一次飑线过程的数值模拟及诊断分析
- 格式:pdf
- 大小:2.01 MB
- 文档页数:6
第 63 卷第 1 期2024 年 1 月Vol.63 No.1Jan.2024中山大学学报(自然科学版)(中英文)ACTA SCIENTIARUM NATURALIUM UNIVERSITATIS SUNYATSENI一次华南飑线的观测分析和数值模拟研究*邹宛彤1,2,李江南1,3,潘心顺1,4,曹正21. 中山大学大气科学学院 / 广东省气候变化与自然灾害研究重点试验室,广东珠海 5190822. 中国民用航空中南地区空中交通管理局,广东广州 5104033. 南方海洋科学与工程广东省实验室(珠海),广东珠海 5190824. 广东省佛山市南海区气象局,广东佛山 528200摘要:利用多种气象观测资料和高分辨率的数值模拟结果,对2020年5月11日华南地区一次飑线的初生、增强、成熟和衰亡等4个阶段的对流组织特征和模态的演变及机理进行了分析。
结果表明:该飑线发生于高空急流入口右侧的高空辐散区,伴随着南支槽的加深东移,低层暖湿平流以及地面的中尺度辐合线为其提供了有利的水汽、热力和抬升触发条件。
初始阶段,飑线呈断线型发展,在较大的环境热力条件下具有中到强的对流有效位能和最大的对流抑制。
成熟期形成拖尾层状云型飑线,低层风切变和冷池强度逐渐达到平衡状态。
在衰亡阶段,飑线的组织模态发生转变,其中环境热力条件是后向新生型对流单体发生的主要原因,且低层不同的水汽和风切变条件也对模态的变异存在一定作用。
在华南地区,以断线型模态生成拖尾层状云型模态的飑线所需的对流有效位能更高,且飑线的维持也需要更强的热力条件。
对流有效位能、对流抑制能量、粗理查森数、风暴相对螺旋度等在对流单体形成的种类和组织模态方面均有一定的指示意义。
关键词:华南飑线;数值模拟;组织模态;后向新生型中图分类号:P458.3 文献标志码:A 文章编号:2097 - 0137(2024)01 - 0024 - 10 Observation and numerical simulation of a squall line over South ChinaZOU Wantong1,2, LI Jiangnan1,3, PAN Xinshun1,4, CAO Zheng21. School of Atmospheric Sciences / Guangdong Province Key Laboratory for Climate Changeand Natural Disaster Studies, Sun Yat-sen University, Zhuhai 519082, China2. CAAC Central South Air Traffic Control Meteorological Center, Guangzhou 510403, China3. Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai),Zhuhai 519082, China4. Nanhai Meteorological Bureau of Foshan, Foshan 528200, ChinaAbstract: Based on meteorological observation data and high-resolution numerical simulation results, the evolution and mechanism of convective organization and modes in a squall line over South Chinaon May 11, 2020, were analyzed in four stages: nascent stage, enhanced stage, mature stage, and decay stage. The results show that the squall line occurred in the strong divergence zone of the upper jet stream. With the deepening and eastward moving of the south branch of the trough, the warm and wet advection in the low layer and mesoscale convergence line on the ground provided favorable conditionsof water vapor, heat, and uplift triggering. In the nascent stage, the squall developed in a manner of Bro‐ken Lines with medium to strong convective available potential energy and maximum convective inhibi‐DOI:10.13471/ki.acta.snus.2022D013*收稿日期:2022 − 01 − 06 录用日期:2022 − 03 − 10 网络首发日期:2023 − 12 − 18基金项目:国家重点研发计划项目(2016YFA0602701);国家自然科学基金(42075064)作者简介:邹宛彤(1991年生),女;研究方向:中尺度气象学;E-mail:*****************通信作者:李江南(1968年生),男;研究方向:中尺度气象学;E-mail:****************第 1 期邹宛彤,等:一次华南飑线的观测分析和数值模拟研究tion, in the environment of the maximum thermal condition. In the mature stage, a trailing stratiform squall was formed, and the low-level wind shear and cold pool intensity gradually reached a balanced state. During the decay stage, the phase mode of the squall line changed, mainly affected by the thermal condition caused Back Building mode convective cells, and also by different water vapor and wind shear conditions in the lower layer. In South China, it requires high convective effective potential energy to generate a squall line of stratiform cloud mode with trailing tail strong thermal conditions to maintain the squall line. The convective available potential energy, convective inhibition, Bulk Richardson num‐ber, and storm-relative helicity can indicate the type and structure mode of convective monomer forma‐tion.Key words:South China squall line; numerical simulation; organizational mode;Back-Building mode飑线是指呈线状、带状或准线状排列的中尺度对流复合系统(MCSs),其过境时通常伴随雷暴大风、短时强降水、冰雹或龙卷等强对流天气(Newton,1950)。
