期末复习(1)圆
- 格式:ppt
- 大小:927.50 KB
- 文档页数:14
长郡湘府中学2022年高二第一学期期末复习数学资料(1)直线与圆一、单选题1.已知两条直线1l :10mx y +-=和2l :()220x m y +-+=互相垂直,则实数m 的值为( ) A .0B .1C .0或1D .22.经过点5)A 和(2,2)B -,且圆心在x 轴上的圆的一般方程为( ) A .2260x y y +-= B .2260x y y ++= C .2260x y x ++=D .2260x y x +-=3.圆224x y +=与圆2286160x y x y +--+=的位置关系是( ) A .相离B .相交C .内含D .外切4.若圆()()22:138C x y -+-=上存在四个点到直线:0l x y m ++=2m 的取值范围是( )A .6m <-B .2m >-C .62m -<<-D .6m <-或2m >- 5.已知过点()0,2的直线l 与圆心为C 的圆()()222110x y -+-=相交于A 、B 两点,若CA CB ⊥,直线l 的方程为( ) A .220x y -+= B .220x y -+=或220x y +-= C .0x = D .0x =或220x y +-=二、多选题6. 若过点(1,a ),(0,0)的直线l 1与过点(a ,3),(-1,1)的直线l 2平行,则a 的取值可以为( ) A .-2B .-1C .1D .27.(多选)已知圆x 2+y 2-2x +4y +3=0与直线x -y =1,则( ) A .圆心坐标为(1,-2) B 22C .直线与圆相交D 2 8.已知动圆22:(cos )(sin )1C x y αα-+-=,[0,2)απ∈,则( ) A .圆C 与圆224x y +=相交B .圆C 与直线cos sin 0x y αα+=相切C .若点(1,0)在动圆C 外,则4,33ππα⎛⎫∈ ⎪⎝⎭D .圆C 上一点M 满足(0,1)CM =,则M 的轨迹的长度为2π 三、填空题9.直线:10l x my m +--=被圆O ;223x y +=截得的弦长最短,则实数m =___________. 10.已知直线()110a x ay +--=与圆22(1)(1)2x y -+-=相交于A ,B 两点,则线段AB 的长为___________.11.已知圆22:240C x y ax y +-+=关于直线320x y ++=对称,(),P x y 为圆C 上一点,则2x y -的最大值为__________.12.当曲线y =240kx y k -++=有两个不同的交点时,实数k 的取值范围是____________. 四、解答题13.已知圆C 的圆心在直线20x y -=上,且与y 轴相切于点0,1. (Ⅰ)求圆C 的方程;(Ⅰ)若圆C 与直线l :0x y m -+=交于A ,B 两点,_____________,求m 的值.从下列两个条件中任选一个补充在上面问题中并作答:条件Ⅰ:120ACB ∠=︒;条件Ⅰ:AB =注:如果选择多个条件分别作答,按第一个解答计分.14.(1)圆C 的圆心在x 轴上,且经过(1,1),(1,3)A B -两点,求圆C 的方程; (2)圆C 经过(1,5),(5,5),(6,2)P Q R --三点,求圆C 的方程.15.求经过直线l1:2x﹣y+4=0和直线l2:x﹣y+5=0的交点C,并且满足下列条件的直线方程.(1)与直线x﹣4y+4=0垂直;(2)到原点的距离等于1.16.已知方程22244m0+-++=.x y x y(1)若此方程表示圆,求实数m的取值范围;(2)若m的值为(1)中能取到的最大整数,则得到的圆设为圆E,若圆E与圆F关于y轴对称,求圆F 的一般方程.参考答案:1.B【解】12l l ⊥,显然0m ≠且2m ≠,()112m m ⎛⎫∴-⨯-=- ⎪-⎝⎭,解得1m =.2.D【解】设圆的方程为()2222040x y Dx Ey F D E F ++++=+->,因为圆心在x 轴上,所以02E-=,即0E =.又圆经过点A 和(2B -,,所以222210,2(20,D F D F ⎧+++=⎪⎨+-++=⎪⎩即60,2120,D F D F ++=⎧⎨++=⎩解得6,0.D F =-⎧⎨=⎩ 故所求圆的一般方程为2260x y x +-=. 3.D【解】由题,圆224x y +=的圆心为()0,0,半径为2;圆2286160x y x y +--+=,即()()22439x y -+-=,所以圆心为()4,3,半径为3;523==+,所以两圆外切.4.C【解】由题设,(1,3)C 且半径r =:0l x y m ++=ⅠC 到:0l x y m ++=的距离d =<62m -<<-. 5.A【解】圆()()222110x y -+-=的圆心为()2,1C ,半径为r =由CA CB ⊥,且CA CB ==ABC 是以ACB ∠为直角的等腰直角三角形, 所以,点C 到直线l 的距离为cos 455d r ==若直线l 的斜率不存在,则直线l 的方程为0x =,此时点C 到直线l 的距离为2,不合乎题意; 若直线l 的斜率存在,设直线l 的方程为2y kx =+,即20kx y -+=,则有d =()220k -=,解得2k =,所以直线l 的方程为22y x =+. 6.AC【解】若直线l 1与l 2平行,则()031101a a --=---,即a (a +1)=2,故a = -2或a =1.当2a =-时,12k =-,2221k a ==-+,符合题设; 当1a =时,11k =,2211k a ==+,符合题设; 7.AD【解】把圆的方程化为标准形式得(x -1)2+(y +2)2=2,所以圆心坐标为(1,-2),2,所以圆心到直线x -y =1的距离为d 22 8.BD【解】A. 动圆22:(cos )(sin )1C x y αα-+-=圆心C ()cos ,sin αα,半径1r =, 22cos sin 1αα+=,正好为两半径差,故两圆内切,错误; B. 圆心C ()cos ,sin αα到直线cos sin 0x y αα+=22cos cos sin sin 1cos sin αααααα+=+,故圆C 与直线cos sin 0x y αα+=相切,正确;C. 点(1,0)在动圆C 外,则22(1cos )(0sin )1αα-+->,整理得1cos 2α<, 又[0,2)απ∈,解得5,33ππα⎛⎫∈ ⎪⎝⎭,错误; D.设点(),M x y ,又C ()cos ,sin αα,则()(cos 0,,sin 1)x CM y αα=--=,cos 0sin 1x y αα-=⎧∴⎨-=⎩,消去α得()2211x y +-=, 故点M 的轨迹是半径为1的圆,故轨迹的长度为2π,正确; 9.1【解】直线MN 的方程可化为10x my m +--=,由1110y x -=⎧⎨-=⎩,得11x y =⎧⎨=⎩,所以直线MN 过定点A (1,1),因为22113+<,即点A 在圆223x y +=内.当OA MN ⊥时,|MN |取最小值, 由1OA MN k k =-,得111m ⎛⎫⨯-=- ⎪⎝⎭,Ⅰ1m =,10.2【解】直线()110a x ay +--=恒过()1,1点,圆()()22112x y -+-=的圆心()1,1,2,直线恒过圆的圆心,所以直线交圆的弦长为直径,所以线段AB 的长为22 11.20【解】方程22240x y ax y +-+=可化为()()22224x a y a -++=+,所以圆22:240C x y ax y +-+=的圆心为(),2C a -因为圆22:240C x y ax y +-+=关于直线320x y ++=对称,所以()3220a +⨯-+=,所以4a =,令2z x y =-≤所以1010z -≤,所以020z ≤≤,所以2x y -的最大值为20, 12.3[1,)4--【解】因为y ()2204y x y +=≥,其表示圆心为()0,0,半径为2的圆的上半部分; 因为240kx y k -++=,即()42y k x -=+, 其表示过点()2,4A -,且斜率为k 的直线. 