《试卷3份集锦》深圳市2020中考数学联考试题
- 格式:doc
- 大小:1.95 MB
- 文档页数:56
2019-2020学年中考数学模拟试卷 一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B 恰好碰到地面,经测量AB=2m,则树高为( )米A .5B .3C .5+1D .32.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( )A .众数B .方差C .平均数D .中位数3.如图:A 、B 、C 、D 四点在一条直线上,若AB =CD ,下列各式表示线段AC 错误的是( )A .AC =AD ﹣CDB .AC =AB+BC C .AC =BD ﹣ABD .AC =AD ﹣AB 4.关于x 的分式方程230x x a +=-解为4x =,则常数a 的值为( ) A .1a = B .2a = C .4a = D .10a =5.将一些半径相同的小圆按如图所示的规律摆放,第1个图形有4个小圆,第2个图形有8个小圆,第3个图形有14个小圆,…,依次规律,第7个图形的小圆个数是( )A .56B .58C .63D .726.如图所示的几何体的主视图是( )A .B .C .D .7.如图,AB 为⊙O 的直径,C ,D 为⊙O 上的两点,若AB =14,BC =1.则∠BDC 的度数是( )A.15°B.30°C.45°D.60°8.甲、乙、丙三家超市为了促销同一种定价为m元的商品,甲超市连续两次降价20%;乙超市一次性降价40%;丙超市第一次降价30%,第二次降价10%,此时顾客要购买这种商品,最划算的超市是( ) A.甲B.乙C.丙D.都一样9.如图,已知射线OM,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以点A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,那么∠AOB的度数是()A.90°B.60°C.45°D.30°10.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()A.B.C.D.二、填空题(本题包括8个小题)11.月球的半径约为1738000米,1738000这个数用科学记数法表示为___________.12.如图,将矩形ABCD绕其右下角的顶点按顺时针方向旋转90°至图①位置,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,以此类推,这样连续旋转2017次.若AB=4,AD=3,则顶点A在整个旋转过程中所经过的路径总长为_____.13.如图,线段AB=10,点P在线段AB上,在AB的同侧分别以AP、BP为边长作正方形APCD和BPEF,点M、N分别是EF、CD的中点,则MN的最小值是_______.CD 的高是__________m .15.已知23-是一元二次方程240x x c -+=的一个根,则方程的另一个根是________.16.如图,点P (3a ,a )是反比例函k y x=(k >0)与⊙O 的一个交点,图中阴影部分的面积为10π,则反比例函数的表达式为______.17.在ABC 中,A ∠:B ∠:C ∠=1:2:3,CD AB ⊥于点D ,若AB 10=,则BD =______ 18.如图,在平行四边形ABCD 中,AB <AD ,∠D=30°,CD=4,以AB 为直径的⊙O 交BC 于点E ,则阴影部分的面积为_____.三、解答题(本题包括8个小题)19.(6分)某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m =162﹣3x .请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式.商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.20.(6分)如图,在△ABC 中,∠C=90°,∠BAC 的平分线交BC 于点D ,点O 在AB 上,以点O 为圆心,OA 为半径的圆恰好经过点D ,分别交AC 、AB 于点E. F .试判断直线BC 与⊙O 的位置关系,并说明理由;若BD=2,BF=2,求⊙O 的半径.21.(6分)某科技开发公司研制出一种新型产品,每件产品的成本为2500元,销售单价定为3200元.在该产品的试销期间,为了促销,鼓励商家购买该新型品,公司决定商家一次购买这种新型产品不超过10件时,每件按3200元销售:若一次购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低5元,但销售单价均不低于2800元.商家一次购买这种产品多少件时,销售单价恰好为2800元?设商家一次购买这种产品x 件,开发公司所获的利润为y 元,求y (元)与x (件)之间的函数关系式,并写出自变量x 的取值范围该公司的销售人员发现:当商家一次购买产品的件数超过某一数量时,会出现随着一次购买的数量的增多,公司所获的利润反而减少这一情况.为使商家一次购买的数量越多,公司所获的利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)22.(8分)某初中学校举行毛笔书法大赛,对各年级同学的获奖情况进行了统计,并绘制了如下两幅不完整的统计图,请结合图中相关数据解答下列问题:请将条形统计图补全;获得一等奖的同学中有14来自七年级,有14来自八年级,其他同学均来自九年级,现准备从获得一等奖的同学中任选两人参加市内毛笔书法大赛,请通过列表或画树状图求所选出的两人中既有七年级又有九年级同学的概率.23.(8分)解方程:3x x --239x -=1 24.(10分)如图所示,点C 在线段AB 上,AC = 8 cm ,CB = 6 cm ,点M 、N 分别是AC 、BC 的中点.求线段MN 的长.若C 为线段AB 上任意一点,满足AC+CB=a(cm),其他条件不变,你能猜想出MN 的长度吗?并说明理由.若C 在线段AB 的延长线上,且满足AC-CB=b(cm),M 、N 分别为AC 、BC 的中点,你能猜想出MN 的长度吗?请画出图形,写出你的结论,并说明理由.25.(10分)如图,在平面直角坐标系中,直线y 1=2x ﹣2与双曲线y 2=k x交于A 、C 两点,AB ⊥OA 交x 轴于点B ,且OA=AB .求双曲线的解析式;求点C 的坐标,并直接写出y 1<y 2时x 的取值范围.26.(12分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).如果小明第一题不使用“求助”,那么小明答对第一道题的概率是.如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.C【解析】由题意可知,AC=1,AB=2,∠CAB=90°据勾股定理则2222+=+=;125AC AB∴AC+BC=(5m.答:树高为(5故选C.2.D【解析】【分析】根据中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)的意义,9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中故本题选:D.【点睛】本题考查了统计量的选择,熟练掌握众数,方差,平均数,中位数的概念是解题的关键.3.C【解析】【分析】根据线段上的等量关系逐一判断即可.【详解】A 、∵AD-CD=AC ,∴此选项表示正确;B 、∵AB+BC=AC ,∴此选项表示正确;C 、∵AB=CD ,∴BD-AB=BD-CD ,∴此选项表示不正确;D 、∵AB=CD ,∴AD-AB=AD-CD=AC ,∴此选项表示正确.故答案选:C.【点睛】本题考查了线段上两点间的距离及线段的和、差的知识,解题的关键是找出各线段间的关系.4.D【解析】【分析】根据分式方程的解的定义把x=4代入原分式方程得到关于a 的一次方程,解得a 的值即可.【详解】解:把x=4代入方程230x x a+=-,得 23044a+=-, 解得a=1.经检验,a=1是原方程的解故选D .点睛:此题考查了分式方程的解,分式方程注意分母不能为2.试题分析:第一个图形的小圆数量=1×2+2=4;第二个图形的小圆数量=2×3+2=8;第三个图形的小圆数量=3×4+2=14;则第n个图形的小圆数量=n(n+1)+2个,则第七个图形的小圆数量=7×8+2=58个.考点:规律题6.A【解析】【分析】找到从正面看所得到的图形即可.【详解】解:从正面可看到从左往右2列一个长方形和一个小正方形,故选A.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.7.B【解析】【分析】只要证明△OCB是等边三角形,可得∠CDB=12∠COB即可解决问题.【详解】如图,连接OC,∵AB=14,BC=1,∴OB=OC=BC=1,∴△OCB是等边三角形,∴∠COB=60°,∴∠CDB=12∠COB=30°,故选B.【点睛】本题考查圆周角定理,等边三角形的判定等知识,解题的关键是学会利用数形结合的首先解决问题,属于中考常考题型.【分析】根据各超市降价的百分比分别计算出此商品降价后的价格,再进行比较即可得出结论.【详解】解:降价后三家超市的售价是:甲为(1-20%)2m=0.64m,乙为(1-40%)m=0.6m,丙为(1-30%)(1-10%)m=0.63m,∵0.6m<0.63m<0.64m,∴此时顾客要购买这种商品最划算应到的超市是乙.故选:B.【点睛】此题考查了列代数式,解题的关键是根据题目中的数量关系列出代数式,并对代数式比较大小.9.B【解析】【分析】首先连接AB,由题意易证得△AOB是等边三角形,根据等边三角形的性质,可求得∠AOB的度数.【详解】连接AB,根据题意得:OB=OA=AB,∴△AOB是等边三角形,∴∠AOB=60°.故答案选:B.【点睛】本题考查了等边三角形的判定与性质,解题的关键是熟练的掌握等边三角形的判定与性质.10.D【解析】根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是D.【详解】解:观察图形可知图案D通过平移后可以得到.故选D.【点睛】本题考查图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转.二、填空题(本题包括8个小题)11.1.738×1【解析】【详解】解:将1738000用科学记数法表示为1.738×1.故答案为1.738×1.【点睛】本题考查科学记数法—表示较大的数,掌握科学计数法的计数形式,难度不大.12.3026π.【解析】分析:首先求得每一次转动的路线的长,发现每4次循环,找到规律然后计算即可.详解:∵AB=4,BC=3,∴AC=BD=5,转动一次A的路线长是:90π42π180⨯=,转动第二次的路线长是:90π55π1802⨯=,转动第三次的路线长是:90π33π1802⨯=,转动第四次的路线长是:0,以此类推,每四次循环,故顶点A转动四次经过的路线长为:53ππ2π6π22++=,∵2017÷4=504…1,∴顶点A转动四次经过的路线长为:6π5042π3026π.⨯+=故答案为3026π.点睛:考查旋转的性质和弧长公式,熟记弧长公式是解题的关键. 13.2【解析】设MN=y,PC=x,根据正方形的性质和勾股定理列出y1关于x的二次函数关系式,求二次函数的最值即可.【详解】作MG⊥DC于G,如图所示:设MN=y,PC=x,根据题意得:GN=2,MG=|10-1x|,在Rt△MNG中,由勾股定理得:MN1=MG1+GN1,即y1=21+(10-1x)1.∵0<x<10,∴当10-1x=0,即x=2时,y1最小值=12,∴y最小值=2.即MN的最小值为2;故答案为:2.【点睛】本题考查了正方形的性质、勾股定理、二次函数的最值.熟练掌握勾股定理和二次函数的最值是解决问题的关键.14.10.5【解析】【分析】先证△AEB∽△ABC,再利用相似的性质即可求出答案.【详解】解:由题可知,BE⊥AC,DC⊥AC∵BE//DC,∴△AEB∽△ADC,∴BE ABCD AC=,即:1.2 1.61.612.4 CD=+,∴CD=10.5(m). 故答案为10.5.本题考查了相似的判定和性质.利用相似的性质列出含所求边的比例式是解题的关键.15.2【解析】【分析】通过观察原方程可知,常数项是一未知数,而一次项系数为常数,因此可用两根之和公式进行计算,将【详解】设方程的另一根为x 1,又∵x 1,解得x 1.故答案为:2【点睛】解决此类题目时要认真审题,确定好各系数的数值与正负,然后适当选择一个根与系数的关系式求解. 16.y=12x【解析】设圆的半径是r ,根据圆的对称性以及反比例函数的对称性可得:14πr 2=10π解得:r=∵点P(3a ,a)是反比例函y=k x(k>0)与O 的一个交点, ∴3a 2=k.r =∴a 2=2110⨯=4. ∴k=3×4=12, 则反比例函数的解析式是:y=12x . 故答案是:y=12x. 点睛:本题主要考查了反比例函数图象的对称性,正确根据对称性求得圆的半径是解题的关键.17.2.1【解析】【分析】先求出△ABC 是∠A 等于30°的直角三角形,再根据30°角所对的直角边等于斜边的一半求解.【详解】解:根据题意,设∠A 、∠B 、∠C 为k 、2k 、3k ,则k+2k+3k=180°,解得k=30°,2k=60°,3k=90°,∵AB=10,∴BC=12AB=1, ∵CD ⊥AB ,∴∠BCD=∠A=30°,∴BD=12BC=2.1. 故答案为2.1.【点睛】本题主要考查含30度角的直角三角形的性质和三角形内角和定理,掌握30°角所对的直角边等于斜边的一半、求出△ABC 是直角三角形是解本题的关键.18.43π-【解析】【分析】连接半径和弦AE ,根据直径所对的圆周角是直角得:∠AEB=90°,继而可得AE 和BE 的长,所以图中弓形的面积为扇形OBE 的面积与△OBE 面积的差,因为OA=OB ,所以△OBE 的面积是△ABE 面积的一半,可得结论.【详解】如图,连接OE 、AE ,∵AB 是⊙O 的直径,∴∠AEB=90°,∵四边形ABCD 是平行四边形,∴AB=CD=4,∠B=∠D=30°,∴AE=12AB=2, ∵OA=OB=OE ,∴∠B=∠OEB=30°,∴∠BOE=120°,∴S 阴影=S 扇形OBE ﹣S △BOE=2120211·36022AE BE π⨯-⨯=4142233 343ππ-⨯⨯=-,故答案为43 3π-.【点睛】本题考查了扇形的面积计算、平行四边形的性质,含30度角的直角三角形的性质等,求出扇形OBE的面积和△ABE的面积是解本题的关键.三、解答题(本题包括8个小题)19.(1)y=﹣3x2+252x﹣1(2≤x≤54);(2)商场每天销售这种商品的销售利润不能达到500元.【解析】【分析】(1)此题可以按等量关系“每天的销售利润=(销售价﹣进价)×每天的销售量”列出函数关系式,并由售价大于进价,且销售量大于零求得自变量的取值范围.(2)根据(1)所得的函数关系式,利用配方法求二次函数的最值即可得出答案.【详解】(1)由题意得:每件商品的销售利润为(x﹣2)元,那么m件的销售利润为y=m(x﹣2).又∵m=162﹣3x,∴y=(x﹣2)(162﹣3x),即y=﹣3x2+252x﹣1.∵x﹣2≥0,∴x≥2.又∵m≥0,∴162﹣3x≥0,即x≤54,∴2≤x≤54,∴所求关系式为y=﹣3x2+252x﹣1(2≤x≤54).(2)由(1)得y=﹣3x2+252x﹣1=﹣3(x﹣42)2+432,所以可得售价定为42元时获得的利润最大,最大销售利润是432元.∵500>432,∴商场每天销售这种商品的销售利润不能达到500元.【点睛】本题考查了二次函数在实际生活中的应用,解答本题的关键是根据等量关系:“每天的销售利润=(销售价﹣进价)×每天的销售量”列出函数关系式,另外要熟练掌握二次函数求最值的方法.20.(1)相切,理由见解析;(1)1.【解析】【分析】(1)求出OD//AC,得到OD⊥BC,根据切线的判定得出即可;(1)根据勾股定理得出方程,求出方程的解即可.【详解】(1)直线BC与⊙O的位置关系是相切,理由是:连接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠CAB,∴∠OAD=∠CAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODB=90°,即OD⊥BC,∵OD为半径,∴直线BC与⊙O的位置关系是相切;(1)设⊙O的半径为R,则OD=OF=R,在Rt△BDO中,由勾股定理得:OB=BD+OD,即(R+1) =(1)+R,解得:R=1,即⊙O的半径是1.【点睛】此题考查切线的判定,勾股定理,解题关键在于求出OD⊥BC.21.(1)商家一次购买这种产品1件时,销售单价恰好为2800元;(2)当0≤x≤10时,y=700x,当10<x≤1时,y=﹣5x2+750x,当x>1时,y=300x;(3)公司应将最低销售单价调整为2875元.【解析】【分析】(1)设件数为x,则销售单价为3200-5(x-10)元,根据销售单价恰好为2800元,列方程求解;(2)由利润y=(销售单价-成本单价)×件数,及销售单价均不低于2800元,按0≤x≤10,10<x≤50两种情况列出函数关系式;(3)由(2)的函数关系式,利用二次函数的性质求利润的最大值,并求出最大值时x的值,确定销售单价.【详解】(1)设商家一次购买这种产品x件时,销售单价恰好为2800元.由题意得:3200﹣5(x﹣10)=2800,解得:x=1.答:商家一次购买这种产品1件时,销售单价恰好为2800元;(2)设商家一次购买这种产品x件,开发公司所获的利润为y元,由题意得:当0≤x≤10时,y=(3200﹣2500)x=700x,当10<x≤1时,y=[3200﹣5(x﹣10)﹣2500]•x=﹣5x2+750x,当x>1时,y=(2800﹣2500)•x=300x;(3)因为要满足一次购买数量越多,所获利润越大,所以y随x增大而增大,函数y=700x,y=300x均是y随x增大而增大,而y=﹣5x2+750x=﹣5(x﹣75)2+28125,在10<x≤75时,y随x增大而增大.由上述分析得x的取值范围为:10<x≤75时,即一次购买75件时,恰好是最低价,最低价为3200﹣5•(75﹣10)=2875元,答:公司应将最低销售单价调整为2875元.【点睛】本题考查了一次、二次函数的性质在实际生活中的应用.最大销售利润的问题常利二次函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.22.(1)答案见解析;(2)1 3 .【解析】【分析】(1)根据参与奖有10人,占比25%可求得获奖的总人数,用总人数减去二等奖、三等奖、鼓励奖、参与奖的人数可求得一等奖的人数,据此补全条形图即可;(2)根据题意分别求出七年级、八年级、九年级获得一等奖的人数,然后通过列表或画树状图法进行求解即可得.【详解】(1)10÷25%=40(人),获一等奖人数:40-8-6-12-10=4(人),补全条形图如图所示:(2)七年级获一等奖人数:4×14=1(人), 八年级获一等奖人数:4×14=1(人), ∴ 九年级获一等奖人数:4-1-1=2(人),七年级获一等奖的同学用M 表示,八年级获一等奖的同学用N 表示,九年级获一等奖的同学用P 1 、P 2表示,树状图如下:共有12种等可能结果,其中获得一等奖的既有七年级又有九年级人数的结果有4种,则所选出的两人中既有七年级又有九年级同学的概率P=41123=. 【点评】此题考查了统计与概率综合,理解扇形统计图与条形统计图的意义及列表法或树状图法是解题关键.23.2x =-【解析】【分析】先去分母,把分式方程化为一元一次方程,解一元一次方程,再验根.【详解】解:去分母得:()2x x 33x 9+-=- 解得:x 2=-检验:把x 2=-代入2x 950-=-≠所以:方程的解为x 2=-【点睛】本题考核知识点:解方式方程. 解题关键点:去分母,得到一元一次方程,.验根是要点. 24.(1)7cm (2)若C 为线段AB 上任意一点,且满足AC+CB=a(cm),其他条件不变,则MN=12a(cm);理由详见解析(3)12b(cm) 【解析】【分析】(1)据“点M、N分别是AC、BC的中点”,先求出MC、CN的长度,再利用MN=CM+CN即可求出MN的长度即可.(2)据题意画出图形即可得出答案.(3)据题意画出图形即可得出答案.【详解】(1)如图∵AC=8cm,CB=6cm,∴AB=AC+CB=8+6=14cm,又∵点M、N分别是AC、BC的中点,∴MC=12AC,CN=12BC,∴MN=12AC+12BC=12( AC+BC)=12AB=7cm.答:MN的长为7cm.(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,则MN=12a cm,理由是:∵点M、N分别是AC、BC的中点,∴MC=12AC,CN=12BC,∵AC+CB=acm,∴MN=12AC+12BC=12(AC+BC)=12a cm.(3)解:如图,∵点M、N分别是AC、BC的中点,∴MC=12AC,CN=12BC,∵AC-CB=bcm,∴MN=12AC-12BC=12(AC-BC)=1b2cm.考点:两点间的距离.25.(1)24yx;(1)C(﹣1,﹣4),x的取值范围是x<﹣1或0<x<1.【解析】【分析】(1)作高线AC,根据等腰直角三角形的性质和点A的坐标的特点得:x=1x﹣1,可得A的坐标,从而得双曲线的解析式;(1)联立一次函数和反比例函数解析式得方程组,解方程组可得点C的坐标,根据图象可得结论.【详解】(1)∵点A在直线y1=1x﹣1上,∴设A(x,1x﹣1),过A作AC⊥OB于C,∵AB⊥OA,且OA=AB,∴OC=BC,∴AC=12OB=OC,∴x=1x﹣1,x=1,∴A(1,1),∴k=1×1=4,∴24yx =;(1)∵224y xyx=-⎧⎪⎨=⎪⎩,解得:1122xy=⎧⎨=⎩,2214xy=-⎧⎨=-⎩,∴C(﹣1,﹣4),由图象得:y1<y1时x的取值范围是x<﹣1或0<x<1.