利用双多普勒雷达资料对上海一次飑线过程的同化模拟1.民航华东空管局气象中心上海市 2003352.2. 甘肃省合水县气象局甘肃省庆阳市 745400摘要:本文利用美国风暴分析和预报中心(CAPS)开发的APRS中尺度数值模式及其三维变分同化技术(3DVAR),同化了上海地区青浦和南汇的两部雷达资料,模拟了2012年9月7日上海地区的一次飑线天气过程。
分析表明,多普勒雷达资料调整了模式初始场的热力、动力场,这种调整增加了初始场中对流层中下层的云水含量,同时雷达径向风的引入明显加强了对流系统的垂直速度,有效地缩短了模式的spin-up时间。
同化雷达资料改进了模式临近预报的能力,预报效果最好的时段在1-2小时。
关键词:双多普勒雷达资料三维变分同化数值模拟飑线引言随着高性能计算机的发展和风暴尺度非静力模式的成熟,越来越多的机构开始研发基于数值天气预报(NWP)的临近预报技术。
盛春岩等【1】【2】利用ARPS 模式及其资料分析系统ADAS,对一次华北暴雨过程进行了不同水平分辨率的数值对比试验,发现通过提高模式水平分辨率,可以改进6 h内的短时预报。
雷达反射率资料对定量降水预报改进效果明显,同时使用雷达径向风和反射率资料改进初始场后对降水的模拟效果最明显。
国内在2010年北京奥运会期间,与NCAR合作建立了基于WRF-3DVAR的临近预报系统BJ-RUC,其网格设计为9km-3km双层嵌套【3】。
深圳气象局目前运行的HAPS临近预报系统则利用了ARPS-3DVar,其网格设计为12km-4km双层嵌套。
从航空气象的角度出发,航班流量的日益增长使得管制运行部门对航空气象的精细化短临预报提出了越来越高的要求。
在这样的背景下,利用国内外先进的技术方法,设计适用于本区域的临近数值预报天气系统搭建方案,并通过个例模拟验证系统的预报效能具有重要意义。
1 ARPS模式及3DVAR简介ARPS模式是美国Oklahoma大学CAP中心在20实际90年代初期开发的中尺度非静力平衡模式,它是一个高分辨率的多尺度模式,适合风暴尺度的数值模拟。
河北唐山一次飑线过程的中尺度天气分析张婉莹;花家嘉;侯书勋;马前进【摘要】Based on conventional observation data,automatic meteorological station data and radar data,the mesoscale analysis of a squall line process influenced on Tangshan area on August 4,2013 was performed.The results showed that the 500 hPa upper trough was the main effect system on the squall line induced by a ground mesoscale convergence line.The invasion of dry and cold air from the middle troposphere and the convergence of warm and moist air from the low-level troposphere enhanced the instability of atmosphere. The low-level convergence and high-level divergence further strengthened the vertical movement.The vertical wind shear at the mid-dle and low layer was beneficial to the development,enhance and maintain of the squallline.Some mesoscale structure features can be identified on the radar echo map,such as mesoscale convergence line in middle and low level,bow echo,head wind areas,,which were all actual indicative to the severe convective weather.%利用常规观测资料、自动气象站资料及雷达资料,对2013年8月4日影响唐山的一次飑线过程进行了中尺度分析。
第41卷㊀第1期气象科学Vol.41,No.1㊀2021年2月JournaloftheMeteorologicalSciencesFeb.,2021㊀吴琼,陈圣劼,白杨,等.一次江淮气旋大暴雨的诊断分析和数值模拟.气象科学,2021,41(1):86⁃98.WUQiong,CHENShengjie,BAIYang,etal.DiagnosticanalysisandnumericalsimulationofaheavyrainstormassociatedwiththeJianghuaicyclone.JournaloftheMeteorologicalSciences,2021,41(1):86⁃98.一次江淮气旋大暴雨的诊断分析和数值模拟吴琼1㊀陈圣劼2㊀白杨1㊀夏露1㊀汪婵娟1(1扬州市气象局,江苏扬州225000;2江苏省气象台,南京210008)摘要㊀利用ERAInterimDaily的0 5ʎˑ0 5ʎ资料对2011年6月9 10日的一次江淮气旋大暴雨天气过程进行天气学分析㊂结果表明:江淮气旋和低空急流是本次大暴雨过程的主要影响系统;高空200hPa西风急流右侧的上升支和锋面的抬升作用提供了动力条件;低空西南急流提供了水汽条件,此次过程对流条件较好,具有较大的对流有效位能(ConvectiveAvailablePotentialEnergy,CAPE);大气的对流不稳定性远大于斜压性,强降水发生在湿位涡正负值过渡的等值线密集带附近㊂过程最强降水时段由一次长生命史的中尺度飑线过程导致,利用WRFv3 9可以进行较好地模拟㊂研究飑线的环境条件和结构特征发现,环境大气具有较大的CAPE值和较小的对流抑制能(ConvectiveInhibitionEnergy,CIN),有利于对流的触发;较强的0 3km垂直风切变,有利于飑线的维持;尽管冷池较浅薄,但冷池出流的抬升作用有利于对流的触发和飑线的维持㊂关键词㊀大暴雨;江淮气旋;WRF;飑线;RKW㊀㊀分类号:P456 