB. a1 + a3 = 2a2C. a1 + a4 = 2a3 + dD. a1 + a5 = 2a43. 已知函数f(x) = x^3 - 3x,则f(x)的对称中心是()A. (0, 0)B. (1, -2)C. (-1, 2)D. (1, 2)4. 在三角形ABC中,若∠A = 60°,∠B = 45°,则∠C的度数是()A. 60°B. 75°C. 90°D. 105°5. 已知等比数列{bn}的首项为b1,公比为q,若b1 = 2,b3 = 8,则b5的值为()A. 16B. 32C. 64D. 1286. 已知函数f(x) = x^2 - 4x + 4,则f(x)的图像是()A. 双曲线B. 抛物线C. 直线D. 椭圆7. 在等差数列{an}中,若a1 = 3,a3 = 9,则该数列的公差d是()A. 2B. 3C. 6D. 98. 已知函数f(x) = x^3 - 3x^2 + 3x - 1,则f(x)的极值点是()A. x = 0B. x = 1C. x = 2D. x = 39. 在三角形ABC中,若AB = AC,则下列结论正确的是()A. ∠A = ∠BB. ∠A = ∠CC. ∠B = ∠CD. ∠A = ∠B = ∠C10. 已知函数f(x) = |x - 1| + |x + 1|,则f(x)的值域是()A. [-2, 2]B. [0, 2]C. [2, +∞)D. (-∞, 2]二、填空题(每题5分,共50分)11. 已知等差数列{an}的首项为a1,公差为d,若a3 = 5,a5 = 9,则a1 =______,d = ______。
4.3 利用递推公式求通项(精练)(基础版)1.(2022·陕西·无高三阶段练习)若数列{}n a 满足11lg 1n n a a n +⎛⎫-=+ ⎪⎝⎭且11a =,则数列{}n a 的第100项为( ) A .2B .3C .1lg99+D .2lg99+2.(2022·四川·树德中学)已知数列{}n a 满足128a =,12n n a a n +-=,则na n的最小值为( ) A .293B .471-C .485D .2743.(2022·全国·高三专题练习)已知数列{}n a 满足13a =,()111n n a a n n +=++,则n a =( ) A .14n +B .14n -C .12n +D .12n-4.(2022·全国·高三专题练习)数列{}n a 满足11a =,且11n n a a a n +=++(*n ∈N ),则122017111a a a ++⋅⋅⋅+=( ) A .20171009B .40322017C .40282015D .201510085.(2022·全国·高三专题练习)在数列{a n }中,a 1=1,a n +1=a n +2n ,则通项公式a n =________. 6.(2022·全国·高三专题练习)已知110,21n n a a a n +==+-,求通项n a = . 7.(2022·重庆·模拟预测)已知数列{}n a 满足()*112,22n n n a a a n n +-+=+∈N . (1)求证:{}1n n a a +-是等差数列; (2)若121,2a a ==,求{}n a 的通项公式. 1.(2022·全国·高三专题练习)在数列{an }中,a 1=1,111n n a a n -⎛⎫=- ⎪⎝⎭(n ≥2),求数列{an }的通项公式.2.(2022·全国·高三专题练习)已知数列{}n a 满足12a =,*12,n n na n a n +=+∈N ,求数列{}n a 的通项公式.3.(2022·全国·高三专题练习)数列{}n a 满足:123a =,()()()21*12122n n n n a a n +++-=-∈N ,求{}n a 的通项公式 .题组一 累加法题组二 累乘法4.(2022·全国·高三专题练习)在数列{}n a 中,()()22112,1222n n a n a n n a +=+=-+,求数列{}n a 的通项公式 .5.(2022·全国·高三专题练习)已知数列{}n a 的首项为12,且满足()()()*1112,n n n a n a n n N -+=-≥∈.求{}n a 的通项公式. 1.(2022·全国·高三专题练习)已知n a 为数列{}n S 的前n 项积,若121n nS a -=,则数列{}n a 的通项公式n a =( ) A .3-2nB .3+2nC .1+2nD .1-2n2.(2022·湖北省武汉市汉铁高级中学高三阶段练习)(多选)数列{}n a 的前n 项为n S ,已知2421n n n S a a =++,下列说法中正确的是( ) A .{}n a 为等差数列B .{}n a 可能为等比数列C .{}n a 为等差数列或等比数列D .{}n a 可能既不是等差数列也不是等比数列3.