【点睛】本题考查了反比例函数和一次函数的综合;熟练掌握通过求点的坐标进一步求函数解析式的方法;通过观察图象,从交点看起,函数图象在上方的函数值大.26.(1)13;(2)19;(3)第一题.【解析】【分析】(1)由第一道单选题有3个选项,直接利用概率公式求解即可求得答案;(2)画出树状图,再由树状图求得所有等可能的结果与小明顺利通关的情况,继而利用概率公式即可求得答案;(3)由如果在第一题使用“求助”小明顺利通关的概率为:18;如果在第二题使用“求助”小明顺利通关的概率为:19;即可求得答案.【详解】(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率=13;故答案为13;(2)画树状图为:共有9种等可能的结果数,其中两个都正确的结果数为1,所以小明顺利通关的概率为19;(3)建议小明在第一题使用“求助”.理由如下:小明将“求助”留在第一题,画树状图为:小明将“求助”留在第一题使用,小明顺利通关的概率=18,因为18>19,所以建议小明在第一题使用“求助”.【点睛】本题考查的是概率,熟练掌握树状图法和概率公式是解题的关键.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.若数a使关于x的不等式组()3x a2x11x2x2⎧-≥--⎪⎨--≥⎪⎩有解且所有解都是2x+6>0的解,且使关于y的分式方程y51y--+3=ay1-有整数解,则满足条件的所有整数a的个数是()A.5 B.4 C.3 D.22.在△ABC中,AB=3,BC=4,AC=2,D,E,F分别为AB,BC,AC中点,连接DF,FE,则四边形DBEF 的周长是()A.5 B.7 C.9 D.113.一、单选题如图,△ABC中,AB=4,AC=3,BC=2,将△ABC绕点A顺时针旋转60°得到△AED,则BE的长为()A.5 B.4 C.3 D.24.设a,b是常数,不等式1xa b+>的解集为15x<,则关于x的不等式0bx a->的解集是()A.15x>B.15x<-C.15x>-D.15x<5.若二元一次方程组3,354x yx y+=⎧⎨-=⎩的解为,,x ay b=⎧⎨=⎩则-a b的值为()A.1 B.3 C.14-D.746.已知抛物线y=x2+3向左平移2个单位,那么平移后的抛物线表达式是()A.y=(x+2)2+3 B.y=(x﹣2)2+3 C.y=x2+1 D.y=x2+57.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为( )A .0.7米B .1.5米C .2.2米D .2.4米8.如图,将一张三角形纸片ABC 的一角折叠,使点A 落在ABC ∆处的'A 处,折痕为DE .如果A α∠=,'CEA β∠=,'BDA γ∠=,那么下列式子中正确的是( )A .2γαβ=+B .2γαβ=+C .γαβ=+D .180γαβ=--9.下列计算正确的是( )A .(﹣2a )2=2a 2B .a 6÷a 3=a 2C .﹣2(a ﹣1)=2﹣2aD .a•a 2=a 210.下列四个几何体中,主视图是三角形的是( ) A . B . C . D .二、填空题(本题包括8个小题)11.如图,等腰△ABC 中,AB =AC ,∠BAC =50°,AB 的垂直平分线MN 交AC 于点D ,则∠DBC 的度数是____________.12.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为_____.13.一艘轮船在小岛A的北偏东60°方向距小岛80海里的B处,沿正西方向航行3小时后到达小岛的北偏西45°的C处,则该船行驶的速度为____________海里/时.14.如图,在平面直角坐标系中,菱形OABC的面积为12,点B在y轴上,点C在反比例函数y=kx的图象上,则k的值为________.15.如图,六边形ABCDEF的六个内角都相等.若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于_________.16.有公共顶点A,B的正五边形和正六边形按如图所示位置摆放,连接AC交正六边形于点D,则∠ADE 的度数为()A.144°B.84°C.74°D.54°17.关于x的一元二次方程(k-1)x2+6x+k2-k=0的一个根是0,则k的值是______.18.已知关于x的一元二次方程20x mx n++=的两个实数根分别是x1=-2,x2=4,则+m n的值为________.三、解答题(本题包括8个小题)19.(6分)水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售.若将这种水果每斤的售价降低x元,则每天的销售量是斤(用含x的代数式表示);销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?20.(6分)现有一次函数y=mx+n和二次函数y=mx2+nx+1,其中m≠0,若二次函数y=mx2+nx+1经过点(2,0),(3,1),试分别求出两个函数的解析式.若一次函数y=mx+n经过点(2,0),且图象经过第一、三象限.二次函数y=mx2+nx+1经过点(a,y1)和(a+1,y2),且y1>y2,请求出a的取值范围.若二次函数y=mx2+nx+1的顶点坐标为A(h,k)(h≠0),同时二次函数y=x2+x+1也经过A点,已知﹣1<h<1,请求出m的取值范围.21.(6分)某中学九年级甲、乙两班商定举行一次远足活动,A、B两地相距10千米,甲班从A地出发匀速步行到B地,乙班从B地出发匀速步行到A地.两班同时出发,相向而行.设步行时间为x小时,甲、乙两班离A地的距离分别为1y千米、2y千米,1y、2y与x的函数关系图象如图所示,根据图象解答下列问题:直接写出1y、2y与x的函数关系式;求甲、乙两班学生出发后,几小时相遇?相遇时乙班离A地多少千米?甲、乙两班相距4千米时所用时间是多少小时?22.(8分)解方程:252112xx x+--=1.23.(8分)在同一副扑克牌中取出6张扑克牌,分别是黑桃2、4、6,红心6、7、8.将扑克牌背面朝上分别放在甲、乙两张桌面上,先从甲桌面上任意摸出一张黑桃,再从乙桌面上任意摸出一张红心.表示出所有可能出现的结果;小黄和小石做游戏,制定了两个游戏规则:规则1:若两次摸出的扑克牌中,至少有一张是“6”,小黄赢;否则,小石赢.规则2:若摸出的红心牌点数是黑桃牌点数的整数倍时,小黄赢;否则,小石赢.小黄想要在游戏中获胜,会选择哪一条规则,并说明理由.24.(10分)某汽车厂计划半年内每月生产汽车20辆,由于另有任务,每月上班人数不一定相等,实每月生产量与计划量相比情况如下表(增加为正,减少为负)生产量最多的一天比生产量最少的一天多生产多少辆?半年内总生产量是多少?比计划多了还是少了,增加或减少多少?25.(10分)如图,AB是⊙O的直径,AC BC=,连结AC,过点C作直线l∥AB,点P是直线l上的一个动点,直线PA与⊙O交于另一点D,连结CD,设直线PB与直线AC交于点E.求∠BAC的度数;当点D在AB上方,且CD⊥BP时,求证:PC=AC;在点P的运动过程中①当点A在线段PB的中垂线上或点B在线段PA的中垂线上时,求出所有满足条件的∠ACD的度数;②设⊙O的半径为6,点E到直线l的距离为3,连结BD,DE,直接写出△BDE的面积.26.(12分)如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.求证:DP是⊙O的切线;若⊙O的半径为3cm,求图中阴影部分的面积.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.D【解析】【分析】由不等式组有解且满足已知不等式,以及分式方程有整数解,确定出满足题意整数a的值即可.【详解】不等式组整理得:13x ax≥-⎧⎨≤⎩,由不等式组有解且都是2x+6>0,即x>-3的解,得到-3<a-1≤3,即-2<a≤4,即a=-1,0,1,2,3,4,分式方程去分母得:5-y+3y-3=a,即y=22a-,由分式方程有整数解,得到a=0,2,共2个,故选:D.【点睛】本题考查了分式方程的解,解一元一次不等式,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.。
2020年广东省深圳市中考数学试卷一、选择题(每小题3分,共12小题,满分36分)1.(3分)(2020•深圳)2020的相反数是()A.2020B.12020C.﹣2020D.−120202.(3分)(2020•深圳)下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)(2020•深圳)2020年6月30日,深圳市总工会启动“百万职工消费扶贫采购节”活动,预计撬动扶贫消费额约150000000元.将150000000用科学记数法表示为()A.0.15×108B.1.5×107C.15×107D.1.5×1084.(3分)(2020•深圳)分别观察下列几何体,其中主视图、左视图和俯视图完全相同的是()A.圆锥B.圆柱C.三棱柱D.正方体5.(3分)(2020•深圳)某同学在今年的中考体育测试中选考跳绳.考前一周,他记录了自己五次跳绳的成绩(次数/分钟):247,253,247,255,263.这五次成绩的平均数和中位数分别是()A.253,253B.255,253C.253,247D.255,2476.(3分)(2020•深圳)下列运算正确的是( )A .a +2a =3a 2B .a 2•a 3=a 5C .(ab )3=ab 3D .(﹣a 3)2=﹣a 67.(3分)(2020•深圳)如图,将直尺与30°角的三角尺叠放在一起,若∠1=40°,则∠2的大小是( )A .40°B .60°C .70°D .80°8.(3分)(2020•深圳)如图,在△ABC 中,AB =AC .在AB 、AC 上分别截取AP ,AQ ,使AP =AQ .再分别以点P ,Q 为圆心,以大于12PQ 的长为半径作弧,两弧在∠BAC 内交于点R ,作射线AR ,交BC 于点D .若BC =6,则BD 的长为( )A .2B .3C .4D .59.(3分)(2020•深圳)以下说法正确的是( )A .平行四边形的对边相等B .圆周角等于圆心角的一半C .分式方程1x−2=x−1x−2−2的解为x =2D .三角形的一个外角等于两个内角的和10.(3分)(2020•深圳)如图,为了测量一条河流的宽度,一测量员在河岸边相距200米的P 、Q 两点分别测定对岸一棵树T 的位置,T 在P 的正北方向,且T 在Q 的北偏西70°方向,则河宽(PT 的长)可以表示为( )A.200tan70°米B.200tan70°米C.200sin 70°米D.200sin70°米11.(3分)(2020•深圳)二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣1,n),其部分图象如图所示.以下结论错误的是()A.abc>0B.4ac﹣b2<0C.3a+c>0D.关于x的方程ax2+bx+c=n+1无实数根12.(3分)(2020•深圳)如图,矩形纸片ABCD中,AB=6,BC=12.将纸片折叠,使点B落在边AD的延长线上的点G处,折痕为EF,点E、F分别在边AD和边BC上.连接BG,交CD于点K,FG交CD于点H.给出以下结论:①EF⊥BG;②GE=GF;③△GDK和△GKH的面积相等;④当点F与点C重合时,∠DEF=75°,其中正确的结论共有()A .1个B .2个C .3个D .4个二、填空题(本题共4小题,每小题3分,共12分)13.(3分)(2020•深圳)分解因式:m 3﹣m = .14.(3分)(2020•深圳)一口袋内装有编号分别为1,2,3,4,5,6,7的七个球(除编号外都相同),从中随机摸出一个球,则摸出编号为偶数的球的概率是 .15.(3分)(2020•深圳)如图,在平面直角坐标系中,O (0,0),A (3,1),B (1,2).反比例函数y =k x(k ≠0)的图象经过▱OABC 的顶点C ,则k = .16.(3分)(2020•深圳)如图,在四边形ABCD 中,AC 与BD 相交于点O ,∠ABC =∠DAC=90°,tan ∠ACB =12,BO OD =43,则S △ABDS △CBD = .三、解答题(本题共7小题,共52分)17.(5分)(2020•深圳)计算:(13)﹣1﹣2cos30°+|−√3|﹣(4﹣π)0.18.(6分)(2020•深圳)先化简,再求值:a+1a2−2a+1÷(2+3−aa−1),其中a=2.19.(7分)(2020•深圳)以人工智能、大数据、物联网为基础的技术创新促进了新业态蓬勃发展,新业态发展对人才的需求更加旺盛.某大型科技公司上半年新招聘软件、硬件、总线、测试四类专业的毕业生,现随机调查了m名新聘毕业生的专业情况,并将调查结果绘制成如图两幅不完整的统计图.请根据统计图提供的信息,解答下列问题.(1)m=,n=.(2)请补全条形统计图;(3)在扇形统计图中,“软件”所对应的扇形的圆心角是度;(4)若该公司新招聘600名毕业生,请你估计“总线”专业的毕业生有名.20.(8分)(2020•深圳)如图,AB为⊙O的直径,点C在⊙O上,AD与过点C的切线互相垂直,垂足为D.连接BC并延长,交AD的延长线于点E.(1)求证:AE=AB;(2)若AB=10,BC=6,求CD的长.21.(8分)(2020•深圳)端午节前夕,某商铺用620元购进50个肉粽和30个蜜枣粽,肉粽的进货单价比蜜枣粽的进货单价多6元.(1)肉粽和蜜枣粽的进货单价分别是多少元?(2)由于粽子畅销,商铺决定再购进这两种粽子共300个,其中肉粽数量不多于蜜枣粽数量的2倍,且每种粽子的进货单价保持不变,若肉粽的销售单价为14元,蜜枣粽的销售单价为6元,试问第二批购进肉粽多少个时,全部售完后,第二批粽子获得利润最大?第二批粽子的最大利润是多少元?22.(9分)(2020•深圳)背景:一次小组合作探究课上,小明将两个正方形按如图所示的位置摆放(点E 、A 、D 在同一条直线上),发现BE =DG 且BE ⊥DG .小组讨论后,提出了下列三个问题,请你帮助解答:(1)将正方形AEFG 绕点A 按逆时针方向旋转(如图1),还能得到BE =DG 吗?若能,请给出证明;若不能,请说明理由;(2)把背景中的正方形分别改成菱形AEFG 和菱形ABCD ,将菱形AEFG 绕点A 按顺时针方向旋转(如图2),试问当∠EAG 与∠BAD 的大小满足怎样的关系时,背景中的结论BE =DG 仍成立?请说明理由;(3)把背景中的正方形分别改写成矩形AEFG 和矩形ABCD ,且AE AG =AB AD =23,AE =4,AB =8,将矩形AEFG 绕点A 按顺时针方向旋转(如图3),连接DE ,BG .小组发现:在旋转过程中,DE 2+BG 2的值是定值,请求出这个定值.23.(9分)(2020•深圳)如图1,抛物线y =ax 2+bx +3(a ≠0)与x 轴的交点A (﹣3,0)和B (1,0),与y 轴交于点C ,顶点为D .(1)求该抛物线的解析式;(2)连接AD ,DC ,CB ,将△OBC 沿x 轴以每秒1个单位长度的速度向左平移,得到△O'B'C',点O、B、C的对应点分别为点O'、B'、C',设平移时间为t秒,当点O'与点A 重合时停止移动.记△O'B'C'与四边形AOCD重合部分的面积为S,请直接写出S与t之间的函数关系式;(3)如图2,过该抛物线上任意一点M(m,n)向直线l:y=92作垂线,垂足为E,试问在该抛物线的对称轴上是否存在一点F,使得ME﹣MF=14?若存在,请求出F的坐标;若不存在,请说明理由.2020年广东省深圳市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共12小题,满分36分)1.(3分)(2020•深圳)2020的相反数是()A.2020B.12020C.﹣2020D.−12020【解答】解:2020的相反数是:﹣2020.故选:C.2.(3分)(2020•深圳)下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、不是中心对称图形,不是轴对称图形,故此选项不合题意;B、既是中心对称图形,又是轴对称图形,故此选项符合题意;C、不是中心对称图形,是轴对称图形,故此选项不合题意;D、是中心对称图形,不是轴对称图形,故此选项不合题意;故选:B.3.(3分)(2020•深圳)2020年6月30日,深圳市总工会启动“百万职工消费扶贫采购节”活动,预计撬动扶贫消费额约150000000元.将150000000用科学记数法表示为()A.0.15×108B.1.5×107C.15×107D.1.5×108【解答】解:将150000000用科学记数法表示为1.5×108.故选:D.4.(3分)(2020•深圳)分别观察下列几何体,其中主视图、左视图和俯视图完全相同的是()A.圆锥B.圆柱C.三棱柱D.正方体【解答】解:圆锥的主视图、左视图都是等腰三角形,而俯视图是圆,因此选项A不符合题意;圆柱体的主视图、左视图都是矩形,而俯视图是圆形,因此选项B不符合题意;三棱柱主视图、左视图都是矩形,而俯视图是三角形,因此选项C不符合题意;正方体的三视图都是形状、大小相同的正方形,因此选项D符合题意;故选:D.5.(3分)(2020•深圳)某同学在今年的中考体育测试中选考跳绳.考前一周,他记录了自己五次跳绳的成绩(次数/分钟):247,253,247,255,263.这五次成绩的平均数和中位数分别是()A.253,253B.255,253C.253,247D.255,247【解答】解:x=(247+253+247+255+263)÷5=253,这5个数从小到大,处在中间位置的一个数是253,因此中位数是253;故选:A.6.(3分)(2020•深圳)下列运算正确的是()A.a+2a=3a2B.a2•a3=a5C.(ab)3=ab3D.(﹣a3)2=﹣a6【解答】解:a+2a=3a,因此选项A不符合题意;a2•a3=a2+3=a5,因此选项B符合题意;(ab)3=a3b3,因此选项C不符合题意;(﹣a3)2=a6,因此选项D不符合题意;故选:B.7.(3分)(2020•深圳)如图,将直尺与30°角的三角尺叠放在一起,若∠1=40°,则∠2的大小是()A .40°B .60°C .70°D .80°【解答】解:由题意得,∠4=60°,∵∠1=40°,∴∠3=180°﹣60°﹣40°=80°,∵AB ∥CD ,∴∠3=∠2=80°,故选:D .8.(3分)(2020•深圳)如图,在△ABC 中,AB =AC .在AB 、AC 上分别截取AP ,AQ ,使AP =AQ .再分别以点P ,Q 为圆心,以大于12PQ 的长为半径作弧,两弧在∠BAC 内交于点R ,作射线AR ,交BC 于点D .若BC =6,则BD 的长为( )A .2B .3C .4D .5【解答】解:由题可得,AR 平分∠BAC ,又∵AB =AC ,∴AD 是三角形ABC 的中线,∴BD=12BC=12×6=3,故选:B.9.(3分)(2020•深圳)以下说法正确的是()A.平行四边形的对边相等B.圆周角等于圆心角的一半C.分式方程1x−2=x−1x−2−2的解为x=2D.三角形的一个外角等于两个内角的和【解答】解:A、平行四边形的对边相等,所以A选项正确;B、一条弧所对的圆周角等于它所对的圆心角的一半,所以B选项错误;C、去分母得1=x﹣1﹣2(x﹣2),解得x=2,经检验原方程无解,所以C选项错误;D、三角形的一个外角等于与它不相邻的两个内角的和,所以D选项错误.故选:A.10.(3分)(2020•深圳)如图,为了测量一条河流的宽度,一测量员在河岸边相距200米的P、Q两点分别测定对岸一棵树T的位置,T在P的正北方向,且T在Q的北偏西70°方向,则河宽(PT的长)可以表示为()A.200tan70°米B.200tan70°米C.200sin 70°米D.200sin70°米【解答】解:在Rt△PQT中,∵∠QPT=90°,∠PQT=90°﹣70°=20°,∴∠PTQ=70°,∴tan70°=PQ PT,∴PT=PQtan70°=200tan70°,即河宽200tan70°米,故选:B.11.(3分)(2020•深圳)二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣1,n),其部分图象如图所示.以下结论错误的是()A.abc>0B.4ac﹣b2<0C.3a+c>0D.关于x的方程ax2+bx+c=n+1无实数根【解答】解:A.∵抛物线开口向下,∴a<0,∵对称轴为直线x=−b2a=−1,∴b=2a<0,∵抛物线与y轴交于正半轴,∴c>0,∴abc>0,故A正确;B.∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即4ac﹣b2<0,故B正确;C.∵抛物线的对称轴为直线x=﹣1,抛物线与x轴的一个交点在(﹣3,0)和(﹣2,0)之间,∴抛物线与x轴的另一个交点在(0,0)和(1,0)之间,∴x=1时,y<0,即a+b+c<0,∵b=2a,∴3a+c<0,故C错误;D.∵抛物线开口向下,顶点为(﹣1,n),∴函数有最大值n,∴抛物线y=ax2+bx+c与直线y=n+1无交点,∴一元二次方程ax2+bx+c=n+1无实数根,故D正确.故选:C.12.(3分)(2020•深圳)如图,矩形纸片ABCD中,AB=6,BC=12.将纸片折叠,使点B落在边AD的延长线上的点G处,折痕为EF,点E、F分别在边AD和边BC上.连接BG,交CD于点K,FG交CD于点H.给出以下结论:①EF⊥BG;②GE=GF;③△GDK和△GKH的面积相等;④当点F与点C重合时,∠DEF=75°,其中正确的结论共有()A.1个B.2个C.3个D.4个【解答】解:如图,连接BE,设EF与BG交于点O,∵将纸片折叠,使点B 落在边AD 的延长线上的点G 处, ∴EF 垂直平分BG ,∴EF ⊥BG ,BO =GO ,BE =EG ,BF =FG ,故①正确, ∵AD ∥BC , ∴∠EGO =∠FBO , 又∵∠EOG =∠BOF , ∴△BOF ≌△GOE (ASA ), ∴BF =EG ,∴BF =EG =GF ,故②正确, ∵BE =EG =BF =FG , ∴四边形BEGF 是菱形, ∴∠BEF =∠GEF ,当点F 与点C 重合时,则BF =BC =BE =12, ∵sin ∠AEB =AB BE =612=12, ∴∠AEB =30°,∴∠DEF =75°,故④正确,由题意无法证明△GDK 和△GKH 的面积相等,故③错误; 故选:C .