7㊀㊀㊀doi:10.12306/2020jms.0029㊀㊀㊀文献标识码:A收稿日期(Received):2019⁃08⁃09;修改稿日期(Revised):2020⁃04⁃12㊀㊀基金项目:江苏省气象局青年基金资助项目(KQ202126)通信作者(Correspondingauthor):吴琼(WUQiong).20061301262wq@sina.comDiagnosticanalysisandnumericalsimulationofaheavyrainstormassociatedwiththeJianghuaicycloneWUQiong1㊀CHENShengjie2㊀BAIYang1㊀XIALu1㊀WANGChanjuan1(1YangzhouMeteorologicalBureau,JiangsuYangzhou225000,China;2JiangsuMeteorologicalObservatory,Nanjing210008,China)㊀㊀Abstract㊀BasedontheERAInterimDailydata,aheavyrainstormassociatedwiththeJianghuaicycloneoccurredduring9to10inJune2011wasanalyzed.ResultsshowthattheJianghuaicycloneandthejetstreamathighandlowlevelsarethemaininfluencingsystemsoftheheavyrainstorm.Theupwardmotionontherightsideofthewestjetstreamat200hPaandfrontalliftingprovidesupliftconditionsfortheoccurrenceofheavyrainfall;thelow⁃levelsouthwestjetstreamtransportswatervapor.TheconvectionconditionofthiseventisgoodwithalargeCAPEvalue;theconvectiveinstabilityofatmosphereisfargreaterthanthebaroclinicinstabilityandthestrongprecipitationoccurrsinthevicinityofthedensezoneofpositiveandnegativevaluesofMPV.Theperiodofmaximumprecipitationinthisprocessiscausedbyalong⁃lastingmesoscalesqualllinewellreproducedbytheWRFv3 9numericalmodel.Theenvironmentalconditionsandstructuralfeaturesofthesqualllinewereanalyzed,andtheresultsshowthattheatmosphericenvironmenthaslargeConvectiveAvailablePotentialEnergy(CAPE)andsmallConvectiveInhibitionEnergy(CIN),whichisconducivetothetriggeringofconvection;theatmosphericenvironmentalsohasastrongverticalwindshearbetween0⁃3km,whichisadvantageoustothemaintenanceofsquallline;althoughthecoldpoolofsqualllinewasfairlyshallow,theupliftbythecoldpoolisconducivetothetriggeringofconvectionandhencethemaintenanceofsquallline.Keywords㊀heavyrainstorm;Jianghuaicyclone;WRFnumericalmodel;squallline;RKW㊀引㊀言江淮气旋是对我国影响较大,较常见的天气系统,易引发灾害性天气㊂国内外学者均对其进行了大量的研究[1-6]㊂马雷鸣等[7]通过研究垂直切变与入海江淮气旋初期发展的关系,揭示了大气斜压性对气旋发展的重要作用㊂李柏等[8]利用MM5模式模拟江淮气旋发现,700hPa以下的低层温压场的斜压结构是气旋发展的重要因素㊂吴海英等[9]通过对等压面位涡的垂直结构演变分析发现,高层位涡的下传,促进了对流层低层及地面的气旋发展,凝结潜热释放与气旋的发展机制之间存在着正反馈作用㊂赵兵科等[10]利用拉格朗日方法和位涡收支诊断对一次强气旋的发展演变过程进行了诊断分析,且ZHAO,etal[11]进一步运用位涡反演的方法验证了凝结潜热加热对该次气旋发展所起的重要作用㊂Ahmadr⁃Givi,etal[12]揭示了在一些个例中,非绝热加热作用对气旋的发生起主要贡献,能促进高低层位涡异常锁相并共同增幅发展㊂围绕江淮气旋暴雨,学者们也做了一系列研究㊂张晓红等[13]在诊断分析一次春季江淮气旋暴雨时发现,暴雨区主要位于高空槽前以及地面气旋的左前方㊂陈筱秋等[14]基于NCEP资料对一次东移且引发暴雨的江淮气旋进行了结构特征分析发现,500hPa高空槽前中低层低涡㊁切变线㊁气旋等天气系统引起了强上升运动,暴雨区南北两支次级环流圈的存在有利于上升运动的维持,地形的抬升作用也使降水得以加强㊂魏建苏等[15]在用WRF模式对江苏一次强降水过程模拟分析后发现,WRF模式对中小尺度天气过程有较强的模拟和预报能力㊂前人的研究多集中于江淮气旋气候特征分析和江淮气旋发展机理研究,或是针对江淮气旋造成的暴雨个例中较大尺度的动力学及热力学特征,针对江淮气旋暴雨过程里中小尺度系统动力特征的研究相对较少㊂因此本文根据历史江淮气旋个例中降水强度和小时雨强的情况选择了2011年6月9 10日发生在湘鄂赣交界处山区的一次江淮气旋大暴雨天气过程,进行了天气尺度的诊断分析,而对于过程中的中小尺度系统因为常规资料的时空分辨率不足,引入WRFv3 9数值模式对其中的强降水时段进行模拟,利用模式输出的高时空分辨率资料进一步诊断分析中小尺度系统在本次大暴雨过程中造成强降水时段的原因,以期为日后江淮气旋暴雨预报工作提供一定的参考㊂1㊀资料和方法(1)利用中国自动站与CMORPH[16]降水产品融合的逐小时降水量网格数据(空间分辨率为0 1ʎˑ0 1ʎ,时间间隔为1h)作为本文中降水量实况;(2)利用ERAInterimDaily的0 5ʎˑ0 5ʎ资料,对本次大暴雨天气过程进行天气尺度分析;(3)运用WRFv3 9对选取个例进行模拟,模式采用的初始场资料为NCEPFNL全球分析资料(水平分辨率为1ʎˑ1ʎ,时间间隔6h),时间段为2011年6月9日00时(世界时,下同) 2013年6月10日12时,模式运行时间为36h㊂试验具体设置如下:采用双向双重嵌套网格,母网格的区域范围为(10ʎ 50ʎN,90ʎ 130ʎE),中心位置在(30ʎN,110ʎE),子网格的区域范围为(20ʎ 40ʎN,100ʎ 125ʎE)㊂母网格网格距为12kmˑ12km,子网格的网格距为4kmˑ4km㊂母网格的积分步长是90ᶄ,子网格积分步长为30ᶄ㊂母网格数据输出时间为1h,子网格数据输出时间为10min㊂母网格和子网格的垂直分层均为50层,模式层顶达到50hPa㊂微物理过程采用WSM3类简单冰方案㊁边界层参数方案为YSU方案㊁陆面过程采用了Noah方案㊁积云参数采取Kain⁃Fritsch方案㊁短波辐射采用的是Dudhia方案㊁长波辐射方案为RRTM方案㊂2㊀过程概况2011年6月9 10日,500hPa西风槽东移,低层西南涡移出,东移略北抬(图1a),移动过程中发展出明显冷暖锋结构,产生气旋波降水,在江淮气旋移动路径沿线的湖北南部㊁湖南东北部㊁江西北部㊁安徽东南部,浙江北部㊁江苏南部地区先后出现暴雨到大暴雨天气(图1b)㊂10日,此次江淮气旋暴雨过程雨带呈东西向分布,降水量中心出现在安徽东南部和鄂湘赣交界(29ʎN,114ʎE)附近,日降水量中心分别达到100 150mm及200mm以上㊂根据逐小时降水演变情况来看,9日22时至10日04时为降水最强时段,湘鄂赣三省交界处部分站点小781期㊀吴琼,等:一次江淮气旋大暴雨的诊断分析和数值模拟图1㊀(a)9日08时 