(2022·全国·高三专题练习)若数列{}n a 满足112a =,212323n n a a a na n a +++⋯+=,则2017a =______ .4.(2022·全国·高三专题练习)已知数列{}n a 满足11a =,()12311111231n n a a a a a n n -=+++⋅⋅⋅+>-.数列{}n a 的通项公式 .5.(2022·四川·什邡中学)数列{}n a 的前n 项和2321n S n n =-+,则它的通项公式是_______.6.(2022·安徽宿州)已知数列{}n a 的前n 项和为n S ,且()2n n a S n ++=∈N ,则{}n a 的通项公式为n a =______. 7.(2022·北京交通大学附属中学高二期中)已知数列{}n a 满足()212n a a a n n n *+++=+∈N ,则n a =____.8.(2022·山西太原·二模(文))已知数列{}n a 的首项为1,前n 项和为n S ,且()12n n nS n S +=+,则数列{}n a 的通项公式n a =___________. 1.(2022·全国·课时练习)在数列{}n a 中,若111,12n n naa a a +==+,则n a =________.题组三 公式法题组四 构造等差数列2.(2022·湖北·荆州中学)已知数列{}n a 满足11a =,且11nn n a a a +=+.则数列{}n a 的通项公式为n a =_______. 3.(2022·全国·课时练习)已知数列{}n a 中,1*113,323,n n n a a a n N ++==+⨯∈,求数列{}n a 的通项公式 ;4.(2022·全国·高三专题练习)已知数列{}n a 中,213a =,112n n n n a a a a ++=+.求数列{}n a 的通项公式 ; 5.(2022·全国·高三专题练习)已知数列{}n a 中,11a =,133nn n a a +=+,求数列{}n a 的通项公式 .1.(2022·四川师范大学附属中学二模)已知数列{}n a 满足1122n n a a +=+,且{}n a 前8项和为761,则1a =______.2.(2022·山西)已知数列{}n a 满足1267n n a a +=+,11a =,则n a =___________. 3.(2021·全国·专题练习)已知数列{}n a 满足:11a =,12nn n a a a +=+()n N +∈,则6a =( ) A .131B .132C .163D .1644.(2022·黑龙江)已知数列{}n a 的通项公式为135a =,1321nn n a a a +=+求数列{}n a 的通项公式 .题组五 构造等比数列4.3 利用递推公式求通项(精练)(基础版)1.(2022·陕西·无高三阶段练习)若数列{}n a 满足11lg 1n n a a n +⎛⎫-=+ ⎪⎝⎭且11a =,则数列{}n a 的第100项为( ) A .2 B .3 C .1lg99+ D .2lg99+【答案】B【解析】由题意,因为()111lg 1lglg 1lg n n n a a n n n n ++⎛⎫-=+==+- ⎪⎝⎭, 所以10099lg100lg99a a -=-, ⋯⋯32lg3lg2a a -=-, 21lg2lg1a a -=-,以上99个式子累加得1001lg100a a -=, 100lg10013a =+=. 故选:B .2.(2022·四川·树德中学)已知数列{}n a 满足128a =,12n n a a n +-=,则na n的最小值为( ) A .293B .471-C .485D .274【答案】C【解析】因为12n n a a n +-=,所以()121n n a a n --=-,()1222n n a a n ---=-,,2121a a -=⋅,1n -式相加可得()()()()()11112121212n n n a a n n n +---=+++-=⋅=-,所以228n a n n =-+,2812281471n a n n n=+-≥-=-,当且仅当27n =取到,但*n N ∈,()275,6∈,所以5n =时5284851555a =+-=,当6n =时,6282961663a =+-=,482953<,所以n a n 的最小值为485.故选:C3.(2022·全国·高三专题练习)已知数列{}n a 满足13a =,()111n n a a n n +=++,则n a =( )A .14n+B .14n-C .12n+D .12n-题组一 累加法【答案】B【解析】由题意可得()111111n n a a n n n n +-==-++,所以21112a a -=-,321123a a -=-,…,1111n n a a n n--=--, 上式累加可得()()()121321--=-+-++-n n n a a a a a a a a111111112231=-+-++-=--n n n, 又13a =,所以14=-n a n.