二、填空题(本题共4小题,每小题3分,共12分)13.(3分)(2020•深圳)分解因式:m 3﹣m = m (m +1)(m ﹣1) . 【解答】解:m 3﹣m , =m (m 2﹣1), =m (m +1)(m ﹣1).14.(3分)(2020•深圳)一口袋内装有编号分别为1,2,3,4,5,6,7的七个球(除编号外都相同),从中随机摸出一个球,则摸出编号为偶数的球的概率是37.【解答】解:∵从袋子中随机摸出一个球共有7种等可能结果,其中摸出编号为偶数的球的结果数为3,∴摸出编号为偶数的球的概率为37,故答案为:37.15.(3分)(2020•深圳)如图,在平面直角坐标系中,O (0,0),A (3,1),B (1,2).反比例函数y =kx (k ≠0)的图象经过▱OABC 的顶点C ,则k = ﹣2 .【解答】解:连接OB ,AC ,交点为P , ∵四边形OABC 是平行四边形, ∴AP =CP ,OP =BP , ∵O (0,0),B (1,2), ∴P 的坐标(12,1),∵A (3,1),∴C 的坐标为(﹣2,1),∵反比例函数y =kx (k ≠0)的图象经过点C , ∴k =﹣2×1=﹣2, 故答案为﹣2.16.(3分)(2020•深圳)如图,在四边形ABCD 中,AC 与BD 相交于点O ,∠ABC =∠DAC=90°,tan ∠ACB =12,BOOD=43,则S △ABD S △CBD=332.【解答】解:如图,过点D 作DM ∥BC ,交CA 的延长线于点M ,延长BA 交DM 于点N , ∵DM ∥BC ,∴△ABC ∽△ANM ,△OBC ∽△ODM , ∴AB BC=AN NM=tan ∠ACB =12,BC DM=OB OD=43,又∵∠ABC =∠DAC =90°, ∴∠BAC +∠NAD =90°, ∵∠BAC +∠BCA =90°, ∴∠NAD =∠BCA , ∴△ABC ∽△DAN , ∴AB BC=DN NA=12,设AB =a ,DN =b ,则BC =2a ,NA =2b ,MN =4b , 由BC DM=OB OD =43得,DM =32a ,∴4b +b =32a , 即,b =310a , ∴S △ABD S △BCD=12AB⋅DN 12BC⋅NB =ab 2a⋅(a+2b)=310a 22a⋅1610a=332.故答案为:332.三、解答题(本题共7小题,共52分)17.(5分)(2020•深圳)计算:(13)﹣1﹣2cos30°+|−√3|﹣(4﹣π)0.【解答】解:原式=3﹣2×√32+3﹣13−√3+√3−1 =2.18.(6分)(2020•深圳)先化简,再求值:a+1a −2a+1÷(2+3−aa−1),其中a =2. 【解答】解:原式=a+1(a−1)2÷2a−2+3−aa−1 =a+1(a−1)2÷a+1a−1=a+1(a−1)2×a−1a+1=1a−1当a =2时,原式=12−1=1.19.(7分)(2020•深圳)以人工智能、大数据、物联网为基础的技术创新促进了新业态蓬勃发展,新业态发展对人才的需求更加旺盛.某大型科技公司上半年新招聘软件、硬件、总线、测试四类专业的毕业生,现随机调查了m 名新聘毕业生的专业情况,并将调查结果绘制成如图两幅不完整的统计图.请根据统计图提供的信息,解答下列问题.(1)m=50,n=10.(2)请补全条形统计图;(3)在扇形统计图中,“软件”所对应的扇形的圆心角是72度;(4)若该公司新招聘600名毕业生,请你估计“总线”专业的毕业生有180名.【解答】解:(1)m=15÷30%=50,n%=5÷50×100%=10%,故答案为:50,10;(2)硬件专业的毕业生有:50×40%=20(人),补全的条形统计图如右图所示;(3)在扇形统计图中,“软件”所对应的扇形的圆心角是360°×1050=72°,故答案为:72;(4)600×30%=180(名),即“总线”专业的毕业生有180名,故答案为:180.20.(8分)(2020•深圳)如图,AB为⊙O的直径,点C在⊙O上,AD与过点C的切线互相垂直,垂足为D.连接BC并延长,交AD的延长线于点E.(1)求证:AE=AB;(2)若AB=10,BC=6,求CD的长.【解答】(1)证明:连接AC 、OC ,如图, ∵CD 为切线, ∴OC ⊥CD , ∴CD ⊥AD , ∴OC ∥AD , ∴∠OCB =∠E , ∵OB =OC , ∴∠OCB =∠B , ∴∠B =∠E , ∴AE =AB ;(2)解:∵AB 为直径, ∴∠ACB =90°, ∴AC =√102−62=8, ∵AB =AE =10,AC ⊥BE , ∴CE =BC =6, ∵12CD •AE =12AC •CE ,∴CD =6×810=245.21.(8分)(2020•深圳)端午节前夕,某商铺用620元购进50个肉粽和30个蜜枣粽,肉粽的进货单价比蜜枣粽的进货单价多6元.(1)肉粽和蜜枣粽的进货单价分别是多少元?(2)由于粽子畅销,商铺决定再购进这两种粽子共300个,其中肉粽数量不多于蜜枣粽数量的2倍,且每种粽子的进货单价保持不变,若肉粽的销售单价为14元,蜜枣粽的销售单价为6元,试问第二批购进肉粽多少个时,全部售完后,第二批粽子获得利润最大?第二批粽子的最大利润是多少元?【解答】解:(1)设蜜枣粽的进货单价是x元,则肉粽的进货单价是(x+6)元,由题意得:50(x+6)+30x=620,解得:x=4,∴6+4=10,答:蜜枣粽的进货单价是4元,则肉粽的进货单价是10元;(2)设第二批购进肉粽y个,则蜜枣粽购进(300﹣y)个,获得利润为w元,由题意得:w=(14﹣10)y+(6﹣4)(300﹣y)=2y+600,∵2>0,∴w随y的增大而增大,∵y≤2(300﹣y),∴0<y≤200,∴当y=200时,w有最大值,w最大值=400+600=1000,答:第二批购进肉粽200个时,总利润最大,最大利润是1000元.22.(9分)(2020•深圳)背景:一次小组合作探究课上,小明将两个正方形按如图所示的位置摆放(点E、A、D在同一条直线上),发现BE=DG且BE⊥DG.小组讨论后,提出了下列三个问题,请你帮助解答:(1)将正方形AEFG 绕点A 按逆时针方向旋转(如图1),还能得到BE =DG 吗?若能,请给出证明;若不能,请说明理由;(2)把背景中的正方形分别改成菱形AEFG 和菱形ABCD ,将菱形AEFG 绕点A 按顺时针方向旋转(如图2),试问当∠EAG 与∠BAD 的大小满足怎样的关系时,背景中的结论BE =DG 仍成立?请说明理由;(3)把背景中的正方形分别改写成矩形AEFG 和矩形ABCD ,且AE AG=AB AD=23,AE =4,AB =8,将矩形AEFG 绕点A 按顺时针方向旋转(如图3),连接DE ,BG .小组发现:在旋转过程中,DE 2+BG 2的值是定值,请求出这个定值.【解答】(1)证明:∵四边形AEFG 为正方形, ∴AE =AF ,∠EAG =90°, 又∵四边形ABCD 为正方形, ∴AB =AD ,∠BAD =90°, ∴∠EAB =∠GAD , ∴△AEB ≌△AGD (SAS ), ∴BE =DG ;(2)当∠EAG =∠BAD 时,BE =DG , 理由如下: ∵∠EAG =∠BAD , ∴∠EAB =∠GAD ,又∵四边形AEFG 和四边形ABCD 为菱形, ∴AE =AG ,AB =AD , ∴△AEB ≌△AGD (SAS ), ∴BE =DG ;(3)解:方法一:过点E 作EM ⊥DA ,交DA 的延长线于点M ,过点G 作GN ⊥AB 交AB 于点N , 由题意知,AE =4,AB =8, ∵AE AG=AB AD=23,∴AG =6,AD =12,∵∠EMA =∠ANG ,∠MAE =∠GAN , ∴△AME ∽△ANG ,设EM =2a ,AM =2b ,则GN =3a ,AN =3b ,则BN =8﹣3b , ∴ED 2=(2a )2+(12+2b )2=4a 2+144+48b +4b 2, GB 2=(3a )2+(8﹣3b )2=9a 2+64﹣48b +9b 2, ∴ED 2+GB 2=13(a 2+b 2)+208=13×4+208=260. 方法二:如图2,设BE 与DG 交于Q ,∵AE AG=AB AD=23,AE =4,AB =8∴AG =6,AD =12.∵四边形AEFG 和四边形ABCD 为矩形, ∴∠EAG =∠BAD ,∴∠EAB=∠GAD,∵EAAG =ABAD,∴△EAB∽△GAD,∴∠BEA=∠AGD,∴A,E,G,Q四点共圆,∴∠GQP=∠P AE=90°,∴GD⊥EB,连接EG,BD,∴ED2+GB2=EQ2+QD2+GQ2+QB2=EG2+BD2,∴EG2+BD2=42+62+82+122=260.23.(9分)(2020•深圳)如图1,抛物线y=ax2+bx+3(a≠0)与x轴的交点A(﹣3,0)和B(1,0),与y轴交于点C,顶点为D.(1)求该抛物线的解析式;(2)连接AD,DC,CB,将△OBC沿x轴以每秒1个单位长度的速度向左平移,得到△O'B'C',点O、B、C的对应点分别为点O'、B'、C',设平移时间为t秒,当点O'与点A 重合时停止移动.记△O'B'C'与四边形AOCD重合部分的面积为S,请直接写出S与t之间的函数关系式;(3)如图2,过该抛物线上任意一点M(m,n)向直线l:y=92作垂线,垂足为E,试问在该抛物线的对称轴上是否存在一点F,使得ME﹣MF=14?若存在,请求出F的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线y=ax2+bx+3过点A(﹣3,0),B(1,0),∴{9a −3b +3=0a +b +3=0,解得{a =−1b =−2,∴抛物线的解析式为y =﹣x 2﹣2x +3;(2)①0<t <1时,如图1,若B 'C '与y 轴交于点F ,∵OO '=t ,OB '=1﹣t , ∴OF =3OB '=3﹣3t , ∴S =12×(C 'O '+OF )×OO '=12×(3+3﹣3t )×t =−32t 2+3t , ②1≤t <32时,S =32;③32≤t ≤3时,如图2,C ′O ′与AD 交于点Q ,B ′C ′与AD 交于点P ,过点P 作PH⊥C ′O ′于H ,∵AO =3,O 'O =t , ∴AO '=3﹣t ,O 'Q =6﹣2t , ∴C 'Q =2t ﹣3,∵QH =2PH ,C 'H =3PH , ∴PH =15C 'Q =15(2t ﹣3),∴S =32−12(2t −3)×15(2t ﹣3), ∴S =−25t 2+65t +35,综合以上可得:S ={ −32t 2+3t(0<t <1)32(1≤t <32)−25t 2+65t +35(32≤t ≤3). (3)令F (﹣1,t ),则MF =√(m +1)2+(n −t)2,ME =92−n , ∵ME ﹣MF =14, ∴MF =ME −14, ∴(m +1)2+(n −t)2=(174−n)2, ∴m 2+2m +1+t 2﹣2nt =−172n +28916. ∵n =﹣m 2﹣2m +3,∴(1+2n −172)m 2+(2+4n ﹣17)m +1+t 2﹣6t +512−28916=0. 当t =154时,上式对于任意m 恒成立, ∴存在F (﹣1,154).。
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是()A.摸出的三个球中至少有一个球是黑球B.摸出的三个球中至少有一个球是白球C.摸出的三个球中至少有两个球是黑球D.摸出的三个球中至少有两个球是白球【答案】A【解析】根据必然事件的概念:在一定条件下,必然发生的事件叫做必然事件分析判断即可.【详解】A、是必然事件;B、是随机事件,选项错误;C、是随机事件,选项错误;D、是随机事件,选项错误.故选A.2.在平面直角坐标系中,若点A(a,-b)在第一象限内,则点B(a,b)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】先根据第一象限内的点的坐标特征判断出a、b的符号,进而判断点B所在的象限即可.【详解】∵点A(a,-b)在第一象限内,∴a>0,-b>0,∴b<0,∴点B((a,b)在第四象限,故选D.【点睛】本题考查了点的坐标,解决本题的关键是牢记平面直角坐标系中各个象限内点的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.3.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B.C.D.【答案】B【解析】由中心对称图形的定义:“把一个图形绕一个点旋转180°后,能够与自身完全重合,这样的图形叫做中心对称图形”分析可知,上述图形中,A 、C 、D 都不是中心对称图形,只有B 是中心对称图形. 故选B.4.下列图标中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 【答案】D【解析】试题分析:根据轴对称图形和中心对称图形的概念,可知:A 既不是轴对称图形,也不是中心对称图形,故不正确;B 不是轴对称图形,但是中心对称图形,故不正确;C 是轴对称图形,但不是中心对称图形,故不正确;D 即是轴对称图形,也是中心对称图形,故正确.故选D.考点:轴对称图形和中心对称图形识别5.如图,四边形ABCD 是正方形,点P ,Q 分别在边AB ,BC 的延长线上且BP=CQ ,连接AQ ,DP 交于点O ,并分别与边CD ,BC 交于点F ,E ,连接AE ,下列结论:①AQ ⊥DP ;②△OAE ∽△OPA ;③当正方形的边长为3,BP =1时,cos ∠DFO=35,其中正确结论的个数是( )A .0B .1C .2D .3【答案】C 【解析】由四边形ABCD 是正方形,得到AD=BC,90DAB ABC ∠=∠=︒,根据全等三角形的性质得到∠P=∠Q ,根据余角的性质得到AQ ⊥DP ;故①正确;根据勾股定理求出225,AQ AB BQ =+=,DFO BAQ ∠=∠直接用余弦可求出.【详解】详解:∵四边形ABCD 是正方形,∴AD=BC,90DAB ABC ∠=∠=,∵BP=CQ ,∴AP=BQ ,在△DAP 与△ABQ 中, AD AB DAP ABQ AP BQ =⎧⎪∠=∠⎨⎪=⎩, ∴△DAP ≌△ABQ ,∴∠P=∠Q ,∵90Q QAB ∠+∠=,∴90P QAB ∠+∠=,∴90AOP ∠=,∴AQ ⊥DP ;故①正确;②无法证明,故错误.∵BP=1,AB=3,∴4BQ AP ==, 225,AQ AB BQ =+=,DFO BAQ ∠=∠∴3cos cos .5AB DFO BAQ AQ ∠=∠== 故③正确, 故选C .【点睛】 考查正方形的性质,三角形全等的判定与性质,勾股定理,锐角三角函数等,综合性比较强,对学生要求较高.6.在△ABC 中,∠C =90°,AC =9,sinB =35,则AB =( ) A .15 B .12 C .9D .6 【答案】A【解析】根据三角函数的定义直接求解.【详解】在Rt △ABC 中,∠C =90°,AC =9,∵sin AC B AB =, ∴935AB =, 解得AB =1.故选A7.关于x 的方程2(5)410a x x ---=有实数根,则a 满足( )A .1a ≥B .1a >且5a ≠C .1a ≥且5a ≠D .5a ≠ 【答案】A【解析】分类讨论:当a=5时,原方程变形一元一次方程,有一个实数解;当a≠5时,根据判别式的意义得到a≥1且a≠5时,方程有两个实数根,然后综合两种情况即可得到满足条件的a 的范围.【详解】当a=5时,原方程变形为-4x-1=0,解得x=-14; 当a≠5时,△=(-4)2-4(a-5)×(-1)≥0,解得a≥1,即a≥1且a≠5时,方程有两个实数根, 所以a 的取值范围为a≥1.故选A .【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的根的判别式△=b 2-4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义. 8.如图:A 、B 、C 、D 四点在一条直线上,若AB =CD ,下列各式表示线段AC 错误的是( )A .AC =AD ﹣CDB .AC =AB+BC C .AC =BD ﹣ABD .AC =AD ﹣AB【答案】C【解析】根据线段上的等量关系逐一判断即可.【详解】A 、∵AD-CD=AC ,∴此选项表示正确;B 、∵AB+BC=AC ,∴此选项表示正确;C 、∵AB=CD ,∴BD-AB=BD-CD ,∴此选项表示不正确;D 、∵AB=CD ,∴AD-AB=AD-CD=AC ,∴此选项表示正确.故答案选:C.【点睛】本题考查了线段上两点间的距离及线段的和、差的知识,解题的关键是找出各线段间的关系.9.甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是( )A.甲超市的利润逐月减少B.乙超市的利润在1月至4月间逐月增加C.8月份两家超市利润相同D.乙超市在9月份的利润必超过甲超市【答案】D【解析】根据折线图中各月的具体数据对四个选项逐一分析可得.【详解】A、甲超市的利润逐月减少,此选项正确,不符合题意;B、乙超市的利润在1月至4月间逐月增加,此选项正确,不符合题意;C、8月份两家超市利润相同,此选项正确,不符合题意;D、乙超市在9月份的利润不一定超过甲超市,此选项错误,符合题意,故选D.【点睛】本题主要考查折线统计图,折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.10.如图,在等边三角形ABC中,点P是BC边上一动点(不与点B、C重合),连接AP,作射线PD,使∠APD=60°,PD交AC于点D,已知AB=a,设CD=y,BP=x,则y与x函数关系的大致图象是()A.B.C.D.【答案】C【解析】根据等边三角形的性质可得出∠B=∠C=60°,由等角的补角相等可得出∠BAP=∠CPD,进而即可证出△ABP∽△PCD,根据相似三角形的性质即可得出y=- 1ax2+x,对照四个选项即可得出.【详解】∵△ABC为等边三角形,∴∠B=∠C=60°,BC=AB=a,PC=a-x.∵∠APD=60°,∠B=60°,∴∠BAP+∠APB=120°,∠APB+∠CPD=120°,∴∠BAP=∠CPD ,∴△ABP ∽△PCD , ∴CD PC BP AB =,即y a x x a-=, ∴y=-1a x 2+x. 故选C.【点睛】考查了动点问题的函数图象、相似三角形的判定与性质,利用相似三角形的性质找出y=-1ax 2+x 是解题的关键.二、填空题(本题包括8个小题)11.《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是______步.【答案】6017. 【解析】如图,根据正方形的性质得:DE ∥BC ,则△ADE ∽△ACB ,列比例式可得结论.【详解】如图,∵四边形CDEF 是正方形,∴CD=ED ,DE ∥CF ,设ED=x ,则CD=x ,AD=12-x ,∵DE ∥CF ,∴∠ADE=∠C ,∠AED=∠B ,∴△ADE ∽△ACB ,∴DE BC =AD AC, ∴x 5=12-x 12, ∴x=6017,故答案为6017.【点睛】本题考查了相似三角形的判定和性质、正方形的性质,设未知数,构建方程是解题的关键.12.如图,在平行四边形ABCD 中,过对角线AC 与BD 的交点O 作AC 的垂线交于点E ,连接CE ,若AB=4,BC=6,则△CDE 的周长是______.【答案】1【解析】由平行四边形ABCD 的对角线相交于点O ,OE ⊥AC ,根据线段垂直平分线的性质,可得AE=CE ,又由平行四边形ABCD 的AB+BC=AD+CD=1,继而可得结论.【详解】∵四边形ABCD 是平行四边形,∴OA=OC ,AB=CD ,AD=BC .∵AB=4,BC=6,∴AD+CD=1.∵OE ⊥AC ,∴AE=CE ,∴△CDE 的周长为:CD+CE+DE=CD+CE+AE=AD+CD=1.故答案为1.【点睛】本题考查了平行四边形的性质,线段的垂直平分线的性质定理等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.13.如图,已知m n ∕∕,1105∠=︒,2140∠=︒则a ∠=________.【答案】65°【解析】根据两直线平行,同旁内角互补求出∠3,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】∵m ∥n,∠1=105°,∴∠3=180°−∠1=180°−105°=75°∴∠α=∠2−∠3=140°−75°=65°故答案为:65°.【点睛】此题考查平行线的性质,解题关键在于利用同旁内角互补求出∠3.14.对于任意实数m 、n ,定义一种运算m ※n=mn ﹣m ﹣n+3,等式的右边是通常的加减和乘法运算,例如:3※5=3×5﹣3﹣5+3=1.请根据上述定义解决问题:若a <2※x <7,且解集中有两个整数解,则a 的取值范围是_____.【答案】45a ≤<【解析】解:根据题意得:2※x=2x ﹣2﹣x+3=x+1,∵a <x+1<7,即a ﹣1<x <6解集中有两个整数解,∴a 的范围为45a ≤<,故答案为45a ≤<.【点睛】本题考查一元一次不等式组的整数解,准确理解题意正确计算是本题的解题关键.15.如图,⊙O 的半径为6,四边形ABCD 内接于⊙O ,连接OB ,OD ,若∠BOD=∠BCD ,则弧BD 的长为________.【答案】4π【解析】根据圆内接四边形对角互补可得∠BCD+∠A=180°,再根据同弧所对的圆周角与圆心角的关系以及∠BOD=∠BCD ,可求得∠A=60°,从而得∠BOD=120°,再利用弧长公式进行计算即可得.【详解】解:∵四边形ABCD 内接于⊙O ,∴∠BCD+∠A=180°,∵∠BOD=2∠A ,∠BOD=∠BCD ,∴2∠A+∠A=180°,解得:∠A=60°,∴∠BOD=120°,∴BD 的长=41812060ππ=⨯, 故答案为4π.