10日20时逐6h地面气旋移动路径;(b)10日24h累积降水量(单位:mm)Fig.1㊀(a)Themovingpathofcyclonefrom0800UTCon9to2000UTCon10;(b)accumulativerainfallof24hourson10(unit:mm)时雨强超过40mm㊃h-1(图略),随后减弱,10日午后降水在东移至安徽南部再次增强,中心小时雨强超过20mm㊃h-1㊂此次暴雨过程伴有雷电㊁短时强降水等对流性天气,湖南㊁湖北等省多处发生暴雨洪涝灾害,另有多地出现山体滑坡㊁泥石流等次生地质灾害,死亡41人,失踪33人,紧急转移安置11 1万人,对生命安全和社会经济造成了极大的损失㊂3㊀天气学分析3 1㊀环流背景分析9日20时 10日20时,500hPa副热带高压位于海上(图2a㊁c),其脊线位置位于23ʎN附近,副热带高压西北侧为西南暖湿气流;中纬河套槽东移,槽后冷空气东移南压,冷暖空气相持在长江流域附近㊂中高空槽前暖平流有利于低层减压,高空槽前正涡度平流的输送也有利于低层低值系统的发生发展㊂9日20时在对流层中低层850hPa(图2b)的重庆以东,湖南北部存在低值中心,其移动路径与地面气旋路径一致,为东北偏东,低压中心位置自地面向对流层中低层向冷区倾斜,冷暖空气的强烈对峙造成大气斜压性增强,有利于中低层气旋性波动的发生发展(图2d)㊂10日夜间,气旋东移北抬入海后(图略),由江淮气旋造成的本次降水过程也趋于结束㊂3 2㊀高低空急流分析分析200hPa风场(图3a㊁b)可以看出,9日20时 10日02时,200hPa急流分流区位于暴雨区上空,高空分流有利于高层辐散抽吸作用的增强㊂为了进一步观察垂直方向上的运动,沿暴雨中心114ʎE做纬向垂直剖面(图3c㊁d),可以看到,在高空急流北侧有下沉气流在46ʎ 48ʎN附近㊂在急流南侧,下沉气流与上升气流交汇于300 400hPa之间,上升气流最强支处于28ʎ 32ʎN之间,与暴雨带对应较好,高空急流北侧下沉支和南侧上升气流构成了闭合环流,闭合次级环流的上升支有利于对强降水区上升气流的增强㊂低空急流是中纬暴雨天气发生的重要影响系统,观察850hPa急流分布,9日20时(图4a),急流并不显著,从10日02时开始,急流开始增强(图4b),范围有所扩大,出现大片12m㊃s-1以上的急流带,急流范围主要在30ʎN以南,覆盖湘㊁赣㊁浙大部分范围,急流中心风速随后进一步增强,10日08时和14时分别达到18m㊃s-1和21m㊃s-1以上(图4c㊁d)㊂急流核随时间东移北抬,10日08时,位于30ʎN鄂湘皖浙交界一带,增强的西南急流位于强降水带的南侧,为本次大暴雨过程在低层输送暖湿气流,也为大气不稳定层结提供能量㊂3 3㊀水汽条件分析对于一个地区的强降水预报,除水汽的分布情况还必须考虑各个方向输送来的水汽能否在此集中[17],分析本次过程水汽通量情况可以发现(图5a㊁d),本次大暴雨过程的水汽通量输送来自孟加拉湾的西南暖湿气流,阴影负值区对应水汽通量辐合,在降水中心附近存在水汽通量辐合中心,其中10日02时前后,也就是本次过程小时降水量最强时段前后,水汽通量辐合中心数值可达-8ˑ10-8s-1以上(图5b)㊂10日08时之后西南水汽通量输送减小,水汽通量辐合也有所减弱,水汽供应的减弱也造成了降水随之减小(图5c㊁d)㊂3 4㊀湿位涡分析湿位涡(MoistPotentialVorticity,MPV)作为综合反映大气动力和热力性质的物理量,被广泛使用在暴雨天气的诊断分析中[18]㊂MPV在等压面上展88气㊀㊀象㊀㊀科㊀㊀学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀41卷图2㊀9日20时(a)500hPa,(b)850hPa;10日08时(c)500hPa,(d)850hPa的等高线(实线,单位:hPa)和等温线(虚线,单位:ħ)分布Fig.2㊀Thedistributionofheightfield(solidline,unit:hPa)andtemperaturefield(dottedline,unit:ħ)at2000UTCon9at:(a)500hPa,(b)850hPa;at0800UTCon10at:(c)500hPa,(d)850hPa图3㊀200hPa风场和沿114ʎE剖面的纬向垂直剖面(阴影,单位:m㊃s-1):(a㊁c)9日20时;(b㊁d)10日02时Fig.3㊀Theflowfieldat200hPaandtheprofileofflowfieldalong114ʎE(shadow,unit:m㊃s-1)at:(a,c)2000UTCon9;(b,d)0200UTCon10981期㊀吴琼,等:一次江淮气旋大暴雨的诊断分析和数值模拟图4㊀850hPa流场和全风速(阴影,单位:m㊃s-1)(a)9日20时;(b)10日02时;(c)10日08时;(d)10日14时Fig.4㊀Theflowfieldandtotalwindspeed(shadow,unit:m㊃s-1)at850hPaat:(a)2000UTCon9;(b)0200UTCon10;(c)0800UTCon10;(d)1400UTCon10开可得,MPV=-g(ζp+f)∂θse∂p+g(∂v∂p∂θse∂x-∂u∂p∂θse∂y)=MPV1+MPV2㊀㊂(1)其中:ζp是相对涡度;f是科氏参数,是假相当位温;g是重力加速度,位涡的单位是PVU(1PVU=10-6m2㊃K㊃kg-1㊃s-1);MPV1是空气块绝对涡度的垂直分量与湿相当位温垂直梯度的乘积,是湿位涡的正压项;MPV2是风的垂直切变和湿相当位温水平梯度的乘积,表示湿位涡的斜压项[19]㊂沿112ʎ 114ʎE的平均范围内做经向的垂直剖面(图6a c)发现,MPV1和MPV的分布特征接近,MPV2比MPV1小一个量级,大气的斜压性作用远小于对流不稳定性的作用㊂强降水发生在MPV1或MPV2的正负值过渡的等值线密集带附近,在此处冷暖空气交汇,同时还是对流不稳定和斜压不稳定相结合的区域,有利于水汽的辐合和垂直涡度的剧烈发展㊂从MPV在850hPa的水平分布(图6d)来看,在10日02时,MPV的正值中心在湖南湖北交界线一带,中心值可达20PVU以上,负值中心在徽㊁赣㊁浙交界处,与其西侧正值中心间形成MPV等值线密集带,强降水发生在对流层低层MPV正负值过渡的等值线密集带附近㊂在此处冷暖空气交汇,是对流不稳定作用和斜压不稳定作用相结合的区域,有利于强降水的发生㊂4㊀数值模拟4 1㊀数值模拟结果验证为了检验数值模式实验的模拟效果,分别从主要影响系统气旋与急流的模拟情况,以及降水的模拟等方面将模拟结果与实况进行比较㊂实况中江淮气旋的路径是先东移后东移北上,整体是向东北方向移动(图7a),从模拟结果来看(图7b),试验对于气旋的移动路径进行了较好的模拟㊂在9日夜间强降水时段,试验对江淮气旋中心位置㊁移速和路径均有较好模拟㊂从急流模拟情况来看,急流范围大致相同,对比10日02时急流强度和风场分布情况,实况风速在14m㊃s-1左右,模式为12 16m㊃s-1㊂在(29ʎ 32ʎN,109ʎ115ʎE)区域内,风场呈气旋式环流,为东北西南向的低压中心(图7c),而模拟的同区域内风场呈气旋式环流切变,并包含3个独立气旋式环流(图7d),整体风场的模拟较成功,急流强度比实况略强㊂09气㊀㊀象㊀㊀科㊀㊀学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀41卷图5㊀850hPa水汽通量(箭矢,单位:g㊃cm-2㊃hPa-1)和水汽通量散度(阴影,单位:10-8g㊃cm-2㊃hPa-1㊃s-1):(a)9日20时;(b)10日02时;(c)10日08时;(d)10日20时Fig.5㊀The850hPawatervaporflux(arrow,unit:g㊃cm-2㊃hPa-1)andwatervaporfluxdivergence(shadow,unit:10-8g㊃cm-2㊃hPa-1㊃s-1)at:(a)2000UTCon9;(b)0200UTCon10;(c)0800UTCon10;(d)2000UTCon1010日00 