故选:B .4.(2022·全国·高三专题练习)数列{}n a 满足11a =,且11n n a a a n +=++(*n ∈N ),则122017111a a a ++⋅⋅⋅+=( ) A .20171009B .40322017C .40282015D .20151008【答案】A【解析】∵11n n a a n +-=+,111n n a a n --=-+,…,2111a a -=+, ∵()1112n n n a a n ++-=+,即()1112n n n an ++=++, ∵()()1122n n n n n a n -+=+=,2n ≥. ∵11a =符合上式,∵()12n n n a +=. ∵11121n a n n ⎛⎫=- ⎪+⎝⎭, 122017111111112122320172018a a a ⎡⎤⎛⎫⎛⎫⎛⎫++⋅⋅⋅+=⨯-+-+⋅⋅⋅+- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 1212018⎛⎫=⨯- ⎪⎝⎭,20171009=. 故选:A .5.(2022·全国·高三专题练习)在数列{a n }中,a 1=1,a n +1=a n +2n ,则通项公式a n =________.【答案】2n -1【解析】由题意得a n +1-a n =2n ,把n =1,2,3,…,n -1(n ≥2)代入,得到(n -1)个式子,累加即可得(a 2-a 1)+(a 3-a 2)+…+(an -an -1)=2+22+23+…+2n -1,所以()1121212n n a a ---=-,即a n -a 1=2n -2,所以a n =2n -2+a 1=2n -1.当n =1时,a 1=1也符合上式,所以a n =2n -1.故答案为:2n -1 6.(2022·全国·高三专题练习)已知110,21n n a a a n +==+-,求通项n a = .【答案】()()2*1n a n n N =-∈【解析】 121n n a a n +-=-,∴ 211a a -=,323a a -= ,435a a -=,123n n a a n --=- ()2n ≥,以上各式相加得1n a a -()()21357...231n n =+++++-=-()2n ≥,又10a =,所以()21n a n =- ()2n ≥,而10a =也适合上式, ∴ ()()2*1n a n n N =-∈.7.(2022·重庆·模拟预测)已知数列{}n a 满足()*112,22n n n a a a n n +-+=+∈N . (1)求证:{}1n n a a +-是等差数列; (2)若121,2a a ==,求{}n a 的通项公式.【答案】(1)证明见解析(2)2254n a n n =-+【解析】(1)由题1124n n n a a a +-+=+,即114n n n n a a a a +--=-+,{}1n n a a +∴-是公差为4的等差数列. (2)()()211211,42472n n a a a a a a n n n --=∴-=-+-=-12411n n a a n ---=-⋯⋯,累加可得()()()()()21471147411125322n n n a a n n n n n-+--=-+-++==-+()22542n a n n n =-+,当1n =时1a 也满足上式2254n a n n ∴=-+.1.(2022·全国·高三专题练习)在数列{an }中,a 1=1,111n n a a n -⎛⎫=- ⎪⎝⎭(n ≥2),求数列{an }的通项公式.【答案】1n a n=【解析】因为a 1=1,111n n a a n -⎛⎫=- ⎪⎝⎭(n ≥2),所以-11n n a n a n -=,所以1232112321n n n n n n n a a a a a a a a a a a a -----=⋅⋅⋅⋯⋅⋅⋅123··12n n n n n n ---=--·…·21·32·1=1n. 题组二 累乘法又因为当n=1时,a 1=1,符合上式,所以a n =1n.2.(2022·全国·高三专题练习)已知数列{}n a满足1a =*1,n n n +∈N ,求数列{}n a 的通项公式.【答案】)*n a n ∈N1n n +,得1n n a a += 所以当2n ≥时,32123451112321n n a a a n n aa a n n +⋅=⋅⋅⋅=---,因为1a)2n a n =≥,又因为1n =时,1a )*n a n ∈N3.(2022·全国·高三专题练习)数列{}n a 满足:123a =,()()()21*12122n n n n a a n +++-=-∈N ,求{}n a 的通项公式 .