在同一坐标系下作图如下:不妨设点()2,0B ,AB 直线斜率为1k ,且过点A 与圆相切的直线斜率为2k数形结合可知:要使得曲线y 240kx y k -++=有两个不同的交点, 只需12k k k ≤<即可. 容易知:140122k -==---; 不妨设过点A 与224x y +=相切的直线方程为()242y k x -=+, 2=,解得234k =-,故31,4k ⎡⎫∈--⎪⎢⎣⎭.13.【解】(Ⅰ)设圆心坐标为(),C a b ,半径为r .由圆C 的圆心在直线20x y -=上,知:2a b =. 又Ⅰ圆C 与y 轴相切于点0,1,Ⅰ1b =,2a =,则02r a =-=.Ⅰ圆C 的圆心坐标为()2,1,则圆C 的方程为()()22214x y -+-=.(Ⅰ)如果选择条件Ⅰ:120ACB ∠=︒,而2CA CB ==, Ⅰ圆心C 到直线l 的距离1d =,则21111m d -+==+,解得21m =或21--.如果选择条件Ⅰ:23AB =2CA CB ==, Ⅰ圆心C 到直线l 的距离1d =,则21111m d -+==+,解得21m =或21--.14.【解】(1)(1,1),(1,3)A B -的中点为(0,2),因为3111(1)AB k -==--,所以线段AB 的中垂线的斜率为1-,所以线段AB 的中垂线的方程为2y x -=-, 当0y =时,2x =,则圆心为(2,0)22(21)(01)10++- 所以所求圆的方程为22(2)10x y -+=; (2)设圆的方程为220x y Dx Ey F ++++=,则125502525550364620D E F D E F D E F +-++=⎧⎪++++=⎨⎪++-+=⎩,解得4220D E F =-⎧⎪=-⎨⎪=-⎩, 所以圆的方程为2242200x y x y +---=.15.【解】(1)由于直线l 2:x ﹣y +5=0与直线x ﹣4y +4=0不垂直故设所求直线为()()2450x y x y λ-++-+=,故()()21450x y λλλ+-+++=, 因为此直线与直线x ﹣4y +4=0垂直,故()()2410λλ+++=,故65λ=-,故所求直线为4100x y +-=.(2)由于原点到直线l 2:x ﹣y +5=0的距离12d =≠故设所求直线为()()2450x y x y λ-++-+=,故()()21450x y λλλ+-+++=, 221(2)(1)d λλ==+++ 解得1λ=-或1123-故直线方程为:10x -=或3512370x y -+=16.【解】(1)若此方程表示圆,则22(2)4440m -+-⨯>,解得54m <. (2)由(1)可知m =1,此时圆E :22+2+4+4=0x y x y -, 圆心坐标为E (1,-2),半径为1, 因为圆F 和圆E 关于y 轴对称,所以圆F 圆心坐标是(-1,-2),半径是1,故圆F 方程为(x +1)2+(y +2)2=1,化为一般方程为:22+2+4+4=0x y x y .。
人教版小学数学精品资料五、圆(马铁汉)一、认识圆1、圆的定义:圆是由曲线围成的一种平面图形。
2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
一般用字母O 表示。
它到圆上任意一点的距离都相等.3、半径:连接圆心到圆上任意一点的线段叫做半径。
一般用字母r 表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4、直径:通过圆心并且两端都在圆上的线段叫做直径。
一般用字母d 表示。
直径是一个圆内最长的线段。
5、圆心确定圆的位置,半径确定圆的大小。
6、在同圆或等圆内,有无数条半径,无数条直径。
所有的半径都相等,所有的直径都相等。
7.在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的21。
用字母表示为:d =2r 或r =2d 8、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。
折痕所在的这条直线叫做对称轴。
(经过圆心的任意一条直线或直径所在的直线)9、长方形、正方形和圆都是对称图形,都有对称轴。
这些图形都是轴对称图形。
10、只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。
只有2条对称轴的图形是:长方形只有3条对称轴的图形是:等边三角形只有4条对称轴的图形是:正方形; 有无数条对称轴的图形是:圆、圆环。
二、圆的周长1、圆的周长:围成圆的曲线的长度叫做圆的周长。
用字母C 表示。
2、圆周率实验:在圆形纸片上做个记号,与直尺0刻度对齐,在直尺上滚动一周,求出圆的周长。
发现一般规律,就是圆周长与它直径的比值是一个固定数(π)。
3.圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。
用字母π(pai)表示。
(1)、一个圆的周长总是它直径的3倍多一些,这个比值是一个固定的数。
圆周率π是一个无限不循环小数。
在计算时,一般取π≈ 3.14。
(2)、在判断时,圆周长与它直径的比值是π倍,而不是 3.14倍。
(3)、世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
九年级数学上册《圆》期末复习练习及答案姓名:_______________班级:_______________得分:_______________一选择题:1.下列说法不正确的是()A.圆是轴对称图形,它有无数条对称轴B.圆的半径﹨弦长的一半﹨弦上的弦心距能组成一直角三角形,且圆的半径是此直角三角形的斜边C.弦长相等,则弦所对的弦心距也相等D.垂直于弦的直径平分这条弦,并且平分弦所对的弧2.如图,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD 等于()A.116°B.32°C.58°D.64°第2题图第3题图第4题图3.如图是我市环北路改造后一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB 宽为4m,水面最深地方的高度为1m,则该输水管的半径为()A.2mB.2.5mC.4mD.5m4.如图,⊙O的直径CD垂直于弦AB于点E,且CE=2,OB=4,则AB的长为()A. B.4 C.6 D.5.如图,在Rt△ABC中,∠C=90°,∠B=30°,BC=4cm,以点C为圆心,以2cm的长为半径作圆,则⊙C与AB的位置关系是( )A.相离B.相切C.相交D.相切或相交第5题图第6题图6.如图,AB是⊙O的直径,C﹨D是⊙O上一点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E等于()A.40°B.50°C.60°D.70°7.如图,Rt△AB′C′是Rt△ABC以点A为中心逆时针旋转90°而得到的,其中AB=1,BC=2,则旋转过程中弧CC′的长为( )A.πB.π C.5π D.π第7题图第8题图第9题图8.如图,PA,PB是⊙O的切线,A,B是切点,点C是劣弧AB上的一个点,若∠P=40°,则∠ACB 度数是( )A.80°B.110°C.120°D.140°9.如图,△ABC中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则⊙C的半径为()A.2.3B.2.4C.2.5D.2.610.如图,在直角∠O的内部有一滑动杆AB,当端点A沿直线AO向下滑动时,端点B会随之自动地沿直线OB向左滑动,如果滑动杆从图中AB处滑动到A′B′处,那么滑动杆的中点C 所经过的路径是()A.直线的一部分B.圆的一部分C.双曲线的一部分D.抛物线的一部分第10题图第11题图第12题图11.如图是油路管道的一部分,延伸外围的支路恰好构成一个直角三角形,两直角边分别为6m和8m.按照输油中心O到三条支路的距离相等来连接管道,则O到三条支路的管道总长(计算时视管道为线,中心O为点)是()A.2mB.3mC.6mD.9m12.如图,以AC为斜边在异侧作Rt△ABC和Rt△ADC,∠ABC=∠ADC=90°,∠BCD=45°,AC=2,则BD的长度为()A.1B.C.D.13.