06时的6h降水实况来看,降水中心主要有3个(图7e),自西向东分别位于:(1)湖南中部(28ʎN,111ʎE)附近,中心雨量150 200mm;(2)湘鄂赣交界处(29ʎN,114ʎE)附近,中心雨量达到200 250mm;(3)最东侧雨量中心位于皖赣浙交界处,中心雨量在40 80mm㊂在模拟对应的时段内,模式比较好的模拟出了3个降水中心,雨带位置和雨量中心位置模拟结果与实况相比略偏南(图7f),对于湘鄂赣交界处(29ʎN,114ʎE)的雨量中心而言,6h的控制试验模拟降水效果与实况量级相当,超过80mm的降水范围略扩大,这与前面分析的急流模拟也略偏强的结论吻合㊂4 2㊀中尺度对流系统发展过程9日后半夜到10日凌晨产生多个侧向排列的对流单体,呈带状分布,长宽比大于5ʒ1,形成飑线[20]㊂由于飑线维持时间较长,且移动路径稳定,降水回波不断经过(28ʎN,114ʎE)附近,造成了该区域的强降水发生㊂飑线结构在遇到江南丘陵幕阜山㊁九岭山附近地形(图8a)迎风坡时增强(图8b),在经过山脉后回波逐渐破碎,在10日白天反射率迅速减弱㊂将影响降水中心的回波单体进行编号(图9),分别为中⁃β尺度单体1(绿色圆圈)㊁中⁃β尺度单体2(蓝色圆圈),如图9a所示,单体1逐渐离开丘陵下垫面,进入洞庭湖附近地势较为开阔平坦地区,其组织化程度逐渐转好,单体范围扩大,9日23时30分(图9b),单体1进入幕阜山㊁九岭山地形的迎风坡,地形抬升作用加强,其强度加强,单体2逐渐缩小与单体1的距离,逐渐与单体1合并连成一条带状飑线(图9c f)㊂本次飑线过程有较长生命史,其从发生㊁发展到逐渐减弱破碎生命史约9h,在其稳定东移过程中,对(28ʎ 29ʎN,114ʎE)范围内造成较长时间的连续强降水,导致了此地大暴雨天气的发生㊂4 3㊀飑线的发展演变机理利用模式输出空间分辨率为4kmˑ4km的较为精细数据来对此次飑线过程从不稳定能量㊁垂直风切变㊁垂直结构和冷池等方面着手,研究其发生发展的机制㊂4 3 1㊀不稳定能量对比CAPE值的模拟结果和实况可以看出,模式较好地模拟出9日午后具有较大CAPE值,和降191期㊀吴琼,等:一次江淮气旋大暴雨的诊断分析和数值模拟图6㊀10日02时沿112ʎ 114ʎE的平均经向垂直剖面:(a)MPV(单位:PVU);(b)MPV1(单位:PVU);(c)MPV2(单位:10-1PVU);(d)MPV在850hPa的水平分布(单位:PVU)Fig.6㊀Averageverticalsectionalong112ʎ-114ʎEat0200UTCon10:(a)MPV(unit:PVU);(b)MPV1(unit:PVU);(c)MPV2(unit:10-1PVU);(d)thedistributionofMPVat850hPa水发生后CAPE值的迅速减小的情况㊂可以看出,9日20时(图10a)在(26 6ʎ 28 8ʎN,113 6ʎ115 4ʎE)范围内,也是对流发展的前沿拥有较大的CPAE值,中心值达到3000J㊃kg-1以上,对流能量积聚,但对流降水发生后,CAPE值快速下降,到10日02时(图10b),中心只有1500J㊃kg-1左右㊂CIN值在整个过程中比较稳定,基本在10 100J㊃kg-1,CAPE值远大于CIN值,有利于对流的发生(图10c),而降水发生后CIN则略有回升(图10d)㊂在图10方框所示范围内求CAPE和CIN的平均值(方框位置选取在回波发展的上游),做垂直方向的剖面㊂结果如图11所示,分别显示了9日16时(空心圆线条),10日07时(实心圆线条),10日07时(叉号线条)的CAPE和CIN的空间分布,可以看到高值区基本都在700hPa以下区域,对流是从较低层积聚能量发展起来的,对流有效位能集中在低层㊂在9日上午(图11a),CAPE高值在900J㊃kg-1左右,到了9日16时逐渐增加到2000J㊃kg-1左右,但是随着对流降水的发生又快速减弱,10日07时已经降至250J㊃kg-1左右,CAPE值有一个先累积增大,再释放减小的过程,很好地解释了对流能量的累积和释放过程㊂CIN(图11b)在整个过程中均小于CAPE值,并且在CAPE增加过程中CIN值逐步减小㊂9日08时为60J㊃kg-1,之后有所下降,9日16时降至10J㊃kg-1左右,在对流发生以后,又有所增加,达到23J㊃kg-1左右㊂CAPE和CIN值的变化较好的体现了对流发生前能量的积累过程和对流发生后能量的释放减弱㊂较强的CAPE和较弱的CIN是本次飑线可以维持较长生命史的一个重要原因㊂4 3 2㊀垂直风切变Rotunno,etal[21]提出了描述飑线发展传播的RKW理论 ,指出低层风垂直切变与地面冷池的动力平衡是飑线维持发展的重要因子㊂垂直于飑线的低层切变越强[22],飑线的强度也越大,生命史也越长㊂对比模式输出0 3km风切变(图12a c)和实况(图12d)可知:9日20时0 3km垂直风切变的模式输出数据和实况数据均显示为西北气流,量级相近,具有较高可信度㊂通过观察0 3km垂直风切变分布可以看出,从中尺度对流单体1和单体2开始逐步靠近㊁合并,29气㊀㊀象㊀㊀科㊀㊀学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀41卷图7㊀09日08时 10日20时逐6h气旋中心位置:(a)实况㊁(b)模式;850hPa风杆(单位:m㊃s-1)和全风速(阴影,单位:m㊃s-1):(c)实况㊁(d)模式;10日00 06时的6h降水(单位:mm):(e)CMORPH㊁(f)模式Fig.7㊀Thelocationofcyclonecenterby6hfrom0800UTCon9to2000UTCon10:(a)observation,(b)simulation;thewind(unit:m㊃s-1)andtotalwindspeed(shadow,unit:m㊃s-1)at850hPa:(c)observation,(d)simulation;theprecipitationfrom0000UTCto0600UTCon10(unit:mm):(e)observation,(f)simulation发展为带状飑线时(9日夜间)开始一直到飑线结构逐渐松散(10日白天),均存在较强的垂直风切变,在飑线发生前,9日20时以后,在飑线发展的前部区域可达10 20m㊃s-1以上㊂从垂直风切变的方向来看,飑线是东北 西南走向的,在飑线加强发展前,9日20时后,在飑线前部存在和飑线走向相垂直的垂直风切变,呈西北 东南向㊂垂直于飑线的低层切变越强,飑线的强度也越大,生命史也越长[22]㊂由于强的垂直风切变产生较强的水平涡度,从而有利于飑线的发展和维持㊂4 3 3㊀飑线的垂直结构和冷池沿着图9d