【答案】()()122121nn nn a +=-- 【解析】由()()2112122n n n n a a +-+-=-得,1122222122121n n n n n n a a ++++--==⋅--,1231122113123121212121222221212121n n n n n n n n n n n n a a a a a a a a -----+--------⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅=----()()11322121n n n -+--,即()()111322121n n n n a a -+⋅=--,所以()()122121nn nn a +=--.4.(2022·全国·高三专题练习)在数列{}n a 中,()()22112,1222n n a n a n n a +=+=-+,求数列{}n a 的通项公式 . 【答案】()2211nn -+【解析】依题意,()()22112,1222n n a n a n n a +=+=-+,即()()()2221121,2111211n n n n n a n a n a a n ++⎡⎤-+⎣⎦⎡⎤+=+=-⎣⎦+,所以当2n ≥时13211221n n n n n a a a a a a a a a a ---=⋅⋅⋅⋅⋅()()()()22222222211201222212311121111n n n n ⎡⎤⎡⎤-+-+⎣⎦⎣⎦-+-+⎡⎤⎡⎤++⎣⎦⎣⎦=⋅⋅⋅⋅⋅++()2211nn =-+当1n =时也满足上式 所以()2211nn a n =-+5.(2022·全国·高三专题练习)已知数列{}n a 的首项为12,且满足()()()*1112,n n n a n a n n N -+=-≥∈.求{}n a 的通项公式. 【答案】()11n a n n =+.【解析】由()()111n n n a n a -+=-,得111n n a n a n --=+, 又112a =,所以当2n ≥时,123211232112321······1143n n n n n n n a a a a a n n n a a a a a a a n n n --------=⋅⋅⋅=⋅⋅⋅+-()1121n n ⋅=+, 又1n =也满足上式,所以()11n a n n =+;1.(2022·全国·高三专题练习)已知n a 为数列{}n S 的前n 项积,若121n nS a -=,则数列{}n a 的通项公式n a =( ) A .3-2n B .3+2nC .1+2nD .1-2n【答案】D【解析】当n =1时,1111211a a a -=⇒=-;当2n ≥时,11112212n n n n n n n n a a a a a a a a ----=-=⇒-=-,于是{}n a 是以-1为首项,-2为公差的等差数列,所以()12112n a n n =---=-.故选:D.2.(2022·湖北省武汉市汉铁高级中学高三阶段练习)(多选)数列{}n a 的前n 项为n S ,已知2421n n n S a a =++,下列说法中正确的是( ) A .{}n a 为等差数列 B .{}n a 可能为等比数列C .{}n a 为等差数列或等比数列D .{}n a 可能既不是等差数列也不是等比数列题组三 公式法【答案】BD【解析】依题意,2421n n n S a a =++,当1n =时,22111111421,210,1a a a a a a =++-+==,当2n ≥时,2421n n n S a a =++,2111421n n n S a a ---=++,两式相减得2211422n n n n n a a a a a --=-+-,()()()11120n n n n n n a a a a a a ---+--+=,()()1120n n n n a a a a ----+=,当10n n a a -+=时,1n n a a -=-,则数列{}n a 是首项为1,公比为1-的等比数列. 当120n n a a ---=时,12n n a a --=,则数列{}n a 是首项为1,公差为2的等差数列, 当10n n a a -+=,120n n a a ---=交替成立时,{}n a 既不是等差数列也不是等比数列. 故选:BD3.(2022·全国·高三专题练习)若数列{}n a 满足112a =,212323n n a a a na n a +++⋯+=,则2017a =______ .【答案】122017【解析】2212121331(1)((23231))2)1(,n n n n n a a a na n a a a a na n a n a +++++⋯+=+++⋯+++⇒+=(2)(1)-得,122111)1)((1n n n n n a n a n a nn a a n +++-⇒+==++, 所以有324123111123112234n n n a a a a n n a a a a a a n a --=⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅=,因此2017122017a =. 