【点睛】本题考查了圆周角定理、弧长公式等,求得∠A 的度数是解题的关键.16.如图,每个小正方形边长为1,则△ABC 边AC 上的高BD 的长为_____.【答案】85【解析】试题分析:根据网格,利用勾股定理求出AC 的长,AB 的长,以及AB 边上的高,利用三角形面积公式求出三角形ABC 面积,而三角形ABC 面积可以由AC 与BD 乘积的一半来求,利用面积法即可求出BD 的长:根据勾股定理得:22345AC =+=,由网格得:S △ABC =12×2×4=4,且S △ABC =12AC•BD=12×5BD , ∴12×5BD=4,解得:BD=85. 考点:1.网格型问题;2.勾股定理;3.三角形的面积.17.圆锥的底面半径为3,母线长为5,该圆锥的侧面积为_______.【答案】15π【解析】试题分析:利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.圆锥的侧面积=12•2π•3•5=15π. 故答案为15π.考点:圆锥的计算.18.如图是一个立体图形的三种视图,则这个立体图形的体积(结果保留π)为______________.【答案】250π【解析】从三视图可以看正视图以及左视图为矩形,而俯视图为圆形,故可以得出该立体图形为圆柱.由三视图可得圆柱的半径和高,易求体积.【详解】该立体图形为圆柱,∵圆柱的底面半径r=5,高h=10,∴圆柱的体积V=πr 2h=π×52×10=250π(立方单位).答:立体图形的体积为250π立方单位.故答案为250π.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查;圆柱体积公式=底面积×高.三、解答题(本题包括8个小题)19.如图,在ABC ∆中,D 是BC 的中点,过点D 的直线GF 交AC 于点F ,交AC 的平行线BG 于点G ,ED DF ⊥交AB 于点E ,连接EG 、EF .求证:BG CF =;请你判断BE CF +与EF 的大小关系,并说明理由.【答案】(1)证明见解析;(2)证明见解析.【解析】(1)利用平行线的性质和中点的定义得到,BGD CFD BD CD ∠=∠= ,进而得到三角形全等,从而求证结论;(2)利用中垂线的性质和三角形的三边关系进行判断即可.【详解】证明:(1)∵BG ∥AC∴BGD CFD ∠=∠∵D 是BC 的中点∴BD CD =又∵BDG CDF ∠=∠∴△BDG ≌△CDF∴BG CF =(2)由(1)中△BDG ≌△CDF∴GD=FD,BG=CF又∵ED DF ⊥∴ED 垂直平分DF∴EG=EF∵在△BEG 中,BE+BG>GE,>EF∴BE CF【点睛】本题考查平行线性质的应用、全等三角形的判定和性质的应用及三角形三边关系,熟练掌握相关知识点是解题关键.20.为了提高学生书写汉字的能力,增强保护汉子的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为(分),且,将其按分数段分为五组,绘制出以下不完整表格:组别成绩(分)频数(人数)频率一 2 0.04二10 0.2三14 b四 a 0.32五8 0.16请根据表格提供的信息,解答以下问题:本次决赛共有名学生参加;直接写出表中a= ,b= ;请补全下面相应的频数分布直方图;若决赛成绩不低于80分为优秀,则本次大赛的优秀率为.【答案】(1)50;(2)a=16,b=0.28;(3)答案见解析;(4)48%.【解析】试题分析:(1)根据第一组别的人数和百分比得出样本容量;(2)根据样本容量以及频数、频率之间的关系得出a和b的值,(3)根据a的值将图形补全;(4)根据图示可得:优秀的人为第四和第五组的人,将两组的频数相加乘以100%得出答案.试题解析:(1)2÷0.04=50(2)50×0.32=16 14÷50=0.28(3)(4)(0.32+0.16)×100%=48%考点:频数分布直方图21.如图,在Rt △ABC 中,90ACB ∠=︒,过点C 的直线MN ∥AB ,D 为AB 边上一点,过点D 作DE ⊥BC ,交直线MN 于E ,垂足为F ,连接CD 、BE.求证:CE=AD ;当D 在AB 中点时,四边形BECD 是什么特殊四边形?说明理由;若D 为AB 中点,则当A ∠=______时,四边形BECD 是正方形.【答案】(1)详见解析;(2)菱形;(3)当∠A=45°,四边形BECD 是正方形.【解析】(1)先求出四边形ADEC 是平行四边形,根据平行四边形的性质推出即可;(2)求出四边形BECD 是平行四边形,求出CD=BD ,根据菱形的判定推出即可;(3)求出∠CDB=90°,再根据正方形的判定推出即可.【详解】(1)∵DE ⊥BC ,∴∠DFP=90°,∵∠ACB=90°,∴∠DFB=∠ACB ,∴DE//AC ,∵MN//AB ,∴四边形ADEC 为平行四边形,∴CE=AD ;(2)菱形,理由如下:在直角三角形ABC 中,∵D 为AB 中点,∴BD=AD ,∵CE=AD ,∴BD=CE ,∴MN//AB ,∴BECD 是平行四边形,∵∠ACB=90°,D 是AB 中点,∴BD=CD ,(斜边中线等于斜边一半)∴四边形BECD 是菱形;(3)若D 为AB 中点,则当∠A=45°时,四边形BECD 是正方形,理由:∵∠A=45°,∠ACB=90°,∴∠ABC=45°,∵四边形BECD 是菱形,∴DC=DB ,∴∠DBC=∠DCB=45°,∴∠CDB=90°,∵四边形BECD 是菱形,∴四边形BECD 是正方形,故答案为45°.【点睛】本题考查了平行四边形的判定与性质,菱形的判定、正方形的判定,直角三角形斜边中线的性质等,综合性较强,熟练掌握和灵活运用相关知识是解题的关键.22.班级的课外活动,学生们都很积极.梁老师在某班对同学们进行了一次关于“我喜爱的体育项目”的调査,下面是他通过收集数据后,绘制的两幅不完整的统计图.请根据图中的信息,解答下列问题:调查了________名学生;补全条形统计图;在扇形统计图中,“乒乓球”部分所对应的圆心角度数为________;学校将举办运动会,该班将推选5位同学参加乒乓球比赛,有3位男同学(,,)A B C 和2位女同学(,)D E ,现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.【答案】50 见解析(3)115.2° (4)3 5【解析】试题分析:(1)用最喜欢篮球的人数除以它所占的百分比可得总共的学生数;(2)用学生的总人数乘以各部分所占的百分比,可得最喜欢足球的人数和其他的人数,即可把条形统计图补充完整;(3)根据圆心角的度数=360 º×它所占的百分比计算;(4)列出树状图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,从而可求出答案.解:(1)由题意可知该班的总人数=15÷30%=50(名)故答案为50;(2)足球项目所占的人数=50×18%=9(名),所以其它项目所占人数=50﹣15﹣9﹣16=10(名)补全条形统计图如图所示:(3)“乒乓球”部分所对应的圆心角度数=360°×=115.2°,故答案为115.2°;(4)画树状图如图.由图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,所以P(恰好选出一男一女)==.点睛:本题考查的是条形统计图和扇形统计图的综合运用,概率的计算.读懂统计图,从不同的统计图中得到必要的信息及掌握概率的计算方法是解决问题的关键.23.雾霾天气严重影响市民的生活质量。
2019-2020学年中考数学模拟试卷 一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.甲、乙两船从相距300km 的A 、B 两地同时出发相向而行,甲船从A 地顺流航行180km 时与从B 地逆流航行的乙船相遇,水流的速度为6km/h ,若甲、乙两船在静水中的速度均为xkm/h ,则求两船在静水中的速度可列方程为( )A .1806x +=1206x - B .1806x -=1206x + C .1806x +=120x D .180x =1206x - 2.如图,已知菱形ABCD 的对角线AC .BD 的长分别为6cm 、8cm ,AE ⊥BC 于点E ,则AE 的长是()A .53cmB .25cmC .48cm 5D .24cm 53.如图,若干个全等的正五边形排成环状,图中所示的是前3个正五边形,要完成这一圆环还需正五边形的个数为( )A .10B .9C .8D .74.已知二次函数2(0)y x x a a =-+>,当自变量x 取m 时,其相应的函数值小于0,则下列结论正确的是( )A .x 取1m -时的函数值小于0B .x 取1m -时的函数值大于0C .x 取1m -时的函数值等于0D .x 取1m -时函数值与0的大小关系不确定5.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是( )A .①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB .①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC .①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD .①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ6.如图,平行四边形 ABCD 中, E 为 BC 边上一点,以 AE 为边作正方形AEFG ,若 40BAE ∠=︒,15CEF ∠=︒,则 D ∠的度数是A .65︒B .55︒C .70︒D .75︒7.A 种饮料比B 种饮料单价少1元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设B 种饮料单价为x 元/瓶,那么下面所列方程正确的是( )A .2(x -1)+3x=13B .2(x+1)+3x=13C .2x+3(x+1)=13D .2x+3(x -1)=138.对于命题“如果∠1+∠1=90°,那么∠1≠∠1.”能说明它是假命题的是( )A .∠1=50°,∠1=40°B .∠1=40°,∠1=50°C .∠1=30°,∠1=60°D .∠1=∠1=45°9.如图,点C 、D 是线段AB 上的两点,点D 是线段AC 的中点.若AB=10cm ,BC=4cm ,则线段DB 的长等于( )A .2cmB .3cmC .6cmD .7cm10.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是( ) A .15 B .25 C .35 D .45二、填空题(本题包括8个小题)11.若m+1m =3,则m 2+21m=_____. 12.与直线2y x =平行的直线可以是__________(写出一个即可).度. 14.Rt △ABC 中,AD 为斜边BC 上的高,若, 则AB BC= . 15.若|a|=20160,则a=___________. 16.如果关于x 的一元二次方程22(21)10k x k x -++=有两个不相等的实数根,那么k 的取值范围是__________.17.观察以下一列数:3,54,79,916,1125,…则第20个数是_____. 18.若关于x 的方程x 2﹣8x+m =0有两个相等的实数根,则m =_____.三、解答题(本题包括8个小题)19.(6分)一个不透明的口袋中装有2个红球(记为红球1、红球2)、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.从中任意摸出1个球,恰好摸到红球的概率是 ;先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率. 20.(6分)某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了13,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?21.(6分)如图,PA PB 、分别与O 相切于点A B 、,点M 在PB 上,且//OM AP ,MN AP ⊥,垂足为N . 求证:=OM AN ;若O 的半径=3R ,=9PA ,求OM 的长22.(8分)如图,将边长为m 的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n 的小正方形纸板后,将剩下的三块拼成新的矩形.用含m 或n 的代数式表示拼成矩形的周长;m=7,n=4,求拼成矩形的面积.23.(8分)嘉淇同学利用业余时间进行射击训练,一共射击7次,经过统计,制成如图12所示的折线统计图.这组成绩的众数是;求这组成绩的方差;若嘉淇再射击一次(成绩为整数环),得到这8次射击成绩的中位数恰好就是原来7次成绩的中位数,求第8次的射击成绩的最大环数.24.(10分)如图,在平面直角坐标系中,直线y1=2x﹣2与双曲线y2=kx交于A、C两点,AB⊥OA交x轴于点B,且OA=AB.求双曲线的解析式;求点C的坐标,并直接写出y1<y2时x的取值范围.25.(10分)已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE为直径的⊙O与边CD相切于点D,点B在⊙O上,连接OB.求证:DE=OE;若CD∥AB,求证:BC是⊙O的切线;在(2)的条件下,求证:四边形ABCD是菱形.所需费用相同.每棵枣树苗的进价比每棵柏树苗的进价的2倍少5元,每棵柏树苗的进价是多少元.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.A【解析】分析:直接利用两船的行驶距离除以速度=时间,得出等式求出答案.详解:设甲、乙两船在静水中的速度均为xkm/h ,则求两船在静水中的速度可列方程为:1806x +=1206x -. 故选A .点睛:此题主要考查了由实际问题抽象出分式方程,正确表示出行驶的时间和速度是解题关键. 2.D【解析】【分析】根据菱形的性质得出BO 、CO 的长,在RT △BOC 中求出BC ,利用菱形面积等于对角线乘积的一半,也等于BC×AE ,可得出AE 的长度.【详解】∵四边形ABCD 是菱形,∴CO=12AC=3,BO=12BD=,AO ⊥BO ,∴BC 5==. ∴ABCD 11S BD AC 682422=⋅=⨯⨯=菱形. 又∵ABCD S BC AE =⋅菱形,∴BC·AE=24, 即()24AE cm 5=. 故选D .点睛:此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分.3.D分析:先根据多边形的内角和公式(n﹣2)•180°求出正五边形的每一个内角的度数,再延长五边形的两边相交于一点,并根据四边形的内角和求出这个角的度数,然后根据周角等于360°求出完成这一圆环需要的正五边形的个数,然后减去3即可得解.详解:∵五边形的内角和为(5﹣2)•180°=540°,∴正五边形的每一个内角为540°÷5=18°,如图,延长正五边形的两边相交于点O,则∠1=360°﹣18°×3=360°﹣324°=36°,360°÷36°=1.∵已经有3个五边形,∴1﹣3=7,即完成这一圆环还需7个五边形.故选D.点睛:本题考查了多边形的内角和公式,延长正五边形的两边相交于一点,并求出这个角的度数是解题的关键,注意需要减去已有的3个正五边形.4.B【解析】【分析】画出函数图象,利用图象法解决问题即可;【详解】由题意,函数的图象为:∵抛物线的对称轴x=1,设抛物线与x轴交于点A、B,2∴AB<1,∵x取m时,其相应的函数值小于0,∴观察图象可知,x=m-1在点A的左侧,x=m-1时,y>0,本题考查二次函数图象上的点的坐标特征,解题的关键是学会利用函数图象解决问题,体现了数形结合的思想.5.D【解析】【分析】分别利用过直线外一点作这条直线的垂线作法以及线段垂直平分线的作法和过直线上一点作这条直线的垂线、角平分线的作法分别得出符合题意的答案.【详解】Ⅰ、过直线外一点作这条直线的垂线,观察可知图②符合;Ⅱ、作线段的垂直平分线,观察可知图③符合;Ⅲ、过直线上一点作这条直线的垂线,观察可知图④符合;Ⅳ、作角的平分线,观察可知图①符合,所以正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ,故选D.【点睛】本题主要考查了基本作图,正确掌握基本作图方法是解题关键.6.A【解析】分析:首先求出∠AEB,再利用三角形内角和定理求出∠B,最后利用平行四边形的性质得∠D=∠B即可解决问题.详解:∵四边形ABCD是正方形,∴∠AEF=90°,∵∠CEF=15°,∴∠AEB=180°-90°-15°=75°,∵∠B=180°-∠BAE-∠AEB=180°-40°-75°=65°,∵四边形ABCD是平行四边形,∴∠D=∠B=65°故选A.点睛:本题考查正方形的性质、平行四边形的性质、三角形内角和定理等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型.7.A【解析】【分析】要列方程,首先要根据题意找出题中存在的等量关系,由题意可得到:买A饮料的钱+买B饮料的钱=总印设B种饮料单价为x元/瓶,则A种饮料单价为(x-1)元/瓶,根据小峰买了2瓶A种饮料和3瓶B种饮料,一共花了1元,可得方程为:2(x-1)+3x=1.故选A.【点睛】列方程题的关键是找出题中存在的等量关系,此题的等量关系为买A中饮料的钱+买B中饮料的钱=一共花的钱1元.8.D【解析】【分析】能说明是假命题的反例就是能满足已知条件,但不满足结论的例子.【详解】“如果∠1+∠1=90°,那么∠1≠∠1.”能说明它是假命题为∠1=∠1=45°.故选:D.【点睛】考查了命题与定理的知识,理解能说明它是假命题的反例的含义是解决本题的关键.9.D【解析】【分析】先求AC,再根据点D是线段AC的中点,求出CD,再求BD.【详解】因为,AB=10cm,BC=4cm,所以,AC=AB-BC=10-4=6(cm)因为,点D是线段AC的中点,所以,CD=3cm,所以,BD=BC+CD=3+4=7(cm)故选D【点睛】本题考核知识点:线段的中点,和差.解题关键点:利用线段的中点求出线段长度.10.B【解析】试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,从0,﹣1,﹣2,1,3中任抽一张,那么抽到负数的概率是2 5 .故选B.二、填空题(本题包括8个小题)11.7【解析】分析:把已知等式两边平方,利用完全平方公式化简,即可求出答案.详解:把m+1m =3两边平方得:(m+1m )2=m 2+21m +2=9, 则m 2+21m=7, 故答案为:7点睛:此题考查了分式的混合运算,以及完全平方公式,熟练掌握运算法则及公式是解本题的关键. 12.y=-2x+5(答案不唯一)【解析】【分析】根据两条直线平行的条件:k 相等,b 不相等解答即可.【详解】解:如y=2x+1(只要k=2,b≠0即可,答案不唯一).故答案为y=2x+1.(提示:满足y 2x b =+的形式,且b 0≠)【点睛】本题考查了两条直线相交或平行问题.直线y=kx+b ,(k≠0,且k ,b 为常数),当k 相同,且b 不相等,图象平行;当k 不同,且b 相等,图象相交;当k ,b 都相同时,两条直线重合.13.1.【解析】【分析】由PA 、PB 是圆O 的切线,根据切线长定理得到PA=PB ,即三角形APB 为等腰三角形,由顶角的度数,利用三角形的内角和定理求出底角的度数,再由AP 为圆O 的切线,得到OA 与AP 垂直,根据垂直的定义得到∠OAP 为直角,再由∠OAP-∠PAB 即可求出∠BAC 的度数【详解】∵PA ,PB 是⊙O 是切线,∴PA=PB.又∵∠P=46°,∴∠PAB=∠PBA=00018046=672-. 又∵PA 是⊙O 是切线,AO 为半径,∴∠BAC=∠OAP ﹣∠PAB=90°﹣67°=1°.故答案为:1【点睛】此题考查了切线的性质,切线长定理,等腰三角形的性质,以及三角形的内角和定理,熟练掌握定理及性质是解本题的关键.14.12【解析】【分析】利用直角三角形的性质,判定三角形相似,进一步利用相似三角形的面积比等于相似比的性质解决问题.【详解】如图,∵∠CAB=90°,且AD ⊥BC ,∴∠ADB=90°,∴∠CAB=∠ADB ,且∠B=∠B ,∴△CAB ∽△ADB ,∴(AB :BC )1=△ADB :△CAB ,又∵S △ABC =4S △ABD ,则S △ABD :S △ABC =1:4,∴AB :BC=1:1.15.±1【解析】试题分析:根据零指数幂的性质(01(0)a a =≠),可知|a|=1,座椅可知a=±1.16.k >-14且k≠1 【解析】由题意知,k≠1,方程有两个不相等的实数根,所以△>1,△=b 2-4ac=(2k+1)2-4k 2=4k+1>1.又∵方程是一元二次方程,∴k≠1,∴k >-1/4 且k≠1.【解析】 【分析】观察已知数列得到一般性规律,写出第20个数即可. 【详解】解:观察数列得:第n 个数为221n n ,则第20个数是41400. 故答案为41400. 【点睛】本题考查了规律型:数字的变化类,弄清题中的规律是解答本题的关键. 18.1 【解析】 【分析】根据判别式的意义得到△=(﹣8)2﹣4m =0,然后解关于m 的方程即可. 【详解】△=(﹣8)2﹣4m =0, 解得m =1, 故答案为:1. 【点睛】本题考查了根的判别式:一元二次方程ax 2+bx+c =0(a≠0)的根与△=b 2﹣4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根. 三、解答题(本题包括8个小题) 19.(1)12(2)16【解析】试题分析:(1)因为总共有4个球,红球有2个,因此可直接求得红球的概率;(2)根据题意,列表表示小球摸出的情况,然后找到共12种可能,而两次都是红球的情况有2种,因此可求概率.试题解析:解:(1)12. (2)用表格列出所有可能的结果:由表格可知,共有12种可能出现的结果,并且它们都是等可能的,其中“两次都摸到红球”有2种可能.