f中垂直于飑线方向的黑色虚线所在位置做垂直剖面,对飑线的垂直结构和冷池进行分析,从垂直结构中可以看出两支气流(图13a),一支是飑前指向飑后的斜升气流,另一支为飑后指向飑前的气流(即后部入流急流)㊂近地面冷池是飑线风暴的一个重要特征,冷池是由于风暴中降水蒸发冷却导致的冷空气不断下沉扩散而形成的近地面冷空气堆㊂10日02时(图13a),强烈的上升运动发生在冷池前部,冷池向外辐散的冷空气与环境暖391期㊀吴琼,等:一次江淮气旋大暴雨的诊断分析和数值模拟图8㊀(a)地形(单位:m;框区为湘鄂赣交界附近九岭山㊁幕阜山地形);(b)10日00时30分组合反射率(单位:dBZ)Fig.8㊀(a)Thetopographicmap(unit:m;theframeareaislocatedatJiulingmountainandMufumountainnearborderareaofHunan,HubeiandJiangxi);(b)thecombinedreflectivityat0030UTCon10(unit:dBZ)图9㊀组合反射率(单位:dBZ):(a)9日21时30分;(b)9日23时30分;(c)10日01时30分;(d)10日02时;(e)10日02时30分;(f)10日03时Fig.9㊀Thecombinedreflectivity(unit:dBZ)at:(a)2130UTCon9;(b)2330UTCon9;(c)0130UTCon10;(d)0200UTCon10;(e)0230UTCon10;(f)0300UTCon1049气㊀㊀象㊀㊀科㊀㊀学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀41卷图10㊀模式CAPE(单位:J㊃kg-1):(a)9日20时㊁(b)10日02时;CIN值(单位:J㊃kg-1):(c)9日20时㊁(d)10日02时;CAPE值实况(单位:J㊃kg-1):(e)9日20时㊁(f)10日02时Fig.10㊀ThemodelCAPE(unit:J㊃kg-1)at:(a)2000UTCon9,(b)0200UTCon10;theCIN(unit:J㊃kg-1)at:(c)2000UTCon9,(d)0200UTCon10;theactualCAPE(unit:J㊃kg-1)at:(e)2000UTCon9,(f)0200UTCon10湿入流辐合形成了支持飑线发展的动力[23]㊂至03时(图13e),随着大量降水的发生,冷空气持续下沉,飑线后部的低层冷却更加明显,冷池范围也随之扩大,上升运动区逐渐移至冷池上空㊂但是整体而言,冷池均比较浅薄(图13b㊁d㊁f),仅在925hPa以下显示㊂主要考虑是因为环境较为湿润,不利于强烈的蒸发,因此蒸发冷却的作用并没有那么显著,就相对比较浅薄㊂Rotunno,etal[21]和Weisman,etal[24]通过理想数值模式试验,并在分析已有的观测研究后,首次提出了描述飑线发展传播的 RKW理论 ,理论指出低层风垂直切变与地面冷池的动力平衡是飑线维持发展的重要因子㊂结合多时次的冷池分布来看,本次飑线过程冷池均较浅薄,并不能和垂直风切变的强度相当㊂根据RKW理论,当冷池弱于低层垂直风切变时,冷池产生的负涡度小于低层垂直风切变产生的正涡度,冷池前沿的上升气流向前略倾斜,并不利于沿着出流边界形成新的对流单体㊂而本次飑线过程维持较长时间主要考虑是因为对流有效位能大值分布在低层,冷池虽然浅薄,无法591期㊀吴琼,等:一次江淮气旋大暴雨的诊断分析和数值模拟图11㊀(a)CAPE值(单位:J㊃kg-1);(b)CIN值(单位:J㊃kg-1)Fig.11㊀(a)CAPE(unit:J㊃kg-1);(b)CIN(unit:J㊃kg-1)图12㊀0 3km垂直风切变(矢量为风矢;阴影为全风速(单位:m㊃s-1)):(a)9日20时30分;(b)9日21时30分;(c)9日22时30分;(d)9日20时实况(框区为垂直风切变与飑线垂直区域)Fig.12㊀0⁃3kmverticalwindshear(vectoriswind;shadowistotalwindspeed(unit:m㊃s-1))at:(a)2030UTCon9;(b)2130UTCon9;(c)2230UTCon9;(d)theactualat2000UTCon9(theframeistheregionverticalwindshearandthesqualllineperpendiculartoeachother)提供深厚的垂直抬升,但是低层冷池的抬升作用还是较容易触发对流不稳定的发生;另一方面,飑线发生在复杂下垫面附近,地形的作用也会促进不稳定上升运动㊂5 结论(1)本次过程是江淮气旋背景下的一次大暴雨天气㊂锋面抬升和高空急流右侧上升支提供有利的动力条件,低空西南急流提供水汽输送㊂(2)过程具有较大CAPE,大气的对流不稳定性的作用远大于斜压性作用,强降水发生在MPV1或MPV2的正负值过渡的等值线密集带附近㊂(3)利用WRFv3 9模式较好地模拟了本次过程的影响系统和降水强度㊁范围,并成功模拟强降水时段的一次长生命史的飑线过程㊂(4)较强的CAPE和较小的CIN提供了有利的环境条件;强的0 3km垂直风切变㊁低层的冷池外流抬升作用以及地形作用有利于飑线的形成和维持㊂参㊀考㊀文㊀献[1]㊀梁丰,陶诗言,张小玲.华北地区一次黄河气旋发生发展时所引起的暴雨诊断分析.应用气象学报,2006,17(3):257⁃265.LIANGFeng,TAOShiyan,ZHANGXiaoling.Diagnosticanalysis69气㊀㊀象㊀㊀科㊀㊀学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀41卷图13㊀相对风暴速度(流线,单位:m㊃s-1)和反射率(阴影,单位:dBZ):(a)10日02时㊁(c)10日02时30分㊁(e)10日03时;相对风暴速度(流线,单位:m㊃s-1)和扰动位温(阴影,单位:K):(b)10日02时㊁(d)10日02时30分㊁(f)10日03时Fig.13㊀Relativestormspeed(stream,unit:m㊃s-1)andreflectivity(shadow,unit:dBZ)at:(a)0200UTCon10,(c)0230UTCon10,(e)0300UTCon10;relativestormspeed(stream,unit:m㊃s-1)andperturbedpotentialtemperature(shadow,unit:K)at:(b)0200UTCon10,(d)0230UTCon10,(f)0300UTCon10ofaheavyraineventinNorthChinacausedbythedevelopmentofYellowRivercyclone.JournalofAppliedMeteorologicalScience(inChinese),2006,17(3):257⁃265.[2]㊀孙贞,徐晓亮,盛春岩,等.两次气旋暴雨过程风廓线特征分析.海洋预报,2011,28(2):28⁃34.SUNZhen,XUXiaoliang,SHENGChunyan,etal.Analysisofthecharacteristicsofwindprofileintwocyclonerainstormprocesses.MarineForecasts(inChinese),2011,28(2):28⁃34.[3]㊀江苏省气象局预报课题组.江苏省重要天气分析和预报(上册).北京:气象出版社,1988:1⁃20.ForecastingGroupofJiangsuMeteorologicalBureau.AnalysisandforecastofimportantweatherinJiangsuProvince(volumeI).Beijing:ChinaMeteorologicalPress(inChinese),1988:1⁃20.[4]㊀仪清菊,丁一汇.黄㊁渤海气旋暴发性发展的个例分析.应用气象学报,1996,7(4):483⁃490.YIQingju,DINGYihui.AnanalysisoftheexplosivecycloneoverYellowSeaandBohaiSea.QuarterlyJournalofAppliedMeteorlolgy(inChinese),1996,7(4):483⁃490.[5]㊀袁佳双,寿绍文.高低空位涡扰动㊁非绝热加热与气旋的发生发展.