故答案为1220174.(2022·全国·高三专题练习)已知数列{}n a 满足11a =,()12311111231n n a a a a a n n -=+++⋅⋅⋅+>-.数列{}n a 的通项公式 . 【答案】1,1,22n n a n n =⎧⎪=⎨≥⎪⎩ 【解析】1231111(1)231n n a a a a a n n -=++++>-,11a =当2n =时,211a a == 当2n >时,112311111231n n n a a a a a a n n+-∴=+++++-,两式相减得:11n n n a a a n+-=,即11n n n a a n++=,∴11n n a n a n ++=, 11n n a na n -∴=-,1212n n a n a n ---=-,2323n n a n a n ---=-,3434n n a n a n ---=-⋯3232a a =, 累乘得:22nana =,所以2n n a =,()2n >1,1,22n n a n n =⎧⎪∴=⎨≥⎪⎩故答案为:1,1,22n n a nn =⎧⎪=⎨≥⎪⎩. 5.(2022·四川·什邡中学)数列{}n a 的前n 项和2321n S n n =-+,则它的通项公式是_______.【答案】2,165,2n n a n n =⎧=⎨-≥⎩ 【解析】当1n =时,211312112a S ==⨯-⨯+=,当2n ≥时,()()()22132********n n n a S S n n n n n -⎡⎤=-=-+----+=-⎣⎦经检验当1n =时不符合,所以2,165,2n n a n n =⎧=⎨-≥⎩,故答案为:2,165,2n n a n n =⎧=⎨-≥⎩,6.(2022·安徽宿州)已知数列{}n a 的前n 项和为n S ,且()2n n a S n ++=∈N ,则{}n a 的通项公式为n a =______. 【答案】112n -⎛⎫⎪⎝⎭【解析】当1n =时,112a S +=,得11a =, 当2n ≥时,由()2n n a S n ++=∈N ,得112n n a S --+=, 所以110n n n n a S a S --+--=,所以120n n a a --=,所以112n n a a -=, 所以数列{}n a 是以1为首项,12为公比的等比数列,所以112n n a -⎛⎫= ⎪⎝⎭,故答案为:112n -⎛⎫⎪⎝⎭7.(2022·北京交通大学附属中学高二期中)已知数列{}n a 满足()212n a a a n n n *+++=+∈N ,则n a =____.【答案】2n 【解析】因为212(1)n n a a a n +++=+,所以当2n ≥时,有2121(11)(2)n a a n n a -+++=--+,(1)(2)-,得2n a n =,当1n =时,12a =也适合2n a n =, 故答案为:2n8.(2022·山西太原·二模(文))已知数列{}n a 的首项为1,前n 项和为n S ,且()12n n nS n S +=+,则数列{}n a 的通项公式n a =___________. 【答案】n【解析】∵1(2)n n nS n S +=+,∵12n n S n S n ++= 当2n ≥时,121121n n n n n S S S S S S S S ---=⨯⨯⨯⨯, 1126543112344321n n n n n n n n +--=⨯⨯⨯⨯⨯⨯⨯⨯⨯----(1)2n n +=当1n =时,111212S a ⨯===成立, ∵(1)2n n n S +=, 当2n ≥时,1(1)(1)22n n n n n n na S S n -+-=-=-=,当1n =时,11a =满足上式, ∵n a n =. 故答案为:n1.(2022·全国·课时练习)在数列{}n a 中,若111,12nn naa a a +==+,则n a =________.【答案】121n - 【解析】取倒数得:1112n na a +=+, 所以数列1n a ⎧⎫⎨⎬⎩⎭是首项为1,公差为2的等差数列,题组四 构造等差数列所以112(1)21n n n a =+-=-,所以121n a n =-. 故答案为:121n - 2.(2022·湖北·荆州中学)已知数列{}n a 满足11a =,且11nn n a a a +=+.则数列{}n a 的通项公式为n a =_______. 【答案】1n【解析】因为11n n n a a a +=+,所以11111,1111n n n n n n a a a a a a ++=-+=+=,所以数列1na 是首项为1,公差为1 的等差数列,所以11,nn n a a n ==故答案为:1n. 3.