如图,半径为1的圆O与正五边形ABCDE相切于点A﹨C,劣弧AC的长度为()A.πB.πC.πD.π第13题图第14题图第15题图14.如图,在半径为2,圆心角为90°的扇形内,以BC为直径作半圆,交弦AB于点D,连接CD,则阴影部分的面积为()A.π﹣1B.2π﹣1C.π﹣1D.π﹣215.如图,AB是⊙O的直径,弦BC=2cm,∠ABC=60°.若动点P以2cm/s的速度从B点出发沿着B→A的方向运动,点Q从A点出发沿着A→C的方向运动,当点P到达点A时,点Q也随之停止运动.设运动时间为t(s),当△APQ是直角三角形时,t的值为() A. B. C.或 D.或或17.把一张圆形纸片和一张含45°角的扇形纸片如图所示的方式分别剪得一个正方形,如果所剪得的两个正方形边长都是1,那么圆形纸片和扇形纸片的面积比是()A.4:5B.2:5C.:2D.:18.如图,点A﹨B分别在x轴﹨y轴上(),以AB为直径的圆经过原点O,C是的中点,连结AC,BC.下列结论:①; ②若4,OB =2,则△ABC的面积等于5; ③若,则点C的坐标是(2,),其中正确的结论有()A.3个B.2个C.1个D.0个19.如图,A点在半径为2的⊙O上,过线段OA上的一点P作直线l,与⊙O过A点的切线交于点B,且∠APB=60°,设OP=x,则△PAB的面积y关于x的函数图象大致是()20.如图,以为圆心,半径为2的圆与轴交于﹨两点,与轴交于﹨两点,点为⊙上一动点,,垂足为.当点从点出发沿顺时针运动到点时,点所经过的路径长为()(A)(B)(C)(D)二填空题:21.小明把如图所示的矩形纸板挂在墙上,玩飞镖游戏(2008•庆阳)图中△ABC外接圆的圆心坐标是_______.第21题图第22题图第23题图22.如图,AB是⊙O的直径,C﹨D是⊙O上的点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E=_______.23.如图,AB为⊙O的直径,∠E=20°,∠DBC=50°,则∠CBE= °.24.在Rt△ABC中,∠C=90°,AC=5,BC=12,若以C点为圆心﹨r为半径所作的圆与斜边AB 只有一个公共点,则r的范围是.第24题图第25题图第26题图25.如图,四边形OABC是菱形,点B,C在以点O为圆心的弧EF上,且∠1=∠2,若扇形OEF的面积为3π,则菱形OABC的边长为________.26.如图,三个小正方形的边长都为1,则图中阴影部分面积的和是__________。
一、知识点结论:同一转动物体上各点的相等,皮带传动边缘各点的相等。
1、作用效果:产生向心加速度,只改变速度的________,不改变速度的________.2、大小:F=mv2r=________=m4π2rT2=mωv=4π2mf2r3、方向:总是沿半径方向指向________,时刻在改变,即向心力是一个变力.4、来源:向心力可以由一个力提供,也可以由几个力的______提供,还可以由一个力的________提供.小结:处理匀速圆周运动的动力学问题的基本步骤:(1)审清题意,确定研究对象;(2)分析物体的运动情况,即物体的线速度、角速度、周期、轨道平面、圆心、半径等;(3)分析物体的受力情况,画出受力示意图,确定向心力的来源;(4)根据牛顿运动定律及向心力公式列方程.5、生活中的圆周运动实例67、离心现象及应用做匀速圆周运动的物体,在所受合外力 或 提供圆周运动所需要的向心力时,就会做 的运动,这种现象称为离心现象。
【例题讲解】例1、如图5-1所示的传动装置中,B 、C 两轮固定在一起绕同一轴转动,A 、B 两轮用皮带传动,三轮半径之间的关系为r A = r C =2 r B ,若皮带不打滑,求A 、B 、C 轮边缘上的a 、b 、c 三点的角速度之比和线速度之比.例2、关于向心力的说法,正确的是( ) A .物体由于做圆周运动而产生了一个向心力 B .向心力不改变匀速圆周运动物体的速度C .做匀速圆周运动的物体其向心力为所受的合力外力D .做匀速圆周运动的物体其向心力是不变的例3、乘坐游乐园的翻滚过山车时,质量为m 的人随车在竖直平面内旋转,下列说法正确的是 ( ) A .人在最高点时对座位的压力一定等于零 B .人在最高点时对座位的压力一定小球mg C .人在最低点时对座位的压力一定等于零 D .人在最低点时对座位的压力一定大于mg 例4、(双选)甲、乙两球做匀速圆周运动,向心加速度a 随半径r 变化的关系图像如图5-2所示.由图像可知A .甲球运动时,线速度大小保持不变B .甲球运动时,角速度大小保持不变C .乙球运动时,线速度大小保持不变D .乙球运动时,角速度大小保持不变例5、如图5-4所示,小物体m 与圆盘保持相对静止,随盘一起做匀速圆周运动,则关于物体的受力情况的描述中不正确的是 A .受重力、支持力、静摩擦力和向心力的作用 B .摩擦力的方向始终指向圆心OC .重力和支持力是一对平衡力D .摩擦力是使物体做匀速圆周运动的向心力图 5-2 图 6-4a b c d例6、如图6-4所示,汽车在一段丘陵地带匀速率行驶,则图中各点中,最容易发生爆胎的位置是 A .a 处 B .b 处 C .c 处 D .d 处 例7、(双选)内壁光滑圆锥筒固定不动,其轴线竖直,如图2,两质量相同的小球A 和B 紧贴内壁分别在图示所在的水平面内做匀速圆周运动,则 ( )A .A 球的线速度必定大于B 球的线速度 B .A 球对筒壁的压力必定大于B 球对筒壁的压力C .A 球的角速度必定大于B 球的角速度D .A 球的运动周期必定小于B 球的运动周期例8、如图所示,由光滑组成竖直轨道,两圆形轨道上半径分别为R 和R/2,A 、B 分别是两圆形轨道的最高点,质量为m 的小球通过这段轨道时,在A 处刚好对管壁无压力,求: (1)小球通过A 处时的速度大小;(v A =gR ) (2)小球通过B 处时的速度大小;(v B =3gR ) (3)小球在B 处对管壁的压力大小。
圆形基础知识总结期末复习
1. 圆的定义
圆是由平面上到一个定点的距离都相等的点构成的图形。
这个定点称为圆心,而距离称为半径。
2. 圆的元素
圆包括以下元素:
- 圆心:圆的中心点。
- 半径:连接圆心和任意一点的线段,长度相等。
- 直径:通过圆心并且两端点在圆上的线段,长度是半径的两倍。
- 圆弧:圆上的线段。
- 弦:连接圆上两点的线段,不通过圆心。
3. 圆的性质与定理
- 定理1:圆心角的度数等于其所对的圆弧的度数。
- 定理2:半径垂直于弦,则它必定平分弦。
- 定理3:直径是最长的弦。
- 定理4:在同一个圆中,离圆心的距离相等的点构成的弧相等。
- 定理5:等长的弧所对的圆心角是相等的。
4. 圆周角与弧长
- 圆周角:圆周角是指顶点在圆上的角。
它的度数等于所对圆
弧的度数。
- 弧长:弧长是圆上弧的长度。
它可以通过弧度或角度来表示。
5. 弧度与角度的转换
- 1弧度= 180 / π度
- 1度= π / 180弧度
这些是圆形基础知识的主要内容,理解并掌握这些概念将有助
于你在期末考试中取得好成绩。
祝你成功!。
圆的期末复习题及答案一、选择题1. 圆的周长公式是()。
A. C = πrB. C = 2πrC. C = πdD. C = 2πd答案:B2. 圆的面积公式是()。
A. A = πr^2B. A = 2πrC. A = πd^2D. A = 2πd答案:A3. 已知圆的半径为5厘米,那么它的直径是()。
A. 10厘米B. 5厘米C. 15厘米D. 25厘米答案:A4. 圆的直径是半径的()倍。
A. 1B. 2C. 3D. 4答案:B二、填空题1. 圆的周长是其直径的_____倍。
答案:π2. 一个圆的半径为3厘米,它的周长是_____厘米。
答案:18.843. 圆的面积是半径平方乘以_____。
答案:π4. 圆的直径是半径的_____倍。
答案:2三、计算题1. 计算半径为4厘米的圆的周长和面积。
答案:周长= 2 × π × 4 = 25.12厘米;面积= π × 4^2 =50.24平方厘米。
2. 已知一个圆的周长是31.4厘米,求它的半径。
答案:半径 = 周长÷ (2 × π)= 31.4 ÷ (2 × 3.14) = 5厘米。