∴P(两次都摸到红球)=212=16.考点:概率统计20.软件升级后每小时生产1个零件.【解析】分析:设软件升级前每小时生产x个零件,则软件升级后每小时生产(1+13)x个零件,根据工作时间=工作总量÷工作效率结合软件升级后节省的时间,即可得出关于x的分式方程,解之经检验后即可得出结论.详解:设软件升级前每小时生产x个零件,则软件升级后每小时生产(1+13)x个零件,根据题意得:240240402016060(1)3x x-=++,解得:x=60,经检验,x=60是原方程的解,且符合题意,∴(1+13)x=1.答:软件升级后每小时生产1个零件.点睛:本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.21.(1)见解析(2)5【解析】【详解】解:(1)证明:如图,连接OA,则OA AP⊥.∵MN AP ⊥, ∴//MN OA . ∵//OM AP ,∴四边形ANMO 是平行四边形. ∴=OM AN .(2)连接OB ,则OB BP ⊥. ∵=OA MN ,=OA OB ,//OM AP , ∴=OB MN ,=OMB NPM ∠∠. ∴Rt OBM Rt MNP ∆≅∆. ∴=OM MP .设=OM x ,则=9-NP x .在Rt MNP ∆中,有()222=3+9-x x . ∴=5x .即=5OM .22.(1)矩形的周长为4m ;(2)矩形的面积为1. 【解析】 【分析】(1)根据题意和矩形的周长公式列出代数式解答即可.(2)根据题意列出矩形的面积,然后把m=7,n=4代入进行计算即可求得. 【详解】(1)矩形的长为:m ﹣n , 矩形的宽为:m+n ,矩形的周长为:2[(m-n)+(m+n)]=4m ;(2)矩形的面积为S=(m+n )(m ﹣n )=m 2-n 2, 当m=7,n=4时,S=72-42=1. 【点睛】本题考查了矩形的周长与面积、列代数式问题、平方差公式等,解题的关键是根据题意和矩形的性质列出代数式解答. 23.(1)10;(2)87;(3)9环【解析】 【分析】(1)根据众数的定义,一组数据中出现次数最多的数,结合统计图得到答案. (2)先求这组成绩的平均数,再求这组成绩的方差;(3)先求原来7次成绩的中位数,再求第8次的射击成绩的最大环数. 【详解】解:(1)在这7次射击中,10环出现的次数最多,故这组成绩的众数是10; (2)嘉淇射击成绩的平均数为:()1107101098997++++++=, 方差为:()()()()22221[109791091097-+-+-+- ()()()2228998999]7+-+-+-=. (3)原来7次成绩为7 8 9 9 10 10 10, 原来7次成绩的中位数为9,当第8次射击成绩为10时,得到8次成绩的中位数为9.5, 当第8次射击成绩小于10时,得到8次成绩的中位数均为9, 因此第8次的射击成绩的最大环数为9环. 【点睛】本题主要考查了折线统计图和众数、中位数、方差等知识.掌握众数、中位数、方差以及平均数的定义是解题的关键. 24.(1)24y x=;(1)C (﹣1,﹣4),x 的取值范围是x <﹣1或0<x <1. 【解析】【分析】(1)作高线AC ,根据等腰直角三角形的性质和点A 的坐标的特点得:x=1x ﹣1,可得A 的坐标,从而得双曲线的解析式;(1)联立一次函数和反比例函数解析式得方程组,解方程组可得点C 的坐标,根据图象可得结论.【详解】(1)∵点A 在直线y 1=1x ﹣1上,∴设A (x ,1x ﹣1), 过A 作AC ⊥OB 于C , ∵AB ⊥OA ,且OA=AB , ∴OC=BC , ∴AC=12OB=OC , ∴x=1x ﹣1, x=1, ∴A (1,1),∴k=1×1=4,∴24yx =;(1)∵224y xyx=-⎧⎪⎨=⎪⎩,解得:1122xy=⎧⎨=⎩,2214xy=-⎧⎨=-⎩,∴C(﹣1,﹣4),由图象得:y1<y1时x的取值范围是x<﹣1或0<x<1.【点睛】本题考查了反比例函数和一次函数的综合;熟练掌握通过求点的坐标进一步求函数解析式的方法;通过观察图象,从交点看起,函数图象在上方的函数值大.25.(1)证明见解析;(2)证明见解析;(3)证明见解析.【解析】【分析】(1)先判断出∠2+∠3=90°,再判断出∠1=∠2即可得出结论;(2)根据等腰三角形的性质得到∠3=∠COD=∠DEO=60°,根据平行线的性质得到∠4=∠1,根据全等三角形的性质得到∠CBO=∠CDO=90°,于是得到结论;(3)先判断出△ABO≌△CDE得出AB=CD,即可判断出四边形ABCD是平行四边形,最后判断出CD=AD 即可.【详解】(1)如图,连接OD,∵CD是⊙O的切线,∴OD⊥CD,∴∠2+∠3=∠1+∠COD=90°,∵DE=EC,∴∠1=∠2, ∴∠3=∠COD , ∴DE =OE ; (2)∵OD =OE , ∴OD =DE =OE ,∴∠3=∠COD =∠DEO =60°, ∴∠2=∠1=30°, ∵AB ∥CD , ∴∠4=∠1,∴∠1=∠2=∠4=∠OBA =30°, ∴∠BOC =∠DOC =60°,在△CDO 与△CBO 中,{OD OBDOC BOC OC OC=∠=∠=,∴△CDO ≌△CBO (SAS ), ∴∠CBO =∠CDO =90°, ∴OB ⊥BC , ∴BC 是⊙O 的切线;(3)∵OA =OB =OE ,OE =DE =EC , ∴OA =OB =DE =EC , ∵AB ∥CD , ∴∠4=∠1,∴∠1=∠2=∠4=∠OBA =30°, ∴△ABO ≌△CDE (AAS ), ∴AB =CD ,∴四边形ABCD 是平行四边形, ∴∠DAE =12∠DOE =30°, ∴∠1=∠DAE , ∴CD =AD , ∴▱ABCD 是菱形. 【点睛】此题主要考查了切线的性质,同角的余角相等,等腰三角形的性质,平行四边形的判定和性质,菱形的判定,判断出△ABO ≌△CDE 是解本题的关键.26.15元.【解析】【分析】首先设每棵柏树苗的进价是x元,则每棵枣树苗的进价是(2x-5)元,根据题意列出一元一次方程进行求解. 【详解】解:设每棵柏树苗的进价是x元,则每棵枣树苗的进价是(2x-5)元.x x ,解得:x=15根据题意,列方程得:200=120(25)答:每棵柏树苗的进价是15元.【点睛】此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.把a•1a-的根号外的a移到根号内得()A.a B.﹣a C.﹣a-D.a-2.9的值是()A.±3 B.3 C.9 D.813.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(1,2)且与x轴交点的横坐标分别为x1,x2,其中﹣1<x1<0,1<x2<2,下列结论:4a+2b+c<0,2a+b<0,b2+8a>4ac,a<﹣1,其中结论正确的有()A.1个B.2个C.3个D.4个4.一、单选题在某校“我的中国梦”演讲比赛中,有7名学生参加了决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这7名学生成绩的()A.平均数B.众数C.中位数D.方差5.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC 的度数是()A.55°B.60°C.65°D.70°6.用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是()A2cm B.2C.2cm D.4cm7.化简221x -÷11x -的结果是( ) A .21x + B .2xC .21x - D .2(x +1)8.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( ) A .2×1000(26﹣x )=800x B .1000(13﹣x )=800x C .1000(26﹣x )=2×800xD .1000(26﹣x )=800x9.抛物线y=ax 2﹣4ax+4a ﹣1与x 轴交于A ,B 两点,C (x 1,m )和D (x 2,n )也是抛物线上的点,且x 1<2<x 2,x 1+x 2<4,则下列判断正确的是( ) A .m <nB .m≤nC .m >nD .m≥n10.如图,经过测量,C 地在A 地北偏东46°方向上,同时C 地在B 地北偏西63°方向上,则∠C 的度数为( )A .99°B .109°C .119°D .129°二、填空题(本题包括8个小题)11.如图,小军、小珠之间的距离为2.7 m ,他们在同一盏路灯下的影长分别为1.8 m ,1.5 m ,已知小军、小珠的身高分别为1.8 m ,1.5 m ,则路灯的高为____m.12.关于x 的一元二次方程(k-1)x 2+6x+k 2-k=0的一个根是0,则k 的值是______. 13.因式分解:2312x -=____________. 14.一个扇形的弧长是83π,它的面积是163π,这个扇形的圆心角度数是_____. 15.让我们轻松一下,做一个数字游戏:第一步:取一个自然数15n =,计算211n +得1a ;第二步:算出1a 的各位数字之和得2n ,计算221n +得2a ;第三步:算出2a 的各位数字之和得3n ,再计算231n +得3a ;依此类推,则2019a =____________16.已知A、B两地之间的距离为20千米,甲步行,乙骑车,两人沿着相同路线,由A地到B地匀速前行,甲、乙行进的路程s与x(小时)的函数图象如图所示.(1)乙比甲晚出发___小时;(2)在整个运动过程中,甲、乙两人之间的距离随x的增大而增大时,x的取值范围是___.17.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半径为2,圆心角为60°,则图中阴影部分的面积是_____.18.若一个圆锥的底面圆的周长是5 cm,母线长是6cm,则该圆锥的侧面展开图的圆心角度数是_____.三、解答题(本题包括8个小题)19.(6分)某运动品牌对第一季度A、B两款运动鞋的销售情况进行统计,两款运动鞋的销售量及总销售额如图6所示.1月份B款运动鞋的销售量是A款的,则1月份B款运动鞋销售了多少双?第一季度这两款运动鞋的销售单价保持不变,求3月份的总销售额(销售额=销售单价×销售量);结合第一季度的销售情况,请你对这两款运动鞋的进货、销售等方面提出一条建议.20.(6分)由于雾霾天气趋于严重,我市某电器商城根据民众健康需求,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.完成下列表格,并直接写出月销售量y(台)与售价x(元/台)之间的函数关系式及售价x的取值范围;售价(元/台)月销售量(台)400 200250x(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?21.(6分)如图,已知一次函数y1=kx+b(k≠0)的图象与反比例函数的图象交于A、B两点,与坐标轴交于M、N两点.且点A的横坐标和点B的纵坐标都是﹣1.求一次函数的解析式;求△AOB的面积;观察图象,直接写出y1>y1时x的取值范围.22.(8分)列方程解应用题八年级学生去距学校10 km的博物馆参观,一部分学生骑自行车先走,过了20 min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.23.(8分)小明和小亮玩一个游戏:取三张大小、质地都相同的卡片,上面分别标有数字2、3、4(背面完全相同),现将标有数字的一面朝下.小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和.请你用画树状图或列表的方法,求出这两数和为6的概率.如果和为奇数,则小明胜;若和为偶数,则小亮胜.你认为这个游戏规则对双方公平吗?做出判断,并说明理由.24.(10分)某校计划购买篮球、排球共20个.购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同.篮球和排球的单价各是多少元?若购买篮球不少于8个,所需费用总额不超过800元.请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案.25.(10分)为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的32倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.甲、乙两工程队每天能改造道路的长度分别是多少米?若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?26.(12分)在“传箴言”活动中,某班团支部对该班全体团员在一个月内所发箴言条数的情况进行了统计,并制成了如图所示的两幅不完整的统计图:求该班团员在这一个月内所发箴言的平均条数是多少?并将该条形统计图补充完整;如果发了3条箴言的同学中有两位男同学,发了4条箴言的同学中有三位女同学.现要从发了3条箴言和4条箴言的同学中分别选出一位参加该校团委组织的“箴言”活动总结会,请你用列表法或树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.C【解析】【分析】根据二次根式有意义的条件可得a<0,原式变形为﹣(﹣a )1a-21()a a ⎛⎫-⋅- ⎪⎝⎭【详解】解:∵﹣1a >0, ∴a <0,∴原式=﹣(﹣a )1a- =21()a a ⎛⎫--⋅- ⎪⎝⎭a -.故选C .【点睛】本题考查的是二次根式的化简,主要是判断根号有意义的条件,然后确定值的范围再进行化简,是常考题型.2.C【解析】试题解析:∵3= ∴3故选C.3.D【解析】由抛物线的开口向下知a<0,与y 轴的交点为在y 轴的正半轴上,得c>0,对称轴为x=2b a- <1,∵a<0,∴2a+b<0, 而抛物线与x 轴有两个交点,∴2b −4ac>0,当x=2时,y=4a+2b+c<0,当x=1时,a+b+c=2. ∵244ac b a- >2,∴4ac−2b <8a ,∴2b +8a>4ac , ∵①a+b+c=2,则2a+2b+2c=4,②4a+2b+c<0,③a−b+c<0.由①,③得到2a+2c<2,由①,②得到2a−c<−4,4a−2c<−8,上面两个相加得到6a<−6,∴a<−1.故选D.点睛:本题考查了二次函数图象与系数的关系,二次函数2(0)y ax bx c a =++≠ 中,a 的符号由抛物线的开口方向决定;c 的符号由抛物线与y 轴交点的位置决定;b 的符号由对称轴位置与a 的符号决定;抛物线与x 轴的交点个数决定根的判别式的符号,注意二次函数图象上特殊点的特点.4.C【解析】【分析】由于其中一名学生想要知道自己能否进入前3名,共有7名选手参加,故应根据中位数的意义分析.【详解】由于总共有7个人,且他们的成绩各不相同,第4的成绩是中位数,要判断是否进入前3名,故应知道中位数的多少.故选C .【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.5.C【解析】【分析】根据旋转的性质和三角形内角和解答即可.【详解】∵将△ABC绕点C顺时针旋转90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°-20°=70°,∵点A,D,E在同一条直线上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故选C.【点睛】此题考查旋转的性质,关键是根据旋转的性质和三角形内角和解答.6.C【解析】【分析】利用扇形的弧长公式可得扇形的弧长;让扇形的弧长除以2π即为圆锥的底面半径,利用勾股定理可得圆锥形筒的高.【详解】L=1206180π⨯=4π(cm);圆锥的底面半径为4π÷2π=2(cm),∴=cm).故选C.【点睛】此题考查了圆锥的计算,用到的知识点为:圆锥侧面展开图的弧长=2n r 180π;圆锥的底面周长等于侧面展开图的弧长;圆锥的底面半径,母线长,高组成以母线长为斜边的直角三角形.7.A【解析】【分析】原式利用除法法则变形,约分即可得到结果.【详解】原式=211x x +-()()•(x ﹣1)=21x +. 故选A .【点睛】本题考查了分式的乘除法,熟练掌握运算法则是解答本题的关键.8.C【解析】【分析】试题分析:此题等量关系为:2×螺钉总数=螺母总数.据此设未知数列出方程即可【详解】.故选C.解:设安排x 名工人生产螺钉,则(26-x )人生产螺母,由题意得1000(26-x )=2×800x ,故C 答案正确,考点:一元一次方程.9.C【解析】分析:将一般式配方成顶点式,得出对称轴方程2x =,根据抛物线2441y ax ax a =-+-与x 轴交于,A B 两点,得出()()244410a a a =--⨯->,求得0a >,距离对称轴越远,函数的值越大,根据121224x x x x <<+<,,判断出它们与对称轴之间的关系即可判定.详解:∵()2244121y ax ax a a x =-+-=--,∴此抛物线对称轴为2x =,∵抛物线2441y ax ax a =-+-与x 轴交于,A B 两点,∴当24410ax ax a -+-=时,()()244410a a a =--⨯->,得0a >,∵121224x x x x <<+<,,。
2020年深圳市中考总复习数学试卷三一、选择题1.2020的相反数是( )A .﹣2020B .2020C .20201D .20201 2.2019年茂名市生产总值约2450亿元,将2450用科学记数法表示为( )A .0.245×104B .2.45×103C .24.5×102D .2.45×10113.如图1是某几何体的三视图,该几何体是( )A .球B .三棱柱C .圆柱D .圆锥4.下列事件中,是必然事件的是( )A .两条线段可以组成一个三角形B .400人中有两个人的生日在同一天C .早上的太阳从西方升起D .打开电视机,它正在播放动画片5.如图2,直线a 、b 被直线c 所截,若a ∥b ,∠1=60°,那么∠2的度数为( ) A .120° B .90° C .60° D .30°6.下列各式计算正确的是( )A .a 2•a 3=a 6B .(a 2)3=a 5C .a 2+3a 2=4a 4D .a 4÷a 2=a 27.下列说法正确的是( )A .长方体的截面一定是长方形B .了解一批日光灯的使用寿命适合采用的调查方式是普查C .一个圆形和它平移后所得的圆形全等D .多边形的外角和不一定都等于360°8.不等式组的解集在数轴上表示为( ) A . B . C . D .9.如图,A 、B 、C 是⊙O 上的三点,∠B=75°,则∠AOC 的度数是( )A .150°B .140°C .130°D .120°10.我国古代数学名著《孙子算经》中记载了一道题,大意是:求100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x 匹,小马有y 匹,那么可列方程组为( )A .B .C .D .11.如图,在ABC R ∆t 中,︒=∠90C ,AC=BC ,AB=8,点D 为AB 中点,若直角MDN 绕点D 旋转,分别交AC 于点E ,交BC 于点F ,则下列说法正确的是( )①AE=CF;②EC+CF=24;③DE=DF; ④若ECF ∆的面积为一个定值,则EF 的长也是一个定值。