(2022·全国·课时练习)已知数列{}n a 中,1*113,323,n n n a a a n N ++==+⨯∈,求数列{}n a 的通项公式 ;【答案】()213nn a n =-⋅.【解析】由11323n n n a a ++=+⨯,得:111123333n n n n n n a a ++++⋅=+,∵11233n n n na a ++-=, 即数列3n n a ⎧⎫⎨⎬⎩⎭是首项为1,公差为2的等差数列,∵213n n a n =-,得()213n n a n =-⋅. 4.(2022·全国·高三专题练习)已知数列{}n a 中,213a =,112n n n n a a a a ++=+.求数列{}n a 的通项公式 ;【答案】121n a n =- 【解析】因为112n n n n a a a a ++=+,213a =所以令1n =,则12122a a a a =+,解得11a =, 对112n n n n a a a a ++=+两边同时除以1n n a a +,得1112n na a +-=, 又因为111a ,所以1n a ⎧⎫⎨⎬⎩⎭是首项为1,公差为2的等差数列,所以112(1)21n n n a =+-=-,所以121n a n =-; 5.(2022·全国·高三专题练习)已知数列{}n a 中,11a =,133nn n a a +=+,求数列{}n a 的通项公式 .【答案】13n n a n -=⋅【解析】∵133nn n a a +=+,∵111333n n n n a a ++-=,∵数列3n na ⎧⎫⎨⎬⎩⎭是等差数列,公差为13,又1133a =, ∵11(1)3333n na nn =+-⨯=,∵13n n a n -=⋅. 题组五 构造等比数列1.(2022·四川师范大学附属中学二模)已知数列{}n a 满足1122n n a a +=+,且{}n a 前8项和为761,则1a =______.【答案】52【解析】数列{}n a 满足1122n n a a +=+,整理得1112()22n n a a ++=+,若112a =-,则12n a =-,显然不符合题意,所以12n a ≠-,则121212n n a a +++=(常数);所以数列12n a ⎧⎫+⎨⎬⎩⎭是以112a +为首项,2为公比的等比数列;所以1111222n n a a -⎛⎫+=+⋅ ⎪⎝⎭,整理得1111222n n a a -⎛⎫=+⋅- ⎪⎝⎭;由于前8项和为761,所以187811111121()(12...2)842554761222122S a a a -⎛⎫⎛⎫=+⋅+++-⨯=+⨯-=+-= ⎪ ⎪-⎝⎭⎝⎭,解得152a =.故答案为:52. 2.(2022·山西)已知数列{}n a 满足1267n n a a +=+,11a =,则n a =___________. 【答案】1117344n -⋅- 【解析】由已知可得1732n n a a +=+,设()13n n a x a x ++=+,则132n n a a x +=+,所以,722x =,可得74x =,所以,177344n n a a +⎛⎫+=+ ⎪⎝⎭,且171144a +=,由题意可知,对任意的n *∈N ,704n a +≠,则174374n n a a ++=+, 所以,数列74n a ⎧⎫+⎨⎬⎩⎭为等比数列,且该数列的首项为114,公比为3,所以,1711344n n a -+=⋅,因此,1117344n n a -=⋅-.故答案为:1117344n -⋅-. 3.(2021·全国·专题练习)已知数列{}n a 满足:11a =,12nn n a a a +=+()n N +∈,则6a =( ) A .131B .132C .163D .164【答案】C【解析】由题意,12121n n n n a a a a ++==+,即+11112(1)n na a +=+,故111211n n a a ++=+, 又因为1112a +=,所以数列1{1}n a +是以首项为2,公比为2的等比数列,从而561122a +=⨯,解得6163a =.故选:C. 4.(2022·黑龙江)已知数列{}n a 的通项公式为135a =,1321nn n a a a +=+求数列{}n a 的通项公式 .【答案】332nn na =+ 【解析】因为1321n n n a a a +=+,所以121121333n n n n a a a a ++==+,则1111113n n a a +⎛⎫-=- ⎪⎝⎭, 又11213a -=,所以数列11n a ⎧⎫-⎨⎬⎩⎭是以23为首项,13为公比的等比数列,所以112121333n n n a --=⨯=, 所以1323n n n a +=,所以332nn na =+.。