四、解答题1. 一个圆形花坛的直径是10米,求这个花坛的面积。
答案:面积= π × (10 ÷ 2)^2 = 78.5平方米。
2. 一个圆的半径增加了2厘米,它的面积增加了多少?答案:设原半径为r,则原面积为πr^2,新半径为r+2,新面积为π(r+2)^2。
面积增加量为π(r+2)^2 - πr^2 = π(4r + 4) = 4πr + 4π。
三、圆一、选择题:1.已知⊙1O 与⊙2O 的半径分别为5cm 和3cm ,圆心距1O 2O =7cm ,则两圆的位置关系是( )A.外离B.外切C.内切D.相交 2.如图1,正方形的边长为a ,以各边为直径在正方形内画半圆,图中阴影部分的面()A .24a πB .22a πC .2)12(a -π D . 2)41(a π-3、(3分)75°的圆心角所对的弧长是2.5πcm ,则此弧所在圆的半径是( ) A . 6cm B . 7cm C . 8cm D . 9cm 4、2009年7月22日上午,长江流域的居民有幸目睹了罕见的日全食天文奇观,下面是天文爱好者拍摄的三个瞬间,其中白色的圆形是太阳,逐渐覆盖太阳的黑色圆形是月亮。
如果把太阳和月亮的影像视作同一平面中的两个圆,则关于这两个圆的圆心距的半径之间的关系的说法,正确的是( )A.三张图片中圆心距都大于两圆的半径之和.B.第一幅图片中圆心距等于两圆的半径之和.C.第三幅图片中圆心距小于两圆的半径之差.D.三张图片中圆心距都大于两圆的半径之差且小于两圆的半径之和.5、以下命题正确的是( )。
A.圆的切线一定垂直于半径; B.圆的内接平行四边形一定是正方形; C.直角三角形的外心一定也是它的内心; D.任何一个三角形的内心一定在这个三角形内。
7、 如图,小明想利用图中所示的扇形纸片围成一个圆锥,已知扇形的半径为5cm,弧长是6πcm,则围成的圆锥高是 cm10.如图,O ⊙的弦CD 与直线径AB 相交,若50BAD ∠=°,则A C D ∠的度数为( )A .50°B .60°C .40°D .30°图1AO B5cm 第7题11、如图,在平面直角坐标系中,⊙P 的圆心是(2,a )(a >2),半径为2,函数y =x 的图象被⊙P 的弦AB 的长为23,则a 的值是( ) A .23 B .222+C .23D .23+13、 点A 、B 、C 三点在半径为2的⊙O 上,BC =22,则∠A 的度数( )A .45°B .60°C .45°或135°D .60°或120° 14、(3分)(2012•淄博)如图,⊙O 的半径为2,弦AB=,点C 在弦AB 上,AC=AB ,则OC 的长为( )A .B .C .D .16、(3分)(2010•杭州)如图,5个圆的圆心在同一条直线上,且互相相切,若大圆直径是 12,4个小圆大小相等,则这5个圆的周长的和为( )A . 48πB . 24πC . 12πD . 6π 17.(3分)PA 、PB 分别切⊙O 于A 、B 两点,C 为⊙O 上一动点(点C 不与A 、B 重合),∠APB=50°,则∠ACB=( ) A . 100° B . 115° C . 65°或115° D . 65° 21、点P 为⊙O 内一点,且OP =4,若⊙O 的半径为6,则过点P 的弦长不可能为 ( )A 、302B 、12C 、8D 、10.5 23.圆锥的底面圆半径与母线之比是1:2,这个圆锥的轴截面的顶角是( )A. 300B. 600C. 900D. 1200 二、填空题:1、已知圆锥的底面半径为3cm ,高为4cm ,则圆锥的侧面积是 cm 2.2、若正n 边形的一个内角等于它的中心角的1.5倍,则n= .OBDA C3、将一个弧长为12πcm, 半径为10cm 的扇形铁皮围成一个圆锥形容器(不计接缝), 那么这 个圆锥形容器的高为_____________cm4、已知扇形的半径是3,面积为3π,则扇形的圆心角是 °,扇形的弧长是 . 7.如图,从⊙O 外一点A 引圆的切线AB ,切点为B ,连接AO 并延长交圆于点C ,连接BC .若∠A =26°,则∠ACB 的度数为 °.13、如图,PA 、PB 是⊙O 的切线,A 、B 为切点,AC 是⊙O 的直径,∠P =30°,则∠BAC = 。
六年级数学上册第一单元《圆》期末复习要点1. 圆的定义和性质•圆是平面上的一条曲线,由与一个点到平面上所有与这个点的距离相等的点组成。
•圆的任意两点与圆心的距离相等。
•数学符号:圆心用字母O表示,圆上的点用字母A、B、C等表示,圆的半径用字母r表示。
2. 圆的基本元素•圆心:圆的中心点,用字母O表示。
•半径:从圆心到圆上任意一点的线段,用字母r表示。
•弦:连接圆上的两个点的线段。
•直径:通过圆心的线段,且两端点均在圆上,直径是半径的2倍。
3. 圆的重要公式和计算方法3.1 圆的周长和面积•周长:圆的周长是圆周上的所有点之间的距离之和。
–公式:周长= 2πr,其中π≈3.14,r为圆的半径。
•面积:圆的面积是圆内部的所有点组成的区域的大小。
–公式:面积= πr²。
3.2 圆的特殊线段和角度•切线:与圆只有一个交点的直线,切线与半径垂直。
•弦中垂线:连接弦的中点和圆心的线段,垂直于弦。
•弧:圆上的一段弧线,可以通过两点确定一个弧。
•弧长:弧所对应的圆周的长度。
–公式:弧长= 2πr × (弧度/360°),其中弧度 = 弧长/半径。
4. 圆的相关定理和推论4.1 弧所对应的中心角和外角•定理:同一个圆中,相等的弧所对应的中心角相等,相等的弧所对应的外角也相等。
4.2 切线和半径的关系•定理:切线和半径的关系是垂直关系,即切线和半径在交点处垂直。
4.3 弦和弦中垂线的关系•定理:相等的弦所对应的弦中垂线也相等。
4.4 直径和切线的关系•定理:过圆的任意一点,可以作一条且只有一条切线,且这条切线垂直于直径。
5. 圆在实际生活中的应用•圆在建筑中的运用:圆形窗户、拱形建筑结构等。
•圆在艺术中的应用:圆形画框、圆形雕塑等。
•圆在运动中的应用:圆形操场、圆环游泳池等。
以上是六年级数学上册第一单元《圆》的期末复习要点。
希望同学们能够掌握圆的定义、性质、基本元素,掌握圆周长和面积的计算方法,了解圆的特殊线段和角度关系,掌握圆的相关定理和推论,以及了解圆在实际生活中的应用。
第三章圆的基本性质期末复习卷一一、选择题(本大题有10小题,每小题4分,共40分)1.如图,A、B、C是⊙O上的三个点,⊙ABC=20°,则⊙AOC的度数是()A.10°B.20°C.30°D.40°2.如图,AB是⊙O的直径,若AC=4,⊙D=60°,则BC长等于()A.8B.10C.2√3D.4√33.如图,AB是⊙O的一条弦,OD⊙AB,垂足为C,交⊙O于点D,点E在⊙O上.⊙OAB=38°,则⊙E的度数为()A.52°B.38°C.30°D.26°4.如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是AC⌢上的点,若⊙BOC=40°,则⊙D 的度数为()A.100°B.110°C.120°D.130°5.如图,五边形ABCDE内接于⊙O,若⊙CAD=40°,则⊙B+⊙E的度数是()A.200°B.215°C.230°D.220°(第1题)(第2题)(第3题)(第4题)(第5题)6.如图所示,在⊙O中,∠BAC=25°,∠CED=30°,则∠BOD的度数是()A.55°B.110°C.125°D.150°7.如图,AD为⊙O的直径,AD=8,∠DAC=∠ABC,则AC的长度为()A.4√2B.2√2C.4D.3√38.如图,将含有60°锐角的三角板ΔABC绕60°的锐角顶点C逆时针旋转一个角度到ΔECD,若AB、CE相交于点F,AE=AF,则旋转角是()A.45°B.40°C.35°D.30°9.如图,C是以AB为直径的半圆O上一点,连接AC,BC,分别以AC,BC为边向外作正方形ACDE,BCFG.DE,FG,AC⌢,BC⌢的中点分别是M,N,P,Q.若MP+NQ=14,AC+BC=18,则AB的长为()A.9√2B.907C.13D.1610.如图所示,半径为R的⊙O的弦AC=BD,AC,BD交于点E,F为BC⌢上一点,连结AF,BF,AB,AD,有下列结论:①AE=BE;②若AC⊙BD,则AD=√2R;③若AC⊙BD,CF⌢=CD⌢,AB=√2,则BF+CE=1.