2020年广东省深圳市中考数学试卷一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3.00分)6的相反数是()A.﹣6 B.C.D.62.(3.00分)260000000用科学记数法表示为()A.0.26×109B.2.6×108C.2.6×109D.26×1073.(3.00分)图中立体图形的主视图是()A.B. C.D.4.(3.00分)观察下列图形,是中心对称图形的是()A. B.C.D.5.(3.00分)下列数据:75,80,85,85,85,则这组数据的众数和极差是()A.85,10 B.85,5 C.80,85 D.80,106.(3.00分)下列运算正确的是()A.a2•a3=a6 B.3a﹣a=2a C.a8÷a4=a2D.7.(3.00分)把函数y=x向上平移3个单位,下列在该平移后的直线上的点是()A.(2,2) B.(2,3) C.(2,4) D.(2,5)8.(3.00分)如图,直线a,b被c,d所截,且a∥b,则下列结论中正确的是()A.∠1=∠2 B.∠3=∠4 C.∠2+∠4=180°D.∠1+∠4=180°9.(3.00分)某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x个,小房间有y个.下列方程正确的是()A. B.C.D.10.(3.00分)如图,一把直尺,60°的直角三角板和光盘如图摆放,A为60°角与直尺交点,AB=3,则光盘的直径是()A.3 B.C.6 D.11.(3.00分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确是()A.abc>0B.2a+b<0C.3a+c<0D.ax2+bx+c﹣3=0有两个不相等的实数根12.(3.00分)如图,A、B是函数y=上两点,P为一动点,作PB∥y轴,PA ∥x轴,下列说法正确的是()①△AOP≌△BOP;②S△AOP =S△BOP;③若OA=OB,则OP平分∠AOB;④若S△BOP=4,则S△ABP=16A.①③B.②③C.②④D.③④二、填空题(每题3分,满分12分,将答案填在答题纸上)13.(3.00分)分解因式:a2﹣9=.14.(3.00分)一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率:.15.(3.00分)如图,四边形ACDF是正方形,∠CEA和∠ABF都是直角且点E,A,B三点共线,AB=4,则阴影部分的面积是.16.(3.00分)在Rt△ABC中,∠C=90°,AD平分∠CAB,BE平分∠ABC,AD、BE相交于点F,且AF=4,EF=,则AC=.三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(5.00分)计算:()﹣1﹣2sin45°+|﹣|+(2020﹣π)0.18.(6.00分)先化简,再求值:,其中x=2.19.(7.00分)某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:频数频率体育400.4科技25a艺术b0.15其它200.2请根据上图完成下面题目:(1)总人数为人,a=,b=.(2)请你补全条形统计图.(3)若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少?20.(8.00分)已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△CFE中,CF=6,CE=12,∠FCE=45°,以点C为圆心,以任意长为半径作AD,再分别以点A 和点D为圆心,大于AD长为半径作弧,交EF于点B,AB∥CD.(1)求证:四边形ACDB为△FEC的亲密菱形;(2)求四边形ACDB的面积.21.(8.00分)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?22.(9.00分)如图在⊙O中,BC=2,AB=AC,点D为AC上的动点,且cosB=.(1)求AB的长度;(2)求AD•AE的值;(3)过A点作AH⊥BD,求证:BH=CD+DH.23.(9.00分)已知顶点为A抛物线经过点,点.(1)求抛物线的解析式;(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;(3)如图2,点Q是折线A﹣B﹣C上一点,过点Q作QN∥y轴,过点E作EN ∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标.2020年广东省深圳市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3.00分)6的相反数是()A.﹣6 B.C.D.6【分析】直接利用相反数的定义进而分析得出答案.【解答】解:6的相反数是:﹣6.故选:A.【点评】此题主要考查了相反数的定义,正确把握相关定义是解题关键.2.(3.00分)260000000用科学记数法表示为()A.0.26×109B.2.6×108C.2.6×109D.26×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:260000000用科学记数法表示为2.6×108.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3.00分)图中立体图形的主视图是()A.B. C.D.【分析】根据主视图是从正面看的图形解答.【解答】解:从正面看,共有两层,下面三个小正方体,上面有两个小正方体,在右边两个.故选:B.【点评】本题考查了三视图,关键是根据学生的思考能力和对几何体三种视图的空间想象能力进行解答.4.(3.00分)观察下列图形,是中心对称图形的是()A. B.C.D.【分析】根据中心对称图形的概念对各选项分析判断即可得解【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项正确;D、是中心对称图形,故本选项错误.故选:D.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.(3.00分)下列数据:75,80,85,85,85,则这组数据的众数和极差是()A.85,10 B.85,5 C.80,85 D.80,10【分析】根据一组数据中出现次数最多的数据叫做众数,极差是指一组数据中最大数据与最小数据的差进行计算即可.【解答】解:众数为85,极差:85﹣75=10,故选:A.【点评】此题主要考查了众数和极差,关键是掌握众数定义,掌握极差的算法.6.(3.00分)下列运算正确的是()A.a2•a3=a6 B.3a﹣a=2a C.a8÷a4=a2D.【分析】直接利用二次根式加减运算法则以及同底数幂的乘除运算法则、合并同类项法则分别计算得出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、3a﹣a=2a,正确;C、a8÷a4=a4,故此选项错误;D、+无法计算,故此选项错误.故选:B.【点评】此题主要考查了二次根式加减运算以及同底数幂的乘除运算、合并同类项,正确掌握运算法则是解题关键.7.(3.00分)把函数y=x向上平移3个单位,下列在该平移后的直线上的点是()A.(2,2) B.(2,3) C.(2,4) D.(2,5)【分析】根据平移的性质得出解析式,进而解答即可.【解答】解:∵该直线向上平移3的单位,∴平移后所得直线的解析式为:y=x+3;把x=2代入解析式y=x+3=5,故选:D.【点评】本题考查的是一次函数的图象与几何变换,熟知一次函数图象平移的法则是解答此题的关键.8.(3.00分)如图,直线a,b被c,d所截,且a∥b,则下列结论中正确的是()A.∠1=∠2 B.∠3=∠4 C.∠2+∠4=180°D.∠1+∠4=180°【分析】依据两直线平行,同位角相等,即可得到正确结论.【解答】解:∵直线a,b被c,d所截,且a∥b,∴∠3=∠4,故选:B.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.9.(3.00分)某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x个,小房间有y个.下列方程正确的是()A. B.C.D.【分析】根据题意可得等量关系:①大房间数+小房间数=70;②大房间住的学生数+小房间住的学生数=480,根据等量关系列出方程组即可.【解答】解:设大房间有x个,小房间有y个,由题意得:,故选:A.【点评】此题主要考查了由实际问题抽象出二元二一方程组,关键是正确理解题意,找出题目中的等量关系.10.(3.00分)如图,一把直尺,60°的直角三角板和光盘如图摆放,A为60°角与直尺交点,AB=3,则光盘的直径是()A.3 B.C.6 D.【分析】设三角板与圆的切点为C,连接OA、OB,由切线长定理得出AB=AC=3、∠OAB=60°,根据OB=ABtan∠OAB可得答案.【解答】解:设三角板与圆的切点为C,连接OA、OB,由切线长定理知AB=AC=3,OA平分∠BAC,∴∠OAB=60°,在Rt△ABO中,OB=ABtan∠OAB=3,∴光盘的直径为6,故选:D.【点评】本题主要考查切线的性质,解题的关键是掌握切线长定理和解直角三角形的应用.11.(3.00分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确是()A.abc>0B.2a+b<0C.3a+c<0D.ax2+bx+c﹣3=0有两个不相等的实数根【分析】根据抛物线开口方向得a<0,由抛物线对称轴为直线x=﹣,得到b >0,由抛物线与y轴的交点位置得到c>0,进而解答即可.【解答】解:∵抛物线开口方向得a<0,由抛物线对称轴为直线x=﹣,得到b>0,由抛物线与y轴的交点位置得到c>0,A、abc<0,错误;B、2a+b>0,错误;C、3a+c<0,正确;D、ax2+bx+c﹣3=0无实数根,错误;故选:C.【点评】本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线开口向上;当a<0时,抛物线开口向下;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab <0),对称轴在y轴右侧;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.12.(3.00分)如图,A、B是函数y=上两点,P为一动点,作PB∥y轴,PA ∥x轴,下列说法正确的是()①△AOP≌△BOP;②S△AOP =S△BOP;③若OA=OB,则OP平分∠AOB;④若S△BOP=4,则S△ABP=16A.①③B.②③C.②④D.③④【分析】由点P是动点,进而判断出①错误,设出点P的坐标,进而得出AP,BP,利用三角形面积公式计算即可判断出②正确,利用角平分线定理的逆定理判断出③正确,先求出矩形OMPN=4,进而得出mn=4,最后用三角形的面积公式即可得出结论.【解答】解:∵点P是动点,∴BP与AP不一定相等,∴△BOP与△AOP不一定全等,故①不正确;设P(m,n),∴BP∥y轴,∴B(m,),∴BP=|﹣n|,∴S△BOP=|﹣n|×m=|12﹣mn|∵PA∥x轴,∴A(,n),∴AP=|﹣m|,∴S△AOP=|﹣m|×n=|12﹣mn|,∴S△AOP =S△BOP,故②正确;如图,过点P作PF⊥OA于F,PE⊥OB于E,∴S△AOP =OA×PF,S△BOP=OB×PE,∵S△AOP =S△BOP,∴OB×PE=OA×PE,∵OA=OB,∴PE=PF,∵PE⊥OB,PF⊥OA,∴OP是∠AOB的平分线,故③正确;如图1,延长BP交x轴于N,延长AP交y轴于M,∴AM⊥y轴,BN⊥x轴,∴四边形OMPN 是矩形, ∵点A ,B 在双曲线y=上,∴S △AMO =S △BNO =6, ∵S △BOP =4, ∴S △PMO =S △PNO =2, ∴S 矩形OMPN =4, ∴mn=4, ∴m=, ∴BP=|﹣n |=|3n ﹣n |=2|n |,AP=|﹣m |=,∴S △APB=AP ×BP=×2|n |×=8,故④错误;∴正确的有②③, 故选:B .【点评】此题是反比例函数综合题,主要考查了反比例函数的性质,三角形面积公式,角平分线定理逆定理,矩形的判定和性质,正确作出辅助线是解本题的关键.二、填空题(每题3分,满分12分,将答案填在答题纸上)13.(3.00分)分解因式:a2﹣9=(a+3)(a﹣3).【分析】直接利用平方差公式分解因式进而得出答案.【解答】解:a2﹣9=(a+3)(a﹣3).故答案为:(a+3)(a﹣3).【点评】此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.14.(3.00分)一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率:.【分析】根据题意可知正六面体的骰子六个面三个奇数、三个偶数,从而可以求得相应的概率.【解答】解:个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率为:,故答案为:.【点评】本题考查概率公式,解答本题的关键是明确题意,求出相应的概率.15.(3.00分)如图,四边形ACDF是正方形,∠CEA和∠ABF都是直角且点E,A,B三点共线,AB=4,则阴影部分的面积是8.【分析】根据正方形的性质得到AC=AF,∠CAF=90°,证明△CAE≌△AFB,根据全等三角形的性质得到EC=AB=4,根据三角形的面积公式计算即可.【解答】解:∵四边形ACDF是正方形,∴AC=AF,∠CAF=90°,∴∠EAC+∠FAB=90°,∵∠ABF=90°,∴∠AFB+∠FAB=90°,∴∠EAC=∠AFB,在△CAE和△AFB中,,∴△CAE≌△AFB,∴EC=AB=4,∴阴影部分的面积=×AB×CE=8,故答案为:8.【点评】本题考查的是正方形的性质、全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.16.(3.00分)在Rt△ABC中,∠C=90°,AD平分∠CAB,BE平分∠ABC,AD、BE相交于点F,且AF=4,EF=,则AC=.【分析】先求出∠EFG=45°,进而利用勾股定理即可得出FG=EG=1,进而求出AE,最后判断出△AEF∽△AFC,即可得出结论.【解答】解:如图,∵AD,BE是分别是∠BAC和∠ABC的平分线,∴∠1=∠2,∠3=∠4,∵∠ACB=90°,∴2(∠2+∠4)=90°,∴∠2+∠4=45°,∴∠EFG=∠2+∠4=45°,过点E作EG⊥AD于G,在Rt△EFG中,EF=,∴FG=EG=1,∵AF=4,∴AG=AF﹣FG=3,根据勾股定理得,AE==,连接CF,∵AD平分∠CAB,BE平分∠ABC,∴CF是∠ACB的平分线,∴∠ACF=45°=∠AFE,∵∠CAF=∠FAE,∴△AEF∽△AFC,∴,∴AC===,故答案为.【点评】此题主要考查了角平分线定义,勾股定理,相似三角形的判定和性质,求出AE是解本题的关键.三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(5.00分)计算:()﹣1﹣2sin45°+|﹣|+(2020﹣π)0.【分析】直接利用特殊角的三角函数值以及零指数幂的性质和负指数幂的性质分别化简得出答案.【解答】解:原式=2﹣2×++1=3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(6.00分)先化简,再求值:,其中x=2.【分析】根据分式的运算法则即可求出答案,【解答】解:原式=把x=2代入得:原式=【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.19.(7.00分)某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:频数频率体育400.4科技25a艺术b0.15其它200.2请根据上图完成下面题目:(1)总人数为100人,a=0.25,b=15.(2)请你补全条形统计图.(3)若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少?【分析】(1)根据“频率=频数÷总数”求解可得;(2)根据频数分布表即可补全条形图;(3)用总人数乘以样本中“艺术”类频率即可得.【解答】解:(1)总人数为40÷0.4=100人,a=25÷100=0.25、b=100×0.15=15,故答案为:100、0.25、15;(2)补全条形图如下:(3)估算全校喜欢艺术类学生的人数有600×0.15=90人.【点评】此题主要考查了条形统计图的应用以及利用样本估计总体,根据题意求出样本总人数是解题关键.20.(8.00分)已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△CFE中,CF=6,CE=12,∠FCE=45°,以点C为圆心,以任意长为半径作AD,再分别以点A 和点D为圆心,大于AD长为半径作弧,交EF于点B,AB∥CD.(1)求证:四边形ACDB为△FEC的亲密菱形;(2)求四边形ACDB的面积.【分析】(1)根据折叠和已知得出AC=CD,AB=DB,∠ACB=∠DCB,求出AC=AB,根据菱形的判定得出即可;(2)根据相似三角形的性质得出比例式,求出菱形的边长和高,根据菱形的面积公式求出即可.【解答】(1)证明:∵由已知得:AC=CD,AB=DB,由已知尺规作图痕迹得:BC是∠FCE的角平分线,∴∠ACB=∠DCB,又∵AB∥CD,∴∠ABC=∠DCB,∴∠ACB=∠ABC,∴AC=AB,又∵AC=CD,AB=DB,∴AC=CD=DB=BA∴四边形ACDB是菱形,∵∠ACD与△FCE中的∠FCE重合,它的对角∠ABD顶点在EF上,∴四边形ACDB为△FEC的亲密菱形;(2)解:设菱形ACDB的边长为x,∵四边形ABCD是菱形,∴AB∥CE,∴∠FAB=∠FCE,∠FBA=∠E,△EAB∽△FCE则:,即,解得:x=4,过A点作AH⊥CD于H点,∵在Rt△ACH中,∠ACH=45°,∴,∴四边形ACDB的面积为:.【点评】本题考查了菱形的性质和判定,解直角三角形,相似三角形的性质和判定等知识点,能求出四边形ABCD是菱形是解此题的关键.21.(8.00分)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?【分析】(1)设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,根据单价=总价÷单价结合第二批饮料的数量是第一批的3倍,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设销售单价为m元,根据获利不少于1200元,即可得出关于m的一元一次不等式,解之取其最小值即可得出结论.【解答】解:(1)设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,根据题意得:3•=,解得:x=8,经检验,x=8是分式方程的解.答:第一批饮料进货单价为8元.(2)设销售单价为m元,根据题意得:200(m﹣8)+600(m﹣10)≥1200,解得:m≥11.答:销售单价至少为11元.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,列出关于m的一元一次不等式.22.(9.00分)如图在⊙O中,BC=2,AB=AC,点D为AC上的动点,且cosB=.(1)求AB的长度;(2)求AD•AE的值;(3)过A点作AH⊥BD,求证:BH=CD+DH.【分析】(1)作AM垂直于BC,由AB=AC,利用三线合一得到CM等于BC的一半,求出CM的长,再由cosB的值,利用锐角三角函数定义求出AB的长即可;(2)连接DC,由等边对等角得到一对角相等,再由圆内接四边形的性质得到一对角相等,根据一对公共角,得到三角形EAC与三角形CAD相似,由相似得比例求出所求即可;(3)在BD上取一点N,使得BN=CD,利用SAS得到三角形ACD与三角形ABN 全等,由全等三角形对应边相等及等量代换即可得证.【解答】解:(1)作AM⊥BC,∵AB=AC,AM⊥BC,BC=2BM,∴CM=BC=1,∵cosB==,在Rt△AMB中,BM=1,∴AB==;(2)连接DC,∵AB=AC,∴∠ACB=∠ABC,∵四边形ABCD内接于圆O,∴∠ADC+∠ABC=180°,∵∠ACE+∠ACB=180°,∴∠ADC=∠ACE,∵∠CAE公共角,∴△EAC∽△CAD,∴=,∴AD•AE=AC2=10;(3)在BD上取一点N,使得BN=CD,在△ABN和△ACD中,∴△ABN≌△ACD(SAS),∴AN=AD,∵AN=AD,AH⊥BD,∴NH=HD,∵BN=CD,NH=HD,∴BN+NH=CD+HD=BH.【点评】此题属于圆的综合题,涉及的知识有:圆周角定理,圆内接四边形的性质,全等三角形的判定与性质,以及相似三角形的判定与性质,熟练掌握各自的性质是解本题的关键.23.(9.00分)已知顶点为A抛物线经过点,点.(1)求抛物线的解析式;(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;(3)如图2,点Q是折线A﹣B﹣C上一点,过点Q作QN∥y轴,过点E作EN ∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标.【分析】(1)将点B坐标代入解析式求得a的值即可得;(2)由∠OPM=∠MAF知OP∥AF,据此证△OPE∽△FAE得,即OP=FA,设点P(t,﹣2t﹣1),列出关于t的方程解之可得;(3)分点Q在AB上运动、点Q在BC上运动且Q在y轴左侧、点Q在BC上运动且点Q在y轴右侧这三种情况分类讨论即可得.【解答】解:(1)把点代入,解得:a=1,∴抛物线的解析式为:;(2)由知A(,﹣2),设直线AB解析式为:y=kx+b,代入点A,B的坐标,得:,解得:,∴直线AB的解析式为:y=﹣2x﹣1,易求E(0,1),,,若∠OPM=∠MAF,∴OP∥AF,∴△OPE∽△FAE,∴,∴,设点P(t,﹣2t﹣1),则:解得,,由对称性知;当时,也满足∠OPM=∠MAF,∴,都满足条件,∵△POE的面积=,∴△POE的面积为或.(3)若点Q在AB上运动,如图1,设Q(a,﹣2a﹣1),则NE=﹣a、QN=﹣2a,由翻折知QN′=QN=﹣2a、N′E=NE=﹣a,由∠QN′E=∠N=90°易知△QRN′∽△N′SE,∴==,即===2,∴QR=2、ES=,由NE+ES=NS=QR可得﹣a+=2,解得:a=﹣,∴Q(﹣,);若点Q在BC上运动,且Q在y轴左侧,如图2,设NE=a,则N′E=a,易知RN′=2、SN′=1、QN′=QN=3,∴QR=、SE=﹣a,在Rt△SEN′中,(﹣a)2+12=a2,解得:a=,∴Q(﹣,2);若点Q在BC上运动,且点Q在y轴右侧,如图3,设NE=a,则N′E=a,易知RN′=2、SN′=1、QN′=QN=3,∴QR=、SE=﹣a,在Rt△SEN′中,(﹣a)2+12=a2,解得:a=,∴Q(,2).综上,点Q的坐标为(﹣,)或(﹣,2)或(,2).【点评】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、相似三角形的判定与性质、翻折变换的性质及勾股定理等知识点.。
第一部分:2020年深圳市中考数学试卷(1-6) 第二部分:2020年深圳市中考数学试题详解(7-13)一、选择题(每小题3分,共12小题,满分36分) 1. 2020的相反数是( )A.2020C.-2020D.2. 下列图形中既是轴对称图形,也是中心对称图形的是( )A. B. C. D.3. 2020年6月30日,深圳市总工会启动“百万职工消费扶贫采购节”活动,预计撬动扶贫消费额约 150 000 000元。
将150 000 000用科学记数法表示为( )4.下列哪个图形,主视图、左视图和俯视图相同的是()A.圆锥B.圆柱C.三棱柱D.正方体5. 某同学在今年的中考体育测试中选考跳绳。
考前一周,他记录了自己五次跳绳的成绩(次数/分钟):247,253,247,255,263.这五次成绩的平均数...和中位数...分别是()( ) A.253,253 B.255,253C.253,247D.255,2476. 下列运算正确的是( B.C.D.7. 一把直尺与30°的直角三角板如图所示,∠1=40°,则∠2=( ) A.50° B.60°C.70°D.80°300218. 如图,已知AB =AC ,BC =6,山尺规作图痕迹可求出BD =( ) A.2 B.3C.4D.59. 以下说法正确的是( )A.平行四边形的对边相等B.圆周角等于圆心角的一半C.分式方程的解为x =2 D.三角形的一个外角等于两个内角的和10. 如图,为了测量一条河流的宽度,一测量员在河岸边相距200米的P 、Q 两点分别测定对岸一棵树T 的位置,T 在P 的正北方向,且T 在Q 的北偏西70°方向,则河宽(PT 的长)可以表示为() ( ) A.200tan70°米 B.米C.200sin70°米D.米11. 二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列说法错误的是( ) A.B.4ac -b 2<0C.3a +c >0D.ax 2+bx +c =n +1无实数根12. 如图,矩形纸片ABCD 中,AB =6,BC =12.将纸片折叠,使点B 落在边AD的延长线上的点G 处,折痕为EF ,点E 、F 分别在边AD 和边BC 上。