热带气象学报,2002,18(2):121⁃130.YUANJiashuang,SHOUShaowen.Genesisanddevelopmentofcyclonewithupper/lowerPotentialVorticity(PV)anomaly,diabaticheating.JournalofTropicalMeteorology(inChinese),2002,18(2):121⁃130.[6]㊀魏建苏,刘佳颖,孙燕,等.江淮气旋的气候特征分析.气象科学,2013,33(2):196⁃201.WEIJiansu,LIUJiaying,SUNYan,etal.ClimatecharacteristicsofJiang⁃huaicyclone.JournaloftheMeteorologicalSciences(in791期㊀吴琼,等:一次江淮气旋大暴雨的诊断分析和数值模拟Chinese),2013,33(2):196⁃201.[7]㊀马雷鸣,秦曾灏,端义宏,等.大气斜压性与入海江淮气旋发展的个例研究.海洋学报,2002,24(S1):95⁃104.MALeiming,QINZenghao,DUANYihong,etal.CasestudyontheimpactofatmosphericbaroclinicitytotheinitialdevelopmentofJianghuaicyclones.ActaOceanologicaSinica(inChinese),2002,24(S1):95⁃104.[8]㊀李柏,俞卫平,卢云,等.江淮气旋发生发展中尺度系统特征数值模拟研究.气象科学,2002,22(1):72⁃80.LIBai,YUWeiping,LUYun,etal.ThenumericalsimulatingstudyofthemesoscalecharacteristicsondevelopmentofJiang⁃HuaiCyclones.ScientiaMeteorologicaSinica(inChinese),2002,22(1):72⁃80.[9]㊀吴海英,寿绍文.位涡扰动与气旋的发展.南京气象学院学报,2002,25(4):510⁃517.WUHaiying,SHOUShaowen.Potentialvorticitydisturbanceandcyclonedevelopment.JournalofNanjingInstituteofMeteorology(inChinese),2002,25(4):510⁃517.[10]赵兵科,吴国雄,姚秀萍.2003年夏季梅雨期一次强气旋发展的位涡诊断分析.大气科学,2008,32(6):1241⁃1255.ZHAOBingke,WUGuoxiong,YAOXiuping.AdiagnosticanalysisofpotentialvorticityassociatedwithdevelopmentofastrongcycloneduringtheMeiyuperiodof2003.ChineseJournalofAtmosphericSciences(inChinese),2008,32(6):1241⁃1255.[11]ZHAOBingke,WUGuoxiong,YAOXiuping.PotentialvorticitystructureandinversionofthecyclogenesisovertheYangtzeRiverandHuaiheRiverValleys.Adv.Atmos.Sci.,2007,24(1):44⁃54.[12]Ahmadi⁃GiviF,GraigGC,PlantRS.Thedynamicsofamidlatitudecyclonewithverystronglatent⁃heatrelease.Quart.J.Roy.Meteorol.Soc.,2004,130(596):295⁃323.[13]张晓红,罗静,陈兴,等.一次春季江淮气旋形成发展特征及暴雨诊断分析.气象,2016,42(6):716⁃723.ZHANGXiaohong,LUOJing,CHENXing,etal.FormationanddevelopmentmechanismofonecycloneoverChangjiang⁃Huaiheriverbasinanddiagnosticanalysisofrainstorm.MeteorologicalMonthly(inChinese),2016,42(6):716⁃723.[14]陈筱秋,王咏青.基于NCEP资料的一次东移引发暴雨的江淮气旋结构特征分析.暴雨灾害,2016,35(1):53⁃60.CHENXiaoqiu,WANGYongqing.StructureandmechanismanalysisofaJiang⁃huaicyclonewithaneasternpathandheavyrainbasedonNCEPdata.TorrentialRainandDisasters(inChinese),2016,35(1):53⁃60.[15]魏建苏,陈鹏,孙燕,等.WRF模式对江苏一次强降水过程的模拟分析.大气科学学报,2011,34(2):232⁃238.WEIJiansu,CHENPeng,SUNYan,etal.AcasestudyofaheavyrainfallinJiangsuwithWRFmodel.JournalofNanjingInstituteofMeteorology(inChinese),2011,34(2):232⁃238.[16]许时光,牛铮,沈艳,等.CMORPH卫星降水数据在中国区域的误差特征研究.遥感技术与应用,2014,29(2):189⁃194.XUShiguang,NIUZheng,SHENYan,etal.AresearchintothecharactersofCMORPHremotesensingprecipitationerrorinChina.RemoteSensingTechnologyandApplication(inChinese),2014,29(2):189⁃194.[17]吴琼,钱鹏,郭煜,等.江苏一次持续性梅雨锋暴雨过程诊断与分析.气象科学,2014,34(5):549⁃555.WUQiong,QIANPeng,GUOYu,etal.DiagnosisandmesoscaleanalysisonacontinuousMeiyufrontheavyrainfallprocessofJiangsuProvinceinJuly2012.JournaloftheMeteorologicalSciences(inChinese),2014,34(5):549⁃555.[18]吕博,韩风军,李又君,等.一次持续性暴雨过程的湿位涡诊断分析.环境科学与技术,2013,36(S1):129⁃134.LÜBo,HANFengjun,LIYoujun,etal.DiagnosticanalysisofmoistpotentialvorticityforpersistantrainstormintheNorthwestShandong.EnvironmentalScienceandTechnology(inChinese),2013,36(S1):129⁃134.[19]赖绍钧,何芬,陈海山,等.华南前汛期一次特大暴雨过程的数值模拟及其诊断分析.热带气象学报,2012,28(3):409⁃416.LAIShaojun,HEFen,CHENHaishan,etal.NumericalsimulationanddiagnosticanalysisofarainstormduringtheannuallyfirstrainyseasonofSouthChina.JournalofTropicalMeteorology(inChinese),2012,28(3):409⁃416.