其中正确的是()A.①②B.①③C.②③D.①②③(第6题)(第7题)(第8题)(第9题)(第10题)二、填空题(本大题有6小题,每小题5分,共30分)11.在半径为15的圆中,120°的圆心角所对的弧长是.12.如图,在等腰直角三角形ABC中,AB=BC=2cm,以直角顶点B为圆心,AB长为半径画弧,再以AC为直径画弧,两弧之间形成阴影部分.阴影部分面积为cm2.13.如图,四边形ABCD内接于⊙O,若四边形AOCD是菱形,⊙B的度数是.14.如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB的距离为15.如图,AB是圆O的弦,OC⊥AB,垂足为点C,将劣弧AB⌢沿弦AB折叠交于OC的中点D,若AB= 2√10,则圆O的半径为.16.如图,等边⊙ABC的边长为1,以A为圆心,AC为半径画弧,交BA的延长线于D,再以B为圆心,BD为半径画弧,交CB的延长线于E,再以C为圆心,CE为半径画弧,交AC的延长线于F,则由弧CD,弧DE,优弧EF及线段CF围成的图形(CDEFC)的周长为.(第12题)(第13题)(第14题)(第15题)(第16题)三、解答题(本题有8小题,第17~19题每题8分,第20~22题每题10分,第23题每题12分,第24题14分,共80分)17.如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC⊙BD,交AD于点E,连结BC.(1)求证:AE=ED;(2)若AB=6,⊙ABC=30°,求图中阴影部分的面积.18.如图,AB是⊙O的直径,CD是⊙O的一条弦,且CD⊙AB于E,连接AC,OC,BC.(1)求证:⊙1=⊙2;(2)若BE=2,CD=6,求⊙O的半径的长.19.如图,已知Rt⊙ABC中,⊙BAC=90°,BC=6,AC=4√2,以A为圆心,AB为半径画圆,与边BC交于另一点D.(1)求BD的长;(2)连接AD,求⊙DAC的余弦值.20.如图,AB、BC是⊙O的两条弦,且AB⊙BC,OD⊙AB,OE⊙BC,垂足分别为D、E,AB=BC.(1)求证:四边形DBEO是正方形;(2)若AB=2,求⊙O的半径.21.如图,AB是⊙O的直径,点C,D是⊙O上的点,BC⊥AC且OD//BC,AC分别与BD,OD相交于点E,F.⌢的中点;(1)求证:点D为AC(2)若DF=7,AC=24,求⊙O的直径.22.如图,在△ABC中,AB=AC,BC为⊙O的直径,D为⊙O上任意一点,连接AD交BC 于点F ,过A 作 EA ⊥AD 交DB 的延长线于E ,连接CD.(1)求证: BE =CD(2)填空:①当 ∠EAB = ° 时,四边形ABDC 是正方形②若四边形ABDC 的面积为6,则AD 的长为 .23.已知:⊙ABC 内接于⊙O ,连接AO 并延长交BC 于点D ,且AD ⊥BC .(1)如图1,求证:∠B =∠C ;(2)如图2,点E 在AC ⌢上,连接AE ,CE ,∠ACE =13∠ACB ,求证:∠CAE =2∠ACE ; (3)如图3,在(2)的条件下,过点A 作AF ⊥CE 交CE 的延长线于点F ,若AE =5,AB =13,求AF 的长.24.如图,⊙BCE 内接于⊙O ,AB 是⊙O 的直径,弦BD 交CE 于点F ,⊙CBD=⊙ABE.(1)如图1,求证:BD⊙CE ;(2)如图2,在BF 上取一点H ,使FH=FD ,连接EH 并延长交BC 于点N 、交AB 于点G ,若⊙BEN=30°,求证:BH=12AB ; (3)如图3,在(2)的条件下,直线OH 交BC 于点R 、交BE 于点S ,若tan⊙ABE=√35,AB=4√7,求SE 的长.答案与解析一、选择题(本大题有10小题,每小题4分,共40分)下面每小题给出的四个选项中,只有一个是正确的.1.如图,A 、B 、C 是⊙O 上的三个点,⊙ABC=20°,则⊙AOC 的度数是( )A .10°B .20°C .30°D .40°【答案】D【解析】∵⊙ABC=20°,∴⊙AOC= 2⊙ABC = 40°;故答案为:D .2.如图,AB 是⊙O 的直径,若AC=4,⊙D=60°,则BC 长等于( )A .8B .10C .2√3D .4√3【答案】D【解析】∵AB 是⊙O 的直径,∴⊙ACB=90°,∵⊙A=⊙D=60°,∴⊙ABC=90°-⊙A=30°,∵AC=4,∴AB=2AC=8.∴BC=√AB2−AC2=√82−42=4√3.故答案为:D.3.如图,AB是⊙O的一条弦,OD⊙AB,垂足为C,交⊙O于点D,点E在⊙O上.⊙OAB=38°,则⊙E的度数为()A.52°B.38°C.30°D.26°【答案】D【解析】∵AB是⊙O的一条弦,OD⊙AB,∴AD⌢=BD⌢,∠ACO=90°,∵⊙OAB=38°,∴∠AOC=90°−∠OAB=52°,∴∠E=12∠AOC=26°.故答案为:D.4.如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是AC⌢上的点,若⊙BOC=40°,则⊙D 的度数为()A.100°B.110°C.120°D.130°【答案】B【解析】∵⊙BOC=40°,⊙AOB=180°,∴⊙BOC+⊙AOB=220°,∴⊙D=110°(同弧所对的圆周角是圆心角度数的一半),故答案为:B.5.如图,五边形ABCDE内接于⊙O,若⊙CAD=40°,则⊙B+⊙E的度数是()A.200°B.215°C.230°D.220°【答案】D【解析】如图,连接CE,∵五边形ABCDE是圆内接五边形,∴四边形ABCE是圆内接四边形,∴⊙B+⊙AEC=180°,∵⊙CED=⊙CAD=40°,∴⊙B+⊙AED=180°+40°=220°.故答案为:D.6.如图所示,在⊙O中,∠BAC=25°,∠CED=30°,则∠BOD的度数是()A.55°B.110°C.125°D.150°【答案】B【解析】如图,连接OC,已知∠BAC=25°,∠CED=30°,由圆周角定理可得⊙BOC=50°,⊙DOC=60°,所以⊙BOD=⊙BOC+⊙DOC=50°+60°=110°.故答案为:D.7.如图,AD为⊙O的直径,AD=8,∠DAC=∠ABC,则AC的长度为()A.4√2B.2√2C.4D.3√3【答案】A【解析】连接CD∵∠DAC=∠ABC∴AC=DC又∵AD为⊙O的直径∴⊙ACD=90°∴AC2+DC2=AD2∴2AC 2=AD 2∴AC =√22AD =√22×8=4√2 故答案为:A .8.如图,将含有 60° 锐角的三角板 ΔABC 绕 60° 的锐角顶点 C 逆时针旋转一个角度到 ΔECD ,若 AB 、 CE 相交于点 F , AE =AF ,则旋转角是( )A .45°B .40°C .35°D .30°【答案】B【解析】由旋转的性质得出AC=EC ,⊙ECA 为旋转角,∴⊙AEC=⊙EAC= 12(180∘−∠ECA) , ∵AE=AF ,∴⊙AEC=⊙EFA=⊙EAC= 12(180∘−∠ECA) , ∵⊙EFA=⊙ECA+⊙BAC=⊙ECA+ 30° ,∴12(180∘−∠ECA)=∠ECA +30∘ ∴⊙ECA= 40°故答案为:B9.如图,C 是以AB 为直径的半圆O 上一点,连接AC ,BC ,分别以AC ,BC 为边向外作正方形ACDE ,BCFG .DE ,FG ,AC⌢,BC ⌢的中点分别是M ,N ,P ,Q .若MP+NQ =14,AC+BC =18,则AB 的长为( )A .9√2B .907C .13D .16【答案】C【解析】连接OP ,OQ ,∵DE ,FG , AC⌢ , BC ⌢ 的中点分别是M ,N ,P ,Q , ∴OP⊙AC ,OQ⊙BC ,∴H 、I 是AC 、BC 的中点,∴OH+OI = 12 (AC+BC )=9, ∵MH+NI =AC+BC =18,MP+NQ =14,∴PH+QI =18﹣14=4,∴AB =OP+OQ =OH+OI+PH+QI =9+4=13,故答案为:C .10.如图所示,半径为R 的⊙O 的弦AC =BD ,AC ,BD 交于点E ,F 为 BC ⌢ 上一点,连结AF ,BF ,AB ,AD ,有下列结论:①AE =BE ;②若AC⊙BD ,则AD = √2 R ;③若AC⊙BD , CF ⌢ = CD ⌢ ,AB = √2 ,则BF+CE =1.