2020年广东省深圳市中考数学试卷和答案解析一、选择题(每小题3分,共12小题,满分36分)1.(3分)2020的相反数是()A.2020B.C.﹣2020D.﹣解析:直接利用相反数的定义得出答案.参考答案:解:2020的相反数是:﹣2020.故选:C.点拨:此题主要考查了相反数,正确把握相反数的定义是解题关键.2.(3分)下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.解析:根据中心对称图形与轴对称图形的概念进行判断即可.参考答案:解:A、不是中心对称图形,不是轴对称图形,故此选项不合题意;B、既是中心对称图形,又是轴对称图形,故此选项符合题意;C、不是中心对称图形,是轴对称图形,故此选项不合题意;D、是中心对称图形,不是轴对称图形,故此选项不合题意;故选:B.点拨:本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)2020年6月30日,深圳市总工会启动“百万职工消费扶贫采购节”活动,预计撬动扶贫消费额约150000000元.将150000000用科学记数法表示为()A.0.15×108B.1.5×107C.15×107D.1.5×108解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.参考答案:解:将150000000用科学记数法表示为1.5×108.故选:D.点拨:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)分别观察下列几何体,其中主视图、左视图和俯视图完全相同的是()A.圆锥B.圆柱C.三棱柱D.正方体解析:分别得出圆锥体、圆柱体、三棱柱、正方体的三视图的形状,再判断即可.参考答案:解:圆锥的主视图、左视图都是等腰三角形,而俯视图是圆,因此选项A不符合题意;圆柱体的主视图、左视图都是矩形,而俯视图是圆形,因此选项B 不符合题意;三棱柱主视图、左视图都是矩形,而俯视图是三角形,因此选项C 不符合题意;正方体的三视图都是形状、大小相同的正方形,因此选项D符合题意;故选:D.点拨:本题考查简单几何体的三视图,明确圆锥、圆柱、三棱柱、正方体的三视图的形状和大小是正确判断的前提.5.(3分)某同学在今年的中考体育测试中选考跳绳.考前一周,他记录了自己五次跳绳的成绩(次数/分钟):247,253,247,255,263.这五次成绩的平均数和中位数分别是()A.253,253B.255,253C.253,247D.255,247解析:根据中位数、众数的计算方法,分别求出结果即可.参考答案:解:=(247+253+247+255+263)÷5=253,这5个数从小到大,处在中间位置的一个数是253,因此中位数是253;故选:A.点拨:本题考查中位数、众数的意义和计算方法,掌握中位数、众数的计算方法是正确计算的前提.6.(3分)下列运算正确的是()A.a+2a=3a2B.a2•a3=a5C.(ab)3=ab3D.(﹣a3)2=﹣a6解析:利用合并同类项、幂的乘方、积的乘方以及同底数幂的乘法的计算法则进行计算即可.参考答案:解:a+2a=3a,因此选项A不符合题意;a2•a3=a2+3=a5,因此选项B符合题意;(ab)3=a3b3,因此选项C不符合题意;(﹣a3)2=a6,因此选项D不符合题意;故选:B.点拨:本题考查合并同类项、幂的乘方、积的乘方以及同底数幂的乘法的计算法则,掌握计算法则是正确计算的前提.7.(3分)如图,将直尺与30°角的三角尺叠放在一起,若∠1=40°,则∠2的大小是()A.40°B.60°C.70°D.80°解析:根据平角的定义和平行线的性质即可得到结论.参考答案:解:由题意得,∠4=60°,∵∠1=40°,∴∠3=180°﹣60°﹣40°=80°,∵AB∥CD,∴∠3=∠2=80°,故选:D.点拨:本题考查了平行线的性质,平角的定义,熟练掌握平行线的性质是解题的关键.8.(3分)如图,在△ABC中,AB=AC.在AB、AC上分别截取AP,AQ,使AP=AQ.再分别以点P,Q为圆心,以大于PQ 的长为半径作弧,两弧在∠BAC内交于点R,作射线AR,交BC 于点D.若BC=6,则BD的长为()A.2B.3C.4D.5解析:依据等腰三角形的性质,即可得到BD=BC,进而得出结论.参考答案:解:由题可得,AR平分∠BAC,又∵AB=AC,∴AD是三角形ABC的中线,∴BD=BC=×6=3,故选:B.点拨:本题主要考查了基本作图以及等腰三角形的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.9.(3分)以下说法正确的是()A.平行四边形的对边相等B.圆周角等于圆心角的一半C.分式方程=﹣2的解为x=2D.三角形的一个外角等于两个内角的和解析:根据平行四边形的性质对A进行判断;根据圆周角定理对B 进行判断;利用分式方程有检验可对C进行判断;根据三角形外角性质对D进行判断.参考答案:解:A、平行四边形的对边相等,所以A选项正确;B、一条弧所对的圆周角等于它所对的圆心角的一半,所以B选项错误;C、去分母得1=x﹣1﹣2(x﹣2),解得x=2,经检验原方程无解,所以C选项错误;D、三角形的一个外角等于与它不相邻的两个内角的和,所以D选项错误.故选:A.点拨:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10.(3分)如图,为了测量一条河流的宽度,一测量员在河岸边相距200米的P、Q两点分别测定对岸一棵树T的位置,T在P的正北方向,且T在Q的北偏西70°方向,则河宽(PT的长)可以表示为()A.200tan70°米B.米C.200sin 70°米D.米解析:在直角三角形PQT中,利用PQ的长,以及∠PQT的度数,进而得到∠PTQ的度数,根据三角函数即可求得PT的长.参考答案:解:在Rt△PQT中,∵∠QPT=90°,∠PQT=90°﹣70°=20°,∴∠PTQ=70°,∴tan70°=,∴PT==,即河宽米,故选:B.点拨:此题考查了解直角三角形的应用﹣方向角问题,掌握方向角与正切函数的定义是解题的关键.11.(3分)二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣1,n),其部分图象如图所示.以下结论错误的是()A.abc>0B.4ac﹣b2<0C.3a+c>0D.关于x的方程ax2+bx+c=n+1无实数根解析:根据抛物线开口方向,对称轴的位置以及与y轴的交点可以对A进行判断;根据抛物线与x轴的交点情况可对B进行判断;x =1时,y<0,可对C进行判断;根据抛物线y=ax2+bx+c与直线y=n+1无交点,可对D进行判断.参考答案:解:A.∵抛物线开口向下,∴a<0,∵对称轴为直线x=﹣=﹣1,∴b=2a<0,∵抛物线与y轴交于正半轴,∴c>0,∴abc>0,故A正确;B.∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即4ac﹣b2<0,故B正确;C.∵抛物线的对称轴为直线x=﹣1,抛物线与x轴的一个交点在(﹣3,0)和(﹣2,0)之间,∴抛物线与x轴的另一个交点在(0,0)和(1,0)之间,∴x=1时,y<0,即a+b+c<0,∵b=2a,∴3a+c<0,故C错误;D.∵抛物线开口向下,顶点为(﹣1,n),∴函数有最大值n,∴抛物线y=ax2+bx+c与直线y=n+1无交点,∴一元二次方程ax2+bx+c=n+1无实数根,故D正确.故选:C.点拨:本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c (a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质.12.(3分)如图,矩形纸片ABCD中,AB=6,BC=12.将纸片折叠,使点B落在边AD的延长线上的点G处,折痕为EF,点E、F分别在边AD和边BC上.连接BG,交CD于点K,FG交CD 于点H.给出以下结论:①EF⊥BG;②GE=GF;③△GDK和△GKH的面积相等;④当点F与点C重合时,∠DEF=75°,其中正确的结论共有()A.1个B.2个C.3个D.4个解析:连接BE,设EF与BG交于点O,由折叠的性质可得EF垂直平分BG,可判断①;由“ASA”可证△BOF≌△GOE,可得BF =EG=GF,可判断②;通过证明四边形BEGF是菱形,可得∠BEF =∠GEF,由锐角三角函数可求∠AEB=30°,可得∠DEF=75°,可判断④,由题意无法证明△GDK和△GKH的面积相等,即可求解.参考答案:解:如图,连接BE,设EF与BG交于点O,∵将纸片折叠,使点B落在边AD的延长线上的点G处,∴EF垂直平分BG,∴EF⊥BG,BO=GO,BE=EG,BF=FG,故①正确,∵AD∥BC,∴∠EGO=∠FBO,又∵∠EOG=∠BOF,∴△BOF≌△GOE(ASA),∴BF=EG,∴BF=EG=GF,故②正确,∵BE=EG=BF=FG,∴四边形BEGF是菱形,∴∠BEF=∠GEF,当点F与点C重合时,则BF=BC=BE=12,∵sin∠AEB===,∴∠AEB=30°,∴∠DEF=75°,故④正确,由题意无法证明△GDK和△GKH的面积相等,故③错误;故选:C.点拨:本题考查了翻折变换,全等三角形的判定和性质,菱形的判定和性质,锐角三角函数等知识,灵活运用这些性质进行推理是本题的关键.二、填空题(本题共4小题,每小题3分,共12分)13.(3分)分解因式:m3﹣m=m(m+1)(m﹣1).解析:先提取公因式m,再对余下的多项式利用平方差公式继续分解.参考答案:解:m3﹣m,=m(m2﹣1),=m(m+1)(m﹣1).点拨:本题考查提公因式法分解因式和利用平方差公式分解因式,关键在于需要进行二次分解因式.14.(3分)一口袋内装有编号分别为1,2,3,4,5,6,7的七个球(除编号外都相同),从中随机摸出一个球,则摸出编号为偶数的球的概率是.解析:用袋子中编号为偶数的小球的数量除以球的总个数即可得.参考答案:解:∵从袋子中随机摸出一个球共有7种等可能结果,其中摸出编号为偶数的球的结果数为3,∴摸出编号为偶数的球的概率为,故答案为:.点拨:本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.15.(3分)如图,在平面直角坐标系中,O(0,0),A(3,1),B (1,2).反比例函数y=(k≠0)的图象经过▱OABC的顶点C,则k=﹣2.解析:连接OB,AC,根据O,B的坐标易求P的坐标,再根据平行四边形的性质:对角线互相平分即可求出则C点坐标,根据待定系数法即可求得k的值.参考答案:解:连接OB,AC,交点为P,∵四边形OABC是平行四边形,∴AP=CP,OP=BP,∵O(0,0),B(1,2),∴P的坐标(,1),∵A(3,1),∴C的坐标为(﹣2,1),∵反比例函数y=(k≠0)的图象经过点C,∴k=﹣2×1=﹣2,故答案为﹣2.点拨:本题考查的是反比例函数图象上点的坐标特点,平行四边形的性质,求得C点的坐标是解答此题的关键.16.(3分)如图,在四边形ABCD中,AC与BD相交于点O,∠ABC =∠DAC=90°,tan∠ACB=,=,则=.解析:通过作辅助线,得到△ABC∽△ANM,△OBC∽△ODM,△ABC ∽△DAN,进而得出对应边成比例,再根据tan∠ACB=,=,得出对应边之间关系,设AB=a,DN=b,表示BC,NA,MN,进而表示三角形的面积,求出三角形的面积比即可.参考答案:解:如图,过点D作DM∥BC,交CA的延长线于点M,延长BA交DM于点N,∵DM∥BC,∴△ABC∽△ANM,△OBC∽△ODM,∴==tan∠ACB=,==,又∵∠ABC=∠DAC=90°,∴∠BAC+∠NAD=90°,∵∠BAC+∠BCA=90°,∴∠NAD=∠BCA,∴△ABC∽△DAN,∴==,设AB=a,DN=b,则BC=2a,NA=2b,MN=4b,由==得,DM=a,∴4b+b=a,即,b=a,∴====.故答案为:.点拨:本题考查相似三角形的性质和判定,根据对应边成比例,设常数表示三角形的面积是得出正确答案的关键.三、解答题(本题共7小题,共52分)17.(5分)计算:()﹣1﹣2cos30°+|﹣|﹣(4﹣π)0.解析:根据零指数幂、负整数指数幂、特殊角的三角函数值进行计算即可求解.参考答案:解:原式=3﹣2×+3﹣13﹣+﹣1=2.点拨:本题考查了实数的运算、零指数幂、负整数指数幂、特殊角的三角函数值,解决本题的关键是掌握特殊角的三角函数值.18.(6分)先化简,再求值:÷(2+),其中a=2.解析:先将分式进行化简,然后代入值即可求解.参考答案:解:原式=÷=÷=×=当a=2时,原式==1.点拨:本题考查了分式的化简求值,解决本题的关键是进行分式的化简.19.(7分)以人工智能、大数据、物联网为基础的技术创新促进了新业态蓬勃发展,新业态发展对人才的需求更加旺盛.某大型科技公司上半年新招聘软件、硬件、总线、测试四类专业的毕业生,现随机调查了m名新聘毕业生的专业情况,并将调查结果绘制成如图两幅不完整的统计图.请根据统计图提供的信息,解答下列问题.(1)m=50,n=10.(2)请补全条形统计图;(3)在扇形统计图中,“软件”所对应的扇形的圆心角是72度;(4)若该公司新招聘600名毕业生,请你估计“总线”专业的毕业生有180名.解析:(1)根据总线的人数和所占的百分比,可以求得m的值,然后即可计算出n的值;(2)根据(1)中的结果和硬件所占的百分比,可以求得硬件专业的毕业生,从而可以将条形统计图补充完整;(3)根据条形统计图中的数据,可以计算出在扇形统计图中,“软件”所对应的扇形的圆心角的度数;(4)根据统计图中的数据,可以计算出“总线”专业的毕业生的人数.参考答案:解:(1)m=15÷30%=50,n%=5÷50×100%=10%,故答案为:50,10;(2)硬件专业的毕业生有:50×40%=20(人),补全的条形统计图如右图所示;(3)在扇形统计图中,“软件”所对应的扇形的圆心角是360°×=72°,故答案为:72;(4)600×30%=180(名),即“总线”专业的毕业生有180名,故答案为:180.点拨:本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.20.(8分)如图,AB为⊙O的直径,点C在⊙O上,AD与过点C 的切线互相垂直,垂足为D.连接BC并延长,交AD的延长线于点E.(1)求证:AE=AB;(2)若AB=10,BC=6,求CD的长.解析:(1)证明:连接AC、OC,如图,根据切线的性质得到OC ⊥CD,则可判断OC∥AD,所以∠OCB=∠E,然后证明∠B=∠E,从而得到结论;(2)利用圆周角定理得到∠ACB=90°,则利用勾股定理可计算出AC=8,再根据等腰三角形的性质得到CE=BC=6,然后利用面积法求出CD的长.参考答案:(1)证明:连接AC、OC,如图,∵CD为切线,∴OC⊥CD,∴CD⊥AD,∴OC∥AD,∴∠OCB=∠E,∵OB=OC,∴∠OCB=∠B,∴∠B=∠E,∴AE=AB;(2)解:∵AB为直径,∴∠ACB=90°,∴AC==8,∵AB=AE=10,AC⊥BE,∴CE=BC=6,∵CD•AE=AC•CE,∴CD==.点拨:本题考查了切线的性质:圆的切线垂直于经过切点的半径;若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理.21.(8分)端午节前夕,某商铺用620元购进50个肉粽和30个蜜枣粽,肉粽的进货单价比蜜枣粽的进货单价多6元.(1)肉粽和蜜枣粽的进货单价分别是多少元?(2)由于粽子畅销,商铺决定再购进这两种粽子共300个,其中肉粽数量不多于蜜枣粽数量的2倍,且每种粽子的进货单价保持不变,若肉粽的销售单价为14元,蜜枣粽的销售单价为6元,试问第二批购进肉粽多少个时,全部售完后,第二批粽子获得利润最大?第二批粽子的最大利润是多少元?解析:(1)设蜜枣粽的进货单价是x元,则肉粽的进货单价是(x+6)元,根据用620元购进50个肉粽和30个蜜枣粽,可得出方程,解出即可;(2)设第二批购进肉粽y个,则蜜枣粽购进(300﹣y)个,获得利润为w元,根据w=蜜枣粽的利润+肉粽的利润,得一次函数,根据一次函数的增减性,可解答.参考答案:解:(1)设蜜枣粽的进货单价是x元,则肉粽的进货单价是(x+6)元,由题意得:50(x+6)+30x=620,解得:x=4,∴6+4=10,答:蜜枣粽的进货单价是4元,则肉粽的进货单价是10元;(2)设第二批购进肉粽y个,则蜜枣粽购进(300﹣y)个,获得利润为w元,由题意得:w=(14﹣10)y+(6﹣4)(300﹣y)=2y+600,∵2>0,∴w随y的增大而增大,∵y≤2(300﹣y),∴0<y≤200,∴当y=200时,w有最大值,w最大值=400+600=1000,答:第二批购进肉粽200个时,总利润最大,最大利润是1000元.点拨:本题考查了一次函数,一元一次方程及一元一次不等式的知识,解答本题的关键是仔细审题,找到不等关系及等量关系,难度一般.22.(9分)背景:一次小组合作探究课上,小明将两个正方形按如图所示的位置摆放(点E、A、D在同一条直线上),发现BE=DG且BE⊥DG.小组讨论后,提出了下列三个问题,请你帮助解答:(1)将正方形AEFG绕点A按逆时针方向旋转(如图1),还能得到BE=DG吗?若能,请给出证明;若不能,请说明理由;(2)把背景中的正方形分别改成菱形AEFG和菱形ABCD,将菱形AEFG绕点A按顺时针方向旋转(如图2),试问当∠EAG与∠BAD的大小满足怎样的关系时,背景中的结论BE=DG仍成立?请说明理由;(3)把背景中的正方形分别改写成矩形AEFG和矩形ABCD,且,AE=4,AB=8,将矩形AEFG绕点A按顺时针方向旋转(如图3),连接DE,BG.小组发现:在旋转过程中,DE2+BG2的值是定值,请求出这个定值.解析:(1)由正方形的性质得出AE=AF,∠EAG=90°,AB=AD,∠BAD=90°,得出∠EAB=∠GAD,证明△AEB≌△AGD(SAS),则可得出结论;(2)由菱形的性质得出AE=AG,AB=AD,证明△AEB≌△AGD (SAS),由全等三角形的性质可得出结论;(3)方法一:过点E作EM⊥DA,交DA的延长线于点M,过点G作GN⊥AB交AB于点N,求出AG=6,AD=12,证明△AME ∽△ANG,设EM=2a,AM=2b,则GN=3a,AN=3b,则BN =8﹣3b,可得出答案;方法二:证明△EAB∽△GAD,得出∠BEA=∠AGD,则A,E,G,Q四点共圆,得出∠GQP=∠PAE=90°,连接EG,BD,由勾股定理可求出答案.参考答案:(1)证明:∵四边形AEFG为正方形,∴AE=AF,∠EAG=90°,又∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∴∠EAB=∠GAD,∴△AEB≌△AGD(SAS),∴BE=DG;(2)当∠EAG=∠BAD时,BE=DG,理由如下:∵∠EAG=∠BAD,∴∠EAB=∠GAD,又∵四边形AEFG和四边形ABCD为菱形,∴AE=AG,AB=AD,∴△AEB≌△AGD(SAS),∴BE=DG;(3)解:方法一:过点E作EM⊥DA,交DA的延长线于点M,过点G作GN⊥AB交AB于点N,由题意知,AE=4,AB=8,∵=,∴AG=6,AD=12,∵∠EMA=∠ANG,∠MAE=∠GAN,∴△AME∽△ANG,设EM=2a,AM=2b,则GN=3a,AN=3b,则BN=8﹣3b,∴ED2=(2a)2+(12+2b)2=4a2+144+48b+4b2,GB2=(3a)2+(8﹣3b)2=9a2+64﹣48b+9b2,∴ED2+GB2=13(a2+b2)+208=13×4+208=260.方法二:如图2,设BE与DG交于Q,∵,AE=4,AB=8∴AG=6,AD=12.∵四边形AEFG和四边形ABCD为矩形,∴∠EAG=∠BAD,∴∠EAB=∠GAD,∵,∴△EAB∽△GAD,∴∠BEA=∠AGD,∴A,E,G,Q四点共圆,∴∠GQP=∠PAE=90°,∴GD⊥EB,连接EG,BD,∴ED2+GB2=EQ2+QD2+GQ2+QB2=EG2+BD2,∴EG2+BD2=42+62+82+122=260.点拨:本题是相似形综合题,考查了正方形的性质,菱形的性质,矩形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理等知识,熟练掌握特殊平行四边形的性质是解题的关键.23.(9分)如图1,抛物线y=ax2+bx+3(a≠0)与x轴的交点A(﹣3,0)和B(1,0),与y轴交于点C,顶点为D.(1)求该抛物线的解析式;(2)连接AD,DC,CB,将△OBC沿x轴以每秒1个单位长度的速度向左平移,得到△O'B'C',点O、B、C的对应点分别为点O'、B'、C',设平移时间为t秒,当点O'与点A重合时停止移动.记△O'B'C'与四边形AOCD重合部分的面积为S,请直接写出S与t 之间的函数关系式;(3)如图2,过该抛物线上任意一点M(m,n)向直线l:y=作垂线,垂足为E,试问在该抛物线的对称轴上是否存在一点F,使得ME﹣MF=?若存在,请求出F的坐标;若不存在,请说明理由.解析:(1)将点A(﹣3,0)、B(1,0)代入抛物线的解析式得到关于a、b的方程组即可;(2)分三种情况:①0<t<1时,②1≤t<时,③≤t≤3时,可由面积公式得出答案;(3)令F(﹣1,t),则MF=,ME=﹣n,得出,可求出n=.则得出答案.参考答案:解:(1)∵抛物线y=ax2+bx+3过点A(﹣3,0),B(1,0),∴,解得,∴抛物线的解析式为y=﹣x2﹣2x+3;(2)①0<t<1时,如图1,若B'C'与y轴交于点F,∵OO'=t,OB'=1﹣t,∴OF=3OB'=3﹣3t,∴S=×(C'O'+OF)×OO'=×(3+3﹣3t)×t=﹣+3t,②1≤t<时,S=;③≤t≤3时,如图2,C′O′与AD交于点Q,B′C′与AD交于点P,过点P作PH⊥C′O′于H,∵AO=3,O'O=t,∴AO'=3﹣t,O'Q=6﹣2t,∴C'Q=2t﹣3,∵QH=2PH,C'H=3PH,∴PH=C'Q=(2t﹣3),∴S=(2t﹣3),∴S=﹣,综合以上可得:S=.(3)令F(﹣1,t),则MF=,ME=﹣n,∵ME﹣MF=,∴MF=ME﹣,∴,∴m2+2m+1+t2﹣2nt=﹣.∵n=﹣m2﹣2m+3,∴+(2+4n﹣17)m+1+t2﹣6t+﹣=0.当t=时,上式对于任意m恒成立,∴存在F(﹣1,).点拨:本题是二次函数的综合题,考查了待定系数法求二次函数的解析式,两点间的距离公式,平移的性质,三角形的面积等知识.熟练运用方程的思想方法,正确进行分类是解题的关键.。