一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(考点:复数,★)若复数z 满足(1-i)z=1+2i,则z −在复平面内对应的点位于( ). A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知集合{}2230M x x x =--<,{}0N x x x =-=,则M N =( )A .{}0,1B .[)0,1C .()0,3D .[)0,33.(考点:函数的奇偶性与周期性,)已知奇函数f (x )满足f (x+2)=f (x ),且当x ∈(-1,1)时,f (x )=lg (21-x +a),则f (40412)=( ).A .0B . lg 3C .lg 5D .14.(考点:三角恒等变换,)已知tan α=2tan π7,则cos(α-5π14)sin(α+6π7)=( ).A .3B .1C .-1D .-35.(考点:等比数列,★★)已知数列{a n }中,a 1=1,a n+1=√2a n (n ∈N *),则a 1+a 3+a 5+a 7+a 9=( ). A .31 B .63C .123D .10236.(考点:双曲线,★★)已知直线y=2b 与双曲线x 2a 2-y 2b 2=1(a>0,b>0)的渐近线在第一象限交于点C ,双曲线的左、右焦点分别为F 1,F 2,若tan ∠CF 2F 1=√15,则双曲线的离心率为( ). A.1611 B .2 C.4 D.4或16117.(考点:样本的数字特征,★★★)一张白纸上曾经写有x 1,x 2,…,x 16等16个数据,由于时间长了,除了数据9.22比较清楚外,剩下的15个数据模糊不清,但是这15个数据的平均数为10.02,16个数据的标准差s=√116 i=116(x i -x −)2≈0.212,其中i=1,2,…,16,则 i=116x i2=( ).(结果保留小数点后三位数字) A.1584.034 B.1589.134 C.1591.134 D.1594.1348.(考点:函数图象的判断,★★★)函数f (x )=sinx+xcosx+|x |在[-π,π]上的大致图象为( ).二、多项选择题:本题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求,全部选对得5分,部分选对的得3分,有选错的得0分.9.已知某圆锥的母线长为2,其轴截面为直角三角形,则下列关于该圆锥的说法中正确的有 A 22B .圆锥的表面积为22πC 2π的扇形D .圆锥的内切球表面积为(24162π-10.已知a ,b ,c 为实数,且0a b >>,则下列不等式不一定...成立的是 A .22ac bc >B .b aa b< C .()222log log ab b ->D .1122a b< 11.设正实数x ,y 满足21x y +=,则 A .10,2x ⎛⎫∈ ⎪⎝⎭B .xy 的最大值为14C .22x y +的最小值为15D .42x y +的最小值为412.设函数()πsin 5f x x ω⎛⎫=+ ⎪⎝⎭(0>ω),若()f x 在[]0,π有且仅有5个极值点,则A .()f x 在()0,π有且仅有3个极大值点B .()f x 在()0,π有且仅有4个零点C .ω的取值范围是4353,1010⎡⎫⎪⎢⎣⎭D .()f x 在π0,20⎛⎫⎪⎝⎭上单调递增三、填空题:本题共4小题,每小题5分,共20分. 13.给出一个满足以下条件的函数()f x =___________. ①()f x 的定义域是R ,且其图像是一条连续不断的曲线; ②()f x 是偶函数;③()f x 在()0,∞+不是单调函数; ④()f x 有无数个零点. 14.23()33xf x =+,且11(0())(1)n n a f f f f n N n n *-⎛⎫⎛⎫=++⋯++∈ ⎪ ⎪⎝⎭⎝⎭,则数列{}n a 的通项公式为________. 15.正方体1111ABCD A B C D -为棱长为2,动点P ,Q 分别在棱BC ,1CC 上,过点A ,P ,Q 的平面截该正方体所得的截面记为S ,设BP x =,CQ y =,其中x ,[]0,2y ∈,下列命题正确的是_____.(写出所有正确命题的编号)①当0x =时,S 为矩形,其面积最大为4;②当1x y ==时,S 的面积为92;③当1x =,()1,2y ∈时,设S 与棱11C D 的交点为R ,则144RD y=-;④当2y =时,以1B 为顶点,S 为底面的棱锥的体积为定值83.16.对于函数()f x 与()g x ,若存在0x ,使()()00f x g x =-,则称点()()00,A x f x ,()()00,B x g x 是函数()f x 与()g x 图象的一对“靓点”.已知函数()2ln ,022,0x x f x x x x ⎧>=⎨++≤⎩,()g x kx =,若函数()f x 与()g x 恰有两对“靓点”,则k 的取值范围为______四、解答题(本题共6小题,共70分,其中第16题10分,其它每题12分,解答应写出文字说明、证明过程或演算步骤。