其中正确的是( )A .①②B .①③C .②③D .①②③ 【答案】D【解析】∵AC =BD ,∴AC ⌢= BD ⌢,即 AD ⌢ + CD ⌢ = BC ⌢ + CD ⌢ ,∴AD ⌢ = BC ⌢ ,∴⊙ABD =⊙BAC ,∴AE =BE ,所以①正确;连接OA 、OD ,如图,∵AC⊙BD ,∴⊙AEB =90°,∴⊙ABE 为等腰直角三角形,∴⊙ABE =45°,∴⊙AOD =2⊙ABD =90°,∴⊙AOD 为等腰直角三角形,∴AD = √2 OA = √2 R ,所以②正确;AF 与BD 相交于G 点,如图,∵⊙ABE 为等腰直角三角形,∴BE = √22 AB = √22 × √2 =1,∵CF ⌢ = CD ⌢ , ∴⊙FAC =⊙DAC ,∵AC⊙DG ,∴GE =DE ,即AE 垂直平分DG ,∴AG =AD ,∴⊙AGD =⊙ADG ,∵⊙BGF =⊙AGD ,⊙AFB =⊙ADB ,∴⊙BGF =⊙BFG ,∴BF =BG ,在⊙BCF 和⊙AGE 中,{∠CBE =∠GAE ∠EBC =∠GAE BE =AE ,∴⊙BCF⊙⊙AGE (AAS ),∴CE =GE ,∴BF+CE =BG+GE =BE =1,所以③正确.故答案为:D.二、填空题(本大题有6小题,每小题5分,共30分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.在半径为15的圆中,120°的圆心角所对的弧长是 .【答案】10π 【解析】根据弧长的公式l=nπr 180,得到:l=120·π×15180=10π. 故答案为10π.12.如图,在等腰直角三角形ABC 中,AB =BC =2cm ,以直角顶点B 为圆心,AB 长为半径画弧,再以AC 为直径画弧,两弧之间形成阴影部分.阴影部分面积为 cm 2.【答案】2【解析】∵等腰直角三角形ABC 中,AB =BC =2cm∴AC =√AB 2+BC 2=2√2cm∴阴影部分面积π×(2√22)2×12−(14π×22−12×2×2)=π−(π−2)=2cm 2. 13.如图,四边形ABCD 内接于⊙O ,若四边形AOCD 是菱形,⊙B 的度数是 .【答案】60°【解析】∵四边形ABCD 内接于⊙O ,∴⊙B+⊙D=180°,∵四边形OACD 是菱形,∴⊙AOC=⊙D ,由圆周角定理得,⊙B=12⊙AOC , ∴⊙B+2⊙B=180°,解得,⊙B=60°,故答案为:60°.14.如图,在⊙O 中,已知半径为5,弦AB 的长为8,那么圆心O 到AB 的距离为【答案】3【解析】作OC⊙AB 于C ,连结OA ,如图,∵OC⊙AB,∴AC=BC=12AB=12×8=4,在Rt⊙AOC中,OA=5,∴OC=√OA2−AC2=√52−42=3,即圆心O到AB的距离为3.故答案为:3.15.如图,AB是圆O的弦,OC⊥AB,垂足为点C,将劣弧AB⌢沿弦AB折叠交于OC的中点D,若AB= 2√10,则圆O的半径为.【答案】3√2【解析】连接OA,设半径为x,∵将劣弧AB⌢沿弦AB折叠交于OC的中点D,∴OC=23x,OC⊥AB,∴AC=12AB=√10,∵OA2−OC2=AC2,∴x2−(23x)2=10,解得,x=3√2.故答案为3√2.16.如图,等边⊙ABC的边长为1,以A为圆心,AC为半径画弧,交BA的延长线于D,再以B为圆心,BD为半径画弧,交CB的延长线于E,再以C为圆心,CE为半径画弧,交AC的延长线于F,则由弧CD,弧DE,优弧EF及线段CF围成的图形(CDEFC)的周长为.【答案】6π+3【解析】∵ΔABC 为等边三角形,∴AB =AC =BC =1,∠CAB =∠BCA =∠ABC =60°,∵以A 为圆心,AC 为半径画弧,交BA 的延长线于D ,∴AD =AC =1,∠CAD =120°,∠DBE =120°,∠FCE =120°,∴BD =AB +AD =2,∴CE =CF =CB +BE =1+2=3,∴弧CD 的长为:120°×π×1180°=23π,弧DE 的长为:120°×π×2180°=43π, 优弧EF 的长为:240°×π×3180°=4π, ∴23π+43π+4π+3=6π+3, 故答案为:6π+3.三、解答题(本题有8小题,第17~19题每题8分,第20~22题每题10分,第23题每题12分,第24题14分,共80分)解答应写出文字说明,证明过程或推演步骤.17.如图,已知AB 是⊙O 的直径,C ,D 是⊙O 上的点,OC⊙BD ,交AD 于点E ,连结BC.(1)求证:AE =ED ;(2)若AB =6,⊙ABC =30°,求图中阴影部分的面积.【答案】(1)证明:∵AB 是⊙O 的直径,∴⊙ADB =90°,∵OC⊙BD ,∴⊙AEO =⊙ADB =90°,即OC⊙AD ,又∵OC 为半径,∴AE =ED ,(2)解:连接CD ,OD ,∵OC =OB ,∴⊙OCB =⊙ABC =30°,∴⊙AOC =⊙OCB+⊙ABC =60°,∵OC⊙AD ,∴AC⌢=CD ⌢ , ∴⊙COD =⊙AOC =60°,∴⊙AOD =120°,∵AB =6,∴BD =3,AD =3 √3 ,∵OA =OB ,AE =ED ,∴OE = 12BD = 32 , ∴S 阴影=S 扇形AOD ﹣S ⊙AOD = 120⋅π×32360 ﹣ 12×3√3 × 32 =3π﹣ 9√34 . 18.如图,AB 是⊙O 的直径,CD 是⊙O 的一条弦,且CD⊙AB 于E ,连接AC ,OC ,BC .(1)求证:⊙1=⊙2;(2)若BE =2,CD =6,求⊙O 的半径的长.【答案】(1)证明:∵AB 是⊙O 的直径,CD⊙AB ,∴BC⌢=BD ⌢. ∴⊙A=⊙2.又∵OA=OC ,∴⊙1=⊙A .∴⊙1=⊙2.(2)解:∵AB 为⊙O 的直径,弦CD⊙AB ,CD=6∴⊙CEO =90°,CE =ED =3.设⊙O 的半径是R ,EB=2,则OE=R -2∵在Rt⊙OEC 中,R 2=(R −2)2+32 解得:R =134 ∴⊙O 的半径是R =134. 19.如图,已知Rt⊙ABC 中,⊙BAC =90°,BC =6,AC =4√2,以A 为圆心,AB 为半径画圆,与边BC 交于另一点D .(1)求BD 的长;(2)连接AD ,求⊙DAC 的余弦值.【答案】(1)解:过点A 作AH⊙BD 于H ,如图1所示:∵Rt⊙ABC ,⊙BAC =90°,BC =6,AC =4√2,∴AB =√BC 2−AC 2=√62−(4√2)2=2,∵12AB•AC =12BC•AH , ∴AH =AB⋅AC BC =2×4√26=43√2, ∴BH =√AB 2−AH 2=√22−(43√2)2=23, ∵AH⊙BD ,∴BH =HD =23, ∴BD =43; (2)解:过点D 作DM⊙AC 于M ,如图2所示:由(1)得:AH =43√2,BD =43,AB =2, ∴AD =AB =2,CD =BC ﹣BD =6﹣43=143, ∵12AH•CD =12DM•AC , ∴DM =AH⋅CD AC =43√2×1434√2=149, 在Rt⊙ADM 中,由勾股定理得:AM =√AD 2−DM 2=√22−(149)2=89√2, ∴cos⊙DAC =AM AD =89√22=49√2.20.如图,AB 、BC 是⊙O 的两条弦,且AB⊙BC ,OD⊙AB ,OE⊙BC ,垂足分别为D 、E ,AB =BC.(1)求证:四边形DBEO 是正方形;(2)若AB =2,求⊙O 的半径. 【答案】(1)证明:∵OD⊙AB 于D ,OE⊙BC 于E ,∴BD=12AB,BE=12BC,⊙BDO=⊙BEO=90°,∵AB⊙BC,∴⊙DBE=90°,∴四边形DBEO是矩形,∵AB=AC,∴BD=BE,∴四边形DBEO是正方形,(2)解:∵⊙ABC=90°,∴AC为直径,∵AB=BC=2,∴AC=√22+22=2 √2,∴OA=√2,∴⊙O的半径为√2.21.如图,AB是⊙O的直径,点C,D是⊙O上的点,BC⊥AC且OD//BC,AC分别与BD,OD相交于点E,F.(1)求证:点D为AC⌢的中点;(2)若DF=7,AC=24,求⊙O的直径.