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.方程5x +2y =-9与下列方程构成的方程组的解为212x y =-⎧⎪⎨=⎪⎩的是( ) A .x +2y =1B .3x +2y =-8C .5x +4y =-3D .3x -4y =-8【答案】D【解析】试题分析:将x 与y 的值代入各项检验即可得到结果.解:方程5x+2y=﹣9与下列方程构成的方程组的解为的是3x ﹣4y=﹣1. 故选D .点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值. 2.如图,若△ABC 内接于半径为R 的⊙O ,且∠A =60°,连接OB 、OC ,则边BC 的长为( )A .2RB .3RC .2RD .3R【答案】D 【解析】延长BO 交圆于D ,连接CD ,则∠BCD=90°,∠D=∠A=60°;又BD=2R ,根据锐角三角函数的定义得BC=3R.【详解】解:延长BO 交⊙O 于D ,连接CD ,则∠BCD=90°,∠D=∠A=60°,∴∠CBD=30°,∵BD=2R ,∴DC=R ,∴BC=3R,故选D.【点睛】此题综合运用了圆周角定理、直角三角形30°角的性质、勾股定理,注意:作直径构造直角三角形是解决本题的关键.3.已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为( )A.﹣3 B.﹣5 C.1或﹣3 D.1或﹣5【答案】A【解析】分析:根据点A(a+2,4)和B(3,2a+2)到x轴的距离相等,得到4=|2a+2|,即可解答.详解:∵点A(a+2,4)和B(3,2a+2)到x轴的距离相等,∴4=|2a+2|,a+2≠3,解得:a=−3,故选A.点睛:考查点的坐标的相关知识;用到的知识点为:到x轴和y轴的距离相等的点的横纵坐标相等或互为相反数.4.已知圆锥的底面半径为2cm,母线长为5cm,则圆锥的侧面积是()A.20cm2 B.20πcm2C.10πcm2D.5πcm2【答案】C【解析】圆锥的侧面积=底面周长×母线长÷2,把相应数值代入,圆锥的侧面积=2π×2×5÷2=10π.故答案为C5.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是()A.110B.19C.16D.15【答案】A【解析】∵密码的末位数字共有10种可能(0、1、2、3、4、5、6、7、8、9、0都有可能),∴当他忘记了末位数字时,要一次能打开的概率是110.故选A.6.下列各式中的变形,错误的是(()A.B.C.D.【答案】D【解析】根据分式的分子分母都乘以(或除以)同一个不为零的数(整式),分式的值不变,可得答案.【详解】A 、,故A 正确;B 、分子、分母同时乘以﹣1,分式的值不发生变化,故B 正确;C 、分子、分母同时乘以3,分式的值不发生变化,故C 正确;D 、≠,故D 错误;故选:D .【点睛】本题考查了分式的基本性质,分式的分子分母都乘以(或除以)同一个不为零的数(整式),分式的值不变.7.4的算术平方根为( ) A .2±B .2C .2±D .2 【答案】B【解析】分析:先求得4的值,再继续求所求数的算术平方根即可.详解:∵4=2,而2的算术平方根是2,∴4的算术平方根是2,故选B .点睛:此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A 的错误.8.如图,将Rt ABC △绕直角顶点C 顺时针旋转90,得到A B C '',连接'A A ,若120︒∠=,则B 的度数是( )A .70︒B .65︒C .60︒D .55︒【答案】B 【解析】根据旋转的性质可得AC =A′C ,然后判断出△ACA′是等腰直角三角形,根据等腰直角三角形的性质可得∠CAA′=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠A′B′C ,最后根据旋转的性质可得∠B =∠A′B′C .【详解】解:∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C,∴AC=A′C,∴△ACA′是等腰直角三角形,∴∠CAA′=45°,∴∠A′B′C=∠1+∠CAA′=20°+45°=65°,∴∠B=∠A′B′C=65°.故选B.【点睛】本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.9.要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.1(1)282x x-=B.1(1)282x x+=C.(1)28x x-=D.(1)28x x+=【答案】A【解析】根据应用题的题目条件建立方程即可.【详解】解:由题可得:1(1)47 2x x-=⨯即:1(1)28 2x x-=故答案是:A.【点睛】本题主要考察一元二次方程的应用题,正确理解题意是解题的关键.10.用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是()A2cm B.2C.2cm D.4cm【答案】C【解析】利用扇形的弧长公式可得扇形的弧长;让扇形的弧长除以2π即为圆锥的底面半径,利用勾股定理可得圆锥形筒的高.【详解】L=1206180π⨯=4π(cm);圆锥的底面半径为4π÷2π=2(cm),∴226242-=cm).故选C.【点睛】此题考查了圆锥的计算,用到的知识点为:圆锥侧面展开图的弧长=2n r180;圆锥的底面周长等于侧面展开图的弧长;圆锥的底面半径,母线长,高组成以母线长为斜边的直角三角形.二、填空题(本题包括8个小题)11.如图,在平面直角坐标系xOy中,四边形OABC是正方形,点C(0,4),D是OA中点,将△CDO以C为旋转中心逆时针旋转90°后,再将得到的三角形平移,使点C与点O重合,写出此时点D的对应点的坐标:_____.【答案】(4,2).【解析】利用图象旋转和平移可以得到结果.【详解】解:∵△CDO绕点C逆时针旋转90°,得到△CBD′,则BD′=OD=2,∴点D坐标为(4,6);当将点C与点O重合时,点C向下平移4个单位,得到△OAD′′,∴点D向下平移4个单位.故点D′′坐标为(4,2),故答案为(4,2).【点睛】平移和旋转:平移是指在同一平面内,将一个图形整体按照某个直线方向移动一定的距离,这样的图形运动叫做图形的平移运动,简称平移.定义在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫做图形的旋转.这个定点叫做旋转中心,转动的角度叫做旋转角.12.已知二次函数y=ax2+bx(a≠0)的最小值是﹣3,若关于x的一元二次方程ax2+bx+c=0有实数根,则c 的最大值是_____.【答案】3【解析】由一元二次方程ax2+bx+c=0有实数根,可得y=ax2+bx(a≠0)和y=-c有交点,由此即可解答. 【详解】∵一元二次方程ax2+bx+c=0有实数根,∴抛物线y=ax2+bx(a≠0)和直线y=-c有交点,∴-c≥-3,即c≤3,∴c的最大值为3.故答案为:3.【点睛】本题考查了一元二次方程与二次函数,根据一元二次方程有实数根得到抛物线y=ax2+bx(a≠0)和直线y=-c 有交点是解决问题的关键.13.64的立方根是_______.【答案】4.【解析】根据立方根的定义即可求解.【详解】∵43=64,∴64的立方根是4故答案为4【点睛】此题主要考查立方根的定义,解题的关键是熟知立方根的定义.14.已知,在同一平面内,∠ABC=50°,AD∥BC,∠BAD的平分线交直线BC于点E,那么∠AEB的度数为__________.【答案】65°或25°【解析】首先根据角平分线的定义得出∠EAD=∠EAB,再分情况讨论计算即可.【详解】解:分情况讨论:(1)∵AE平分∠BAD,∴∠EAD=∠EAB,∵AD∥BC,∴∠EAD=∠AEB,∴∠BAD=∠AEB,∵∠ABC=50°,∴∠AEB=12•(180°-50°)=65°.(2)∵AE平分∠BAD,∴∠EAD=∠EAB=12DAB ∠,∵AD∥BC,∴∠AEB=∠DAE=12DAB∠,∠DAB=∠ABC,∵∠ABC=50°,∴∠AEB= 12×50°=25°.故答案为:65°或25°.【点睛】本题考查平行线的性质、角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15.一个正多边形的每个内角等于150,则它的边数是____.【答案】十二【解析】首先根据内角度数计算出外角度数,再用外角和360°除以外角度数即可.【详解】∵一个正多边形的每个内角为150°,∴它的外角为30°,360°÷30°=12,故答案为十二.【点睛】此题主要考查了多边形的内角与外角,关键是掌握内角与外角互为邻补角.16.当x为_____时,分式3621xx-+的值为1.【答案】2【解析】分式的值是1的条件是,分子为1,分母不为1.【详解】∵3x-6=1,∴x=2,当x=2时,2x+1≠1.∴当x=2时,分式的值是1.故答案为2.【点睛】本题考查的知识点是分式为1的条件,解题关键是注意的是分母不能是1.17.若332y x x =-+-+,则y x = . 【答案】1.【解析】试题分析:332y x x =-+-+有意义,必须30x -≥,30x -≥,解得:x=3,代入得:y=0+0+2=2,∴y x =23=1.故答案为1.考点:二次根式有意义的条件.18.如图是由几个相同的小正方体搭建而成的几何体的主视图和俯视图,则搭建这个几何体所需要的小正方体至少为____个.【答案】8【解析】主视图、俯视图是分别从物体正面、上面看,所得到的图形.【详解】由俯视图可知:底层最少有5个小立方体,由主视图可知:第二层最少有2个小立方体,第三层最少有1个小正方体,∴搭成这个几何体的小正方体的个数最少是5+2+1=8(个).故答案为:8【点睛】考查了由三视图判断几何体的知识,根据题目中要求的以最少的小正方体搭建这个几何体,可以想象出左视图的样子,然后根据“俯视图打地基,正视图疯狂盖,左视图拆违章”很容易就知道小正方体的个数.三、解答题(本题包括8个小题)19.如图,分别以Rt △ABC 的直角边AC 及斜边AB 向外作等边△ACD ,等边△ABE ,已知∠BAC=30°,EF ⊥AB ,垂足为F ,连接DF 试说明AC=EF ;求证:四边形ADFE 是平行四边形.【答案】证明见解析.【解析】(1)一方面Rt △ABC 中,由∠BAC=30°可以得到AB=2BC ,另一方面△ABE 是等边三角形,EF ⊥AB ,由此得到AE=2AF ,并且AB=2AF ,从而可证明△AFE ≌△BCA ,再根据全等三角形的性质即可证明AC=EF .(2)根据(1)知道EF=AC ,而△ACD 是等边三角形,所以EF=AC=AD ,并且AD ⊥AB ,而EF ⊥AB ,由此得到EF ∥AD ,再根据平行四边形的判定定理即可证明四边形ADFE 是平行四边形.【详解】证明:(1)∵Rt △ABC 中,∠BAC=30°,∴AB=2BC .又∵△ABE 是等边三角形,EF ⊥AB ,∴AB=2AF .∴AF=BC .∵在Rt △AFE 和Rt △BCA 中,AF=BC ,AE=BA ,∴△AFE ≌△BCA (HL ).∴AC=EF .(2)∵△ACD 是等边三角形,∴∠DAC=60°,AC=AD .∴∠DAB=∠DAC+∠BAC=90°.∴EF ∥AD .∵AC=EF ,AC=AD ,∴EF=AD .∴四边形ADFE 是平行四边形.考点:1.全等三角形的判定与性质;2.等边三角形的性质;3.平行四边形的判定.20.如图所示,AC=AE ,∠1=∠2,AB=AD .求证:BC=DE .【答案】证明见解析.【解析】试题分析:由1=2∠∠,可得,CAB EAD ∠=∠,,AC AE AB AD ==则可证明ABC ADE ≅,因此可得.BC DE =试题解析:1=2∠∠,12,EAB EAB ∴∠+∠=∠+∠即CAB EAD ∠=∠,在ABC 和ADE 中,{AC AECAB EAD AB AD=∠=∠=(),ABC ADE SAS ∴≅.BC DE ∴=考点:三角形全等的判定.21.如图,在△ABC 中,AB=AC ,点P 、D 分别是BC 、AC 边上的点,且∠APD=∠B,求证:AC•CD=CP•BP ;若AB=10,BC=12,当PD ∥AB 时,求BP 的长.【答案】(1)证明见解析;(2)253. 【解析】(2)易证∠APD=∠B=∠C ,从而可证到△ABP ∽△PCD ,即可得到BP AB CD CP=,即AB•CD=CP•BP ,由AB=AC 即可得到AC•CD=CP•BP ;(2)由PD ∥AB 可得∠APD=∠BAP ,即可得到∠BAP=∠C ,从而可证到△BAP ∽△BCA ,然后运用相似三角形的性质即可求出BP 的长.解:(1)∵AB=AC ,∴∠B=∠C .∵∠APD=∠B ,∴∠APD=∠B=∠C .∵∠APC=∠BAP+∠B ,∠APC=∠APD+∠DPC ,∴∠BAP=∠DPC ,∴△ABP ∽△PCD , ∴BP AB CD CP=, ∴AB•CD=CP•BP .∵AB=AC ,∴AC•CD=CP•BP ;(2)∵PD ∥AB ,∴∠APD=∠BAP .∵∠APD=∠C ,∴∠BAP=∠C .∵∠B=∠B ,∴△BAP ∽△BCA , ∴BA BP BC BA=. ∵AB=10,BC=12, ∴101210BP =, ∴BP=253. “点睛”本题主要考查了相似三角形的判定与性质、等腰三角形的性质、平行线的性质、三角形外角的性质等知识,把证明AC•CD=CP•BP 转化为证明AB•CD=CP•BP 是解决第(1)小题的关键,证到∠BAP=∠C 进而得到△BAP ∽△BCA 是解决第(2)小题的关键.22.商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调査发现,每件商品每降价1元,商场平均每天可多售出2件.若某天该商品每件降价3元,当天可获利多少元?设每件商品降价x 元,则商场日销售量增加____件,每件商品,盈利______元(用含x 的代数式表示);在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?【答案】(1)若某天该商品每件降价3元,当天可获利1692元;(2)2x ;50﹣x .(3)每件商品降价1元时,商场日盈利可达到2000元.【解析】(1)根据“盈利=单件利润×销售数量”即可得出结论;(2)根据“每件商品每降价1元,商场平均每天可多售出2件”结合每件商品降价x 元,即可找出日销售量增加的件数,再根据原来没见盈利50元,即可得出降价后的每件盈利额;(3)根据“盈利=单件利润×销售数量”即可列出关于x的一元二次方程,解之即可得出x的值,再根据尽快减少库存即可确定x的值.【详解】(1)当天盈利:(50-3)×(30+2×3)=1692(元).答:若某天该商品每件降价3元,当天可获利1692元.(2)∵每件商品每降价1元,商场平均每天可多售出2件,∴设每件商品降价x元,则商场日销售量增加2x件,每件商品,盈利(50-x)元.故答案为2x;50-x.(3)根据题意,得:(50-x)×(30+2x)=2000,整理,得:x2-35x+10=0,解得:x1=10,x2=1,∵商城要尽快减少库存,∴x=1.答:每件商品降价1元时,商场日盈利可达到2000元.【点睛】考查了一元二次方程的应用,解题的关键是根据题意找出数量关系列出一元二次方程(或算式).23.观察下列等式:22﹣2×1=12+1①32﹣2×2=22+1②42﹣2×3=32+1③…第④个等式为;根据上面等式的规律,猜想第n个等式(用含n的式子表示,n是正整数),并说明你猜想的等式正确性.【答案】(1)52﹣2×4=42+1;(2)(n+1)2﹣2n=n2+1,证明详见解析.【解析】(1)根据①②③的规律即可得出第④个等式;(2)第n个等式为(n+1)2﹣2n=n2+1,把等式左边的完全平方公式展开后再合并同类项即可得出右边.【详解】(1)∵22﹣2×1=12+1①32﹣2×2=22+1②42﹣2×3=32+1③∴第④个等式为52﹣2×4=42+1,故答案为:52﹣2×4=42+1,(2)第n个等式为(n+1)2﹣2n=n2+1.(n+1)2﹣2n=n2+2n+1﹣2n=n2+1.【点睛】本题主要考查了整式的运算,熟练掌握完全平方公式是解答本题的关键.24.如图,二次函数232(0)2y ax x a =-+≠的图象与x 轴交于A 、B 两点,与y 轴交于点C ,已知点A (﹣4,0).求抛物线与直线AC 的函数解析式;若点D (m ,n )是抛物线在第二象限的部分上的一动点,四边形OCDA 的面积为S ,求S 关于m 的函数关系式;若点E 为抛物线上任意一点,点F 为x 轴上任意一点,当以A 、C 、E 、F 为顶点的四边形是平行四边形时,请求出满足条件的所有点E 的坐标.【答案】(1)122y x =+(1)S=﹣m 1﹣4m+4(﹣4<m <0)(3)(﹣3,1)、(3412-,﹣1)、(3412-+,﹣1) 【解析】(1)把点A 的坐标代入抛物线的解析式,就可求得抛物线的解析式,根据A ,C 两点的坐标,可求得直线AC 的函数解析式;(1)先过点D 作DH ⊥x 轴于点H ,运用割补法即可得到:四边形OCDA 的面积=△ADH 的面积+四边形OCDH 的面积,据此列式计算化简就可求得S 关于m 的函数关系;(3)由于AC 确定,可分AC 是平行四边形的边和对角线两种情况讨论,得到点E 与点C 的纵坐标之间的关系,然后代入抛物线的解析式,就可得到满足条件的所有点E 的坐标.【详解】(1)∵A (﹣4,0)在二次函数y=ax 1﹣32x+1(a≠0)的图象上, ∴0=16a+6+1,解得a=﹣12, ∴抛物线的函数解析式为y=﹣12x 1﹣32x+1; ∴点C 的坐标为(0,1),设直线AC 的解析式为y=kx+b ,则04{2k b b=-+=, 解得1{22k b ==,∴直线AC 的函数解析式为:122y x =+;(1)∵点D (m ,n )是抛物线在第二象限的部分上的一动点,∴D (m ,﹣12m 1﹣32m+1),过点D 作DH ⊥x 轴于点H ,则DH=﹣12m 1﹣32m+1,AH=m+4,HO=﹣m ,∵四边形OCDA 的面积=△ADH 的面积+四边形OCDH 的面积,∴S=12(m+4)×(﹣12m 1﹣32m+1)+12(﹣12m 1﹣32m+1+1)×(﹣m ),化简,得S=﹣m 1﹣4m+4(﹣4<m <0);(3)①若AC 为平行四边形的一边,则C 、E 到AF 的距离相等,∴|y E |=|y C |=1,∴y E =±1.当y E =1时,解方程﹣12x 1﹣32x+1=1得,x 1=0,x 1=﹣3,∴点E 的坐标为(﹣3,1);当y E =﹣1时,解方程﹣12x 1﹣32x+1=﹣1得,x 1,x 1,∴点E 的坐标为(32-,﹣1)或(32-,﹣1);②若AC 为平行四边形的一条对角线,则CE ∥AF ,∴y E =y C =1,∴点E 的坐标为(﹣3,1).综上所述,满足条件的点E 的坐标为(﹣3,1)、,﹣1)、,﹣1).25.如图,有四张背面相同的卡片A、B、C、D,卡片的正面分别印有正三角形、平行四边形、圆、正五边形(这些卡片除图案不同外,其余均相同).把这四张卡片背面向上洗匀后,进行下列操作:若任意抽取其中一张卡片,抽到的卡片既是中心对称图形又是轴对称图形的概率是;若任意抽出一张不放回,然后再从余下的抽出一张.请用树状图或列表表示摸出的两张卡片所有可能的结果,求抽出的两张卡片的图形是中心对称图形的概率.【答案】(1)14;(2)16.【解析】(1)既是中心对称图形又是轴对称图形只有圆一个图形,然后根据概率的意义解答即可;(2)画出树状图,然后根据概率公式列式计算即可得解.【详解】(1)∵正三角形、平行四边形、圆、正五边形中只有圆既是中心对称图形又是轴对称图形,∴抽到的卡片既是中心对称图形又是轴对称图形的概率是14;(2)根据题意画出树状图如下:一共有12种情况,抽出的两张卡片的图形是中心对称图形的是B、C共有2种情况,所以,P(抽出的两张卡片的图形是中心对称图形)21 126.【点睛】本题考查了列表法和树状图法,用到的知识点为:概率=所求情况数与总情况数之比.26.手机下载一个APP、缴纳一定数额的押金,就能以每小时0.5到1元的价格解锁一辆自行车任意骑行,共享单车为解决市民出行的“最后一公里”难题帮了大忙,人们在享受科技进步、共享经济带来的便利的同时,随意停放、加装私锁、推车下河、大卸八块等毁坏共享单车的行为也层出不穷•某共享单车公司一月投入部分自行车进入市场,一月底发现损坏率不低于10%,二月初又投入1200辆进入市场,使可使用的自行车达到7500辆.一月份该公司投入市场的自行车至少有多少辆?二月份的损坏率为20%,进入三月份,该公司新投入市场的自行车比二月份增长4a%,由于媒体的关注,毁坏共享单车的行为点燃了国民素质的大讨论,三月份的损坏率下降为14a%,三月底可使用的自行车达到7752辆,求a的值.【答案】(1)7000辆;(2)a的值是1.【解析】(1)设一月份该公司投入市场的自行车x辆,根据损坏率不低于10%,可得不等量关系:一月初投入的自行车-一月底可用的自行车≥一月损坏的自行车列不等式求解;(2)根