[20]俞小鼎,姚秀萍,熊廷南,等.多普勒天气雷达原理与业务应用.北京:气象出版社,2006:182⁃187.YUXiaodong,YAOXiuping,XIONGTingnan,etal.Dopplerweatherradarprincipleandprofessionalapplication.Beijing:ChinaMeteorologicalPress(inChinese),2006:182⁃187.[21]RotunnoR,KlempJB,WeismanML.Atheoryforstrong,long⁃livedsquallline.J.Atmos.Sci.,1988,45(3):463⁃485.[22]陈明轩,王迎春.低层垂直风切变和冷池相互作用影响华北地区一次飑线过程发展维持的数值模拟.气象学报,2012,70(3):371⁃386.CHENMingxuan,WANGYingchun.Numericalsimulationstudyofinteractionaleffectsofthelow⁃levelverticalwindshearwiththecoldpoolonasqualllineevolutioninNorthChina.ActaMeteorologicaSinica(inChinese),2012,70(3):371⁃386.[23]李娜,冉令坤,高守亭.华东地区一次飑线过程的数值模拟与诊断分析.大气科学,2013,37(3):595⁃608.LINa,RANLingkun,GAOShouting.NumericalsimulationanddiagnosisstudyofasqualllineineasternChina.ChineseJournalofAtmosphericSciences(inChinese),2013,37(3):595⁃608.[24]WeismanML,KlempJB,RotunnoR.Structureandevolutionofnumericallysimulatedsqualllines.J.Atmos.Sci.,1988,45(14):1990⁃2013.89气㊀㊀象㊀㊀科㊀㊀学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀41卷。
灾害性天气“飑线”预警虚拟仿真实验系统构建与实现灾害性天气是指短时间内出现的强降雨、暴雨、强对流天气等,会对人类生命财产造成严重威胁。
其中,“飑线”是一种常见的灾害性天气现象,它的特点是瞬时大风、强降水和雷暴等天气要素集中爆发。
为了提前预警和减少对人类生产生活的影响,我们可以构建一个灾害性天气“飑线”预警虚拟仿真实验系统。
该系统的构建与实现可以分为以下几个步骤:1.数据采集和处理:需要收集大量的气象数据,包括气温、湿度、风速、降雨量等多个指标。
这些数据可以通过气象观测站、卫星遥感、雷达等方式获取。
然后,对采集到的数据进行处理,包括质量控制、数据校正和数据存储等。
2.建立灾害性天气模型:根据历史气象数据和观测数据,可以建立灾害性天气的模型。
模型可以基于统计方法、机器学习等技术,预测未来一段时间内可能出现灾害性天气的概率和强度。
3.飑线路径模拟:通过模型模拟,可以预测飑线的路径和运动速度。
模拟需要考虑多种因素,包括地形、气象条件、尺度效应等。
模拟结果可以以地图形式展示出来,为预警提供依据。
4.飑线影响评估:根据飑线的路径和强度,可以评估其对人类生命财产的影响。
影响评估可以包括风速、降雨量、洪水、山体滑坡等多个方面。
评估结果可以用来制定相应的紧急响应措施和预警等级。
5.系统展示和预警通知:通过可视化界面,将模拟结果展示给用户,包括实时的飑线路径、强度、影响区域等。
同时,系统还可以通过短信、电子邮件、手机应用等方式向相关机构和公众发送预警通知,提醒他们采取相应的防护措施。
总之,灾害性天气“飑线”预警虚拟仿真实验系统可以帮助预测和评估灾害性天气对人类生命财产的影响,提前预警并采取相应的防护措施。
该系统的构建与实现涉及数据采集和处理、模型建立和模拟、影响评估、系统展示和预警通知等多个方面。
通过科学的仿真实验,可以提高应对灾害性天气的能力,减少灾害带来的损失。
川西地区一次暴雨天气过程的动力条件分析及数值模拟
邵远坤;沈桐立;孙明;游泳
【期刊名称】《高原山地气象研究》
【年(卷),期】2006(026)004
【摘要】本文分析了1998年9月16日川西地区有代表性的一次暴雨天气过程的动力机制:暴雨落区出现在对流层低层涡度、散度等物理量最大值中心的下风方;对流层中低层流场的演变和大气的斜压对称不稳定使得对流旺盛发展,无辐散层高度升高,从而有利于这次暴雨的形成.NCAR/PSU非静力的MM5中尺度数值模式对本次天气过程有较好的模拟能力,数值敏感性试验揭示出在有冷空气影响的条件下青藏高原地形有减少盆地西北部降雨量的作用,而对盆地西南部雨量有增加的作用.【总页数】5页(P8-11,17)
【作者】邵远坤;沈桐立;孙明;游泳
【作者单位】南京信息工程大学大气科学系,南京,210044;南京信息工程大学大气科学系,南京,210044;四川省气象局,610071;四川省气象局,610071
【正文语种】中文
【中图分类】P457.9
【相关文献】
1.新疆昌吉州一次极端暴雨天气过程分析及数值模拟 [J], 彭敏;巩远发;纪策;谭政华
2.贵州中西部地区一次台风暴雨天气过程的诊断分析及数值模拟 [J], 龙园;万雪丽;
吴华洪;孔德璇;肖艳林
3.新疆昌吉州一次极端暴雨天气过程分析及数值模拟 [J], 彭敏;巩远发;纪策;谭政华;;;;;;
4.首都机场一次暴雨天气过程分析及暴雨天气\r过程预报思路总结 [J], 韩羽庭
5.首都机场一次暴雨天气过程分析及暴雨天气过程预报思路总结 [J], 韩羽庭因版权原因,仅展示原文概要,查看原文内容请购买。
景德镇地区一次早春飑线天气过程分析及数值模拟黄龙飞;陈鲍发;支树林【摘要】利用常规高空、地面、雷达观测资料和FNL1°×1°再分析资料,应用天气学方法和数值模拟方法对2016年4月3日景德镇地区一次早春飑线天气过程进行了分析.结果表明:高空冷涡低槽引导的冷空气与西南暖湿气流强烈对峙是此次飑线过程的环流背景.高低空急流耦合作用加强了大气的垂直上升运动和锋面的次级环流,造成赣北地区上空大气具备较强的动力不稳定.回波强度超过55 dBz的低质心强对流云体是导致景德镇地区出现5 min降水量达14.3 mm强降水的重要原因.飑线的快速移动和近地面超20 m/s的大风速核可预示下游测站有大风出现.飑线前部辐合明显,上升运动剧烈,有利于强回波的发展.冷池的强度变化、持续时间与此次飑线的维持有关.【期刊名称】《气象与减灾研究》【年(卷),期】2018(041)004【总页数】7页(P278-284)【关键词】飑线;数值模拟;低质心回波;冷池【作者】黄龙飞;陈鲍发;支树林【作者单位】景德镇市气象局,江西景德镇333000;景德镇市气象局,江西景德镇333000;江西省气象台,江西南昌330096【正文语种】中文【中图分类】P458.30 引言飑线往往有组织地发展,其强度强、影响程度大,容易产生多种灾害性天气。
国内许多学者从天气学角度对飑线的发生、发展机理进行了深入研究。
如,许爱华等(2014)对中国中东部地区发生的强对流天气的天气形势进行了分类,并讨论了基本要素配置特征,将中国强对流天气分为5个基本类别:冷平流强迫类、暖平流强迫类、斜压锋生类、准正压类、高架对流类。
杨姗姗等(2016)指出冷涡背景下出现的飑线过程大多伴有强降水,主要形成方式为嵌套区线型,消散方式为颠倒破碎型。
也有不少学者对江西地区发生的强对流天气进行了研究。
如,马中元等(2011)指出江西地区对流风暴的触发系统主要包括雷暴冷堆、冷出流边界和局地锋区等9种。