【答案】(1)证明:∵AB是⊙O的直径,∴∠ACB=90°,∵OD//BC,∴∠OFA=90°,∴OF⊥AC,∴AD⌢=CD⌢,即点D为AC⌢的中点;(2)解:∵OF⊥AC,∴AF=12AC=12,∵DF=7,∴OF=OD−DF=OA−7,∵OA2=AF2+OF2,∴OA2=122+(OA−7)2,∴OA=19314,∴⊙O的直径为1937.22.如图,在△ABC中,AB=AC,BC为⊙O的直径,D为⊙O上任意一点,连接AD交BC于点F,过A作EA⊥AD交DB的延长线于E,连接CD.(1)求证: BE =CD(2)填空:①当 ∠EAB = ° 时,四边形ABDC 是正方形②若四边形ABDC 的面积为6,则AD 的长为 .【答案】(1)证明: ∴BC 为 ⊙O 直径,∴∠BAC =∠EAD =90° ,∴∠EAB =∠DAC =90°−∠BAD ,∵ 四边形ABDC 为 ⊙O 的内接四边形,∴∠ABE =∠ACD ,在 △ABE 和 △ACD 中,∠EAB =∠DAC ,AB =AC ,∠ABE =∠ACD ,∴△ABE ≅△ACD ,∴BE =CD(2)45;2√3【解析】(2)①当⊙EAB=45°时,四边形ABDC 是正方形.理由:∵⊙CAD=⊙BAD=45°,∴BD⌢=CD ⌢ , ∴BD=CD ,∴⊙ABC ,⊙BCD 都是等腰直角三角形,∵BC=BC ,∴⊙ABC⊙⊙DBC (ASA ),∴AB=AC=BD=CD ,∴四边形ABDC 是菱形,∵⊙BAC=90°,∴四边形ABDC 是正方形.又⊙CAD+⊙BAD=⊙EAB+⊙BAD=90°∴⊙EAB=⊙CAD∴当⊙EAB=45°时,四边形ABDC 是正方形.故答案为:45.②∵⊙EAB⊙⊙DAC ,∴AE=AD ,S ⊙ABE =S ⊙ADC ,∴S ⊙AED =S 四边形ABDC =6,∴12 •AD 2=6, ∴AD= 2√3 ,故答案为 2√3 .23.已知:⊙ABC 内接于⊙O ,连接AO 并延长交BC 于点D ,且AD ⊥BC .(1)如图1,求证:∠B =∠C ;(2)如图2,点E 在AC ⌢上,连接AE ,CE ,∠ACE =13∠ACB ,求证:∠CAE =2∠ACE ; (3)如图3,在(2)的条件下,过点A 作AF ⊥CE 交CE 的延长线于点F ,若AE =5,AB =13,求AF 的长.【答案】(1)证明:∵AD ⊥BC ,AD 过圆心O ,∴BD =CD ,且AD ⊥BC ,∴AB =AC ,∴∠B =∠C(2)证明:连接BE ,设∠ACE =α,则∠ACB =3α,∴∠ABC =∠ACB =3α,∵∠ABE =∠ACE =α,∴∠CBE =∠ABC −∠ABE =3α−α=2α,∴∠CAE =∠CBE =2α=2∠ACE ;(3)解:过点E 作EG ⊥AC 于点G ,在CG 上截取GH =AG ,连接EH ,∴EH =AE =5,∴∠AHE =∠EAH =2α,∴∠CEH =∠AHE −∠ECH =2α−α=α=∠ECH ,∴CH =EH =5,∵AC =AB =13,∴AH =AC −CH =13−5=8,∴AG =GH =4,∴CG =4+5=9,在RtΔAEG 中,EG =√AE 2−AG 2=√52−42=3,在RtΔCEG 中,CE =√EG 2+CG 2=√32+92=3√10, ∵S ΔACE =12AC ⋅EG =12CE ⋅AF ,∴12×13×3=12×3√10×AF ,∴AF =13√1010.24.如图,⊙BCE 内接于⊙O ,AB 是⊙O 的直径,弦BD 交CE 于点F ,⊙CBD=⊙ABE.(1)如图1,求证:BD⊙CE ;(2)如图2,在BF 上取一点H ,使FH=FD ,连接EH 并延长交BC 于点N 、交AB 于点G ,若⊙BEN=30°,求证:BH=12AB ; (3)如图3,在(2)的条件下,直线OH 交BC 于点R 、交BE 于点S ,若tan⊙ABE=√35,AB=4√7,求SE 的长.【答案】(1)证明:连接AE ,∵AB 是⊙O 的直径,∴⊙AEB=90°∴⊙A+⊙ABE=90°∵BE⌢=BE ⌢, ∴⊙A=⊙C∵⊙CBD=⊙ABE.∴⊙C+⊙CBF=90°∴⊙BFC=90°∴BD⊙CE.(2)证明:延长EN 交⊙O 于点K ,连接OK 、BK 、DE.∵BK⌢=BK ⌢,⊙BEN=30° ∴⊙BOK=2⊙BEK=60°∵OB=OK ,∴⊙OBK 是等边三角形∴BK=BO∵BD⊙CE ,FH=FD∴ED=EH ∴⊙EDH=⊙EHD ∵BE⌢=BE ⌢, ∴⊙EDH=⊙HKB ,∵⊙KHB=⊙EHD∴⊙KHB=⊙HKB∴BK=BH ,BH=BO ,∴BH=12AB . (3)解:延长EN 交⊙O 于点K ,连接OK 、BK 、DE 、AE.作OT⊙BE , ∵AB=4√7由(2)知BO=BH ,⊙OBK 是等边三角形 ∴BO=12AB=2√7,⊙OBK=60° ∵⊙CBD=⊙ABE ∴⊙RBS=⊙OBK=60°∵BO=BH ,∴⊙BHO=⊙HOB ∵⊙CBD=⊙ABE ∵⊙BHR=180°-⊙BHO ,⊙BOS=180°-⊙BOH ∴⊙BHR=⊙BOS∴⊙BHR⊙⊙BOS∴BR=BS ∴⊙RBS 是等边三角形∴⊙OSB=60°∵OT⊙BE ∴BE=2BT ∵tan⊙ABE=√35, 设OT=√3x ,BT=5x∵OT 2+BT 2=OB 2∴(√3x)2+(5x)2=(2√7)2∴x =1∴OT=√3,BT=5∴BE=2BT=10∵tan∠OSB =OT OS =tan60∘=√3 ∴TS=1∴BS=BT+TS=5+1=6∴SE=BE -BS=10-6=4.。
人教版六年级数学上册期末复习:《圆》(一)一、单选题1.从一张半径为3dm的圆形纸上剪去一个圆心角为90°的扇形,剩余部分的面积是()dm2。
A. πB. 9πC. πD. π2.圆的半径由2 cm增加到3 cm,则圆的面积增加了()cm2。
(π取3.14)A. 3.14B. 15.7C. 62.83.两个圆的面积不相等,原因是它们()。
A. 圆心的位置不同B. 圆周率不同C. 直径不相等4.小圆的直径等于大圆的半径,小圆的面积等于大圆面积的()。
A. B. C. D.5.要画一个直径是5cm的圆,圆规两脚之间的距离是()cm。
A. 5B. 2.5C. 10D. 156.车轮滚动一周,求所行的路程就是求车轮的()。
A. 直径B. 周长C. 面积D. 半径7.画一个周长是18.84cm的圆,圆规的两脚之间的距离应该是()cm。
A. 3B. 6C. 9D. 128.从一张圆形纸上剪去一个最大的正方形,剩余部分的面积是6.84 dm2,那么这个圆的面积是()dm2。
A. 6πB. 9πC. 9D. 8π9.在下图中有()条对称轴.A. 无数B. 2C. 4D. 310.面积相等的圆、正方形、长方形,周长最小的是()。
A. 圆B. 正方形C. 长方形二、判断题11.半径是2cm的圆,它的周长与面积相等。
()12.已知一个圆的半径是2cm,另一个圆的直径是4cm,则后者的周长长。
()13.在周长相等的圆、长方形和正方形中,圆的面积最大。
()14.同一个圆中,直径一定比半径长。
()三、填空题15.一只挂钟的分针走了60分钟,针尖走了31.4cm,那么分针长________cm,分针扫过的面积是________cm2。
16.当圆规两脚间的距离为40cm时,画出圆的周长是________cm。
17.用一根铁丝围成一个圆,半径正好是10cm,如果用这根铁丝围成一个正方形,那么正方形的边长是________。
期末复习---圆(1)
一、填空
1、一个圆的直径4厘米,半径是( ),周长是( );面积是( )。
2、一个圆的直径6厘米,半径是( ),周长是( ),面积是( )。
3、一个圆的直径扩大2倍,它的半径扩大( )倍,它的周长扩大( )倍。
4、两个圆的半径的比是2:3,它们直径的比是( ),周长的比是( )。
5、在长6分米,宽4分米的长方形中画一个最大的圆,圆的面积( )。
二、解答:
1、求下列图形阴影部分的周长面积。
(单位:cm )
2、爷爷每天绕学校的圆形跑道跑8圈,共跑2512米,你知道这个圆形跑道的半径是多少米吗?
3、街心花园里有一个半径为6m 的圆形花坛,要在其周围修2m 宽的水泥路,这条水泥路的面积是多少平方米?
4、 两个小圆的周长的和与大圆的周长相比,哪个长?(单位:厘米)。
期末复习2(圆与旋转)学生/课程年级学科授课教师日期时段核心内容旋转、中心对称、圆课型一对一教学目标1.掌握旋转的性质2.掌握中心对称图形3.掌握垂径定理、圆周角定理,以及圆的切线等知识重、难点重点:旋转与圆的性质难点:旋转与圆的综合应用知识梳理旋转1、概念:把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.旋转三要素:旋转中心、旋转方向、旋转角2、旋转的性质:(1)旋转前后的两个图形是全等形;(2)两个对应点到旋转中心的距离相等(3)两个对应点与旋转中心的连线段的夹角等于旋转角3、中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.4、中心对称的性质:(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.(2)关于中心对称的两个图形是全等图形. 5、中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.6、坐标系中的中心对称:两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点P′(-x,-y).圆1、垂径定理及论:2、如图:有五个元素,“知二可推三”;需记忆其中四个推论.3、圆周角定理及推论:(1)圆周角的度数等于它所对的弧的度数的一半;(2)一条弧所对的圆周角等于它所对的圆心角的一半;(如图)(3)“等弧对等角”“等角对等弧”;(4)“直径对直角”“直角对直径”;(如图)(5)如三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.(如图)(6)圆内接四边形,对角互补4、切线的判定与性质定理:如图:有三个元素,“知二可推一”;需记忆其中四个定理.5、有关的计算:导学一:图形的旋转例 1. 如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3,则∠BE′C=度.我爱展示1. [单选题] 如图,O是正△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④S四边形AOBO′=;⑤S△AOC+S△AOB=.其中正确的结论是().A.①②③⑤B.①②③④C.①②③④⑤D.①②③导学二:旋转的综合应用例 1. 已知边长为1cm的正方形ABCD和正方形AEFG如图1放置,点B,D分别在AE,AG上,将正方形ABCD绕点A顺时针旋转,设旋转角为α(0°<α<90°).(1)连接BE,DG,如图2所示,求证:BE=DG;(2)当0°<α<45°时,在图2中,连接AF交BC于点P,CD交AG于Q,连接PQ,求证:旋转过程中△PCQ的周长等于定值2m;(3)如图3,连接CF,取CF的中点O,连接BO,GO,试判断△BOG的形状,并说明理由.【学有所获】(1)遇到线段和差的问题,可以通过截长补短来构造辅助线 (2)当遇到等腰三角形、正方形,或者两条相等线段有公共顶点的时候,可以考虑使用旋转的方法来构造辅助线。
第十五讲圆的期末复习一、知识梳理考点 1:圆心的定义:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
圆心一般用字母O 表示。
它到圆上任意一点的距离都相等圆的半径:连接圆心到圆上任意一点的线段叫做半径。
半径一般用字母r 表示。
圆的直径:通过圆心并且两端点都在圆上的线段叫做直径d .一个圆有 1 个圆心,无数条半径和直径,所有的半径都相等,所有的直径都相等。
圆心决定圆的位置,半径决定圆的大小.半径越大,圆越大;半径越小,圆越小。
轴对称图形:如果一个图形沿着一条直线对折,直线两侧的部分能够完全重合,这样的图形叫做轴对称图形。
如长方形、正方形等。
圆是轴对称图形,直径所在的直线是圆的对称轴。
圆有无数条对称轴.在同一个圆里,直径的长度是半径的 2 倍,可以表示为d = 2r或r = 1 d 2考点 2:圆上的任意一点到圆的中心点的距离都相等。
( ) 圆心确定圆的位置,半径决定圆的大小。
圆的两条对称轴的交点就是圆心。
考点3:圆的周长除以直径的商是一个固定的数。
我们把它叫做圆周率,圆周率为无限不循环的小数,用字母π表示,在计算时取π的近似值3.14。
中国有一位伟大的数学家和天文学家祖冲之,他计算出圆周率应在3.1415926和3.1415927之间,成为世界上第一个把圆周率的值精确到7位小数的人。
他的这项伟大成就比国外数学家得出这样精确数值的时间,至少要早1000年。
考点 4:圆的周长圆的周长 = 直径×圆周率C = πd d= C÷π C = 2πr r= C÷(2π)考点 5:圆的面积公式的应用1. 已知 r 求 S ,用公式S = πr 2。
2. 已知 d 求 S ,用公式S = π d 2。
23. 已知 C 求 S ,用公式S = π( C 2π2) 。
考点 6: 1.在计算过程中注意单位换算。
2.为了准确而快捷计算圆的相关周长和面积,应熟练掌握π 的几倍数值:1π≈3.14 6π≈18.84 2π≈6.28 7π≈21.983π≈9.42 8π≈25.12 4π≈12.56 9π≈28.265π≈15.7 10π≈31.4会乘法分配律,以加代乘,会计算两位数π 值的速算: 15π=10π+5π≈31.4+15.7=47.1二、方法归纳(一)把一个圆形纸片等分成若干等份,然后把它剪开,拼成一个近似的长方形。
《圆》复习知识回顾: 1、圆的定义:(1)在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 随之旋转所形成的图形叫做圆,固定的端点叫圆心,线段OA 叫做半径; (2)圆是到定点的距离等于定长的点的集合。
2、点和圆的位置关系:如果圆的半径是r ,点到圆心的距离为d ,那么: (1)点在圆外d r ⇔>;(2)点在圆上d r ⇔=;(3)点在圆内d r ⇔<。
3、与圆有关的概念:(1)弦:连接圆上任意两点的线段叫做弦。
(2)直径:经过圆心的弦叫做直径。
(3)弧:圆上任意两点间的部分叫弧。
优弧:大于半圆的弧叫做优弧。
劣弧:小于半圆的弧叫做劣弧。
半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧.都叫做半圆。
(4)同心圆:圆心相同,半径不相等.....的两个圆叫做同心圆。
(5)等圆:能够重合的两个圆叫做等圆。
(圆心不同)(6)等弧..:在同圆或等圆中,能够互相重合的弧叫做等弧。
(在大小不等的两个圆中,不存在等弧。
4、同圆或等圆的半径相等。
基础练习:1、填空题(1)到定点O 的距离为2cm 的点的集合是以 为圆心, 为半径的圆。
(2)正方形的四个顶点在以 为圆心,以 为半径的圆上。
2、选择题(1)若⊙O 所在平面内一点P 到⊙O 上的点的最大距离为a ,最小距离为b(a>b),则此圆的半径为( )A 、2a b +B 、 2a b -C 、 2a b +或2a b - D 、 a +b 或a -b(2)下列说法:①直径是弦 ②弦是直径 ③半圆是弧,但弧不一定是半圆 ④长度相等的两条弧是等弧中,正确的命题有( )A 、1个 B 、2个 C 、3个 D 、4个 3、解答题:判断矩形的四个顶点是否在同一个圆上?2 圆的对称性(1)知识回顾:1、圆是以圆心对称中心的中心对称图形。
2、圆心角:顶点在圆心的角叫圆心角。
3、圆心角、弧、弦、弦心距之间的相等关系:定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。
东实九年级数学期末复习资料四《圆的有关性质1》 姓名【备考基础知识】1.点与圆的位置关系:如果圆的半径为r ,点到圆心的距离为d ,那么:点在圆外⇔ ;点在圆上⇔ ;点在圆内⇔ 。
2.确定圆的条件:不同一直线上的三点 三角形的外接圆: 。
三角形外接圆的圆心叫做三角形的 ,它是三角形 的交点,它到三角形 。
外心所在的位置:钝角三角形 ;直角三角形 ; 锐角三角形 。
3.圆的对称性:圆是一个轴对称图形,又是 ,还具有旋转不变性。
垂径定理及其推论: 推论1: 推论2: 特别要注意:推论1往往作为判定题的选项。
4.圆心角、弧、弦、弦心距之间的关系:圆心角定理: 推论: 5.圆周角定理: 推论1: 推论2: 推论3: 6.圆内接四边形的性质:四点共圆的证明方法:○1 ○2 ○3 7.正多边形定义: n 边形的内角和: 外角和: 对角线总数: 特别要注意正六边形的有关计算方法。
8.弧长和扇形的面积(1)弧长公式:(2)扇形的面积公式:○1 ;○2 【考点管理】考点一:点与圆的位置关系1. 若⊙O 的半径为5cm ,点A 到圆心O 的距离为4cm ,则点A 与⊙O 的位置关系是( ) A .点A 在圆上 B . 点A 在圆内 C . 点A 在圆外 D .不能确定 2. 若⊙O 半径为13,圆心在坐标原点上,点P 的坐标为(5 , 12),则点P 与⊙O 的位置关系是( )A .点P 在⊙O 内B .点P 在⊙O 上C .点P 在⊙O 外D .不能确定 3. 已知一定点P 与圆周上点的最大距离为6cm ,最小距离为2cm ,则此圆的半径为( ) A .4cm B .2cm C .4cm 或2cm D .8cm 或4cm 4. 在Rt △ABC 中,90C ∠=,5AC =,12BC =,若以C 为圆心,以5为半径作c ,则点A 在c,点B 在c ;若以AB 为直径作O ,则点C 在O _ _.考点2:圆心角、弧、弦之间的关系1.在半径为2cm 的⊙O 中,长为2cm 的弦所对的的圆心角为( ) A .30° B .60° C .90° D .120°2. 如图,ABC △内接于⊙O ,若28OAB ∠=,则C ∠的大小为( ) A .28 B .56 C .60 D .623. 如图,在Rt ABC △中,90C ∠=,10AB =,若以点C 为圆心,CB 长为半径的圆恰好经过AB 的中点D ,则AC 的长等于( ) A .53B .5C .52D .64. 如图,在条件:①∠COA =∠AOD=600;②AC=AD=OA ;③点E 分别是AO, CD 的中点; ④OA ⊥CD 且∠ACO=600中,能推出四边形OCAD 是菱形的条件有 个.5. 如图,在半径为2cm 的⊙O 中有长为23cm 的弦AB , 则弦AB 所对的圆心角的度数为 ( ) A. 600 B. 900 C. 1200 D. 1500 考点3:垂径定理及其推论的应用1.如图,在半径为5的⊙O 中,AB 、CD 是互相垂直的两条弦,垂足为P ,且4AB CD ==,则OP 的长为( )A .1B .2C .2D .22 2.下列语句中正确的是( )A .相等的圆心角所对的弧相等B .平分弦的直径垂直于弦C .长度相等的两条弧是等弧D .经过圆心的每一条直线都是圆的对称轴 3.半径等于12的圆中,垂直平分半径的弦长为( )A .36B .123C 、.63D .1834.在半径为10的⊙O 中,弦AB =12,弦CD =16,且AB ∥CD ,则弦AB 、CD 的距离为( ) A .14 B .2 C .8或6 D .14或25. 如图,在⊙O 中,弦AB =6,点C 是劣弧AB 的中点,连接OC ,交AB 于点D ,且CD =1,则⊙O 的半径为________. 6.如图,已知⊙O 的半径为2cm ,弦AB =2cm ,P 点为弦AB 上一动点,则线段OP 的范围是 . 7. 如图,O 是ABC △的外接圆,60BAC ∠=,若O 得半径为2,则弦BC 的长为( ) A .1B .3C .2D .23A P OBC DAB D OABO P8. 如图,AB ,AC 都是O 的弦,OM AB ⊥,ON AC ⊥,垂足分别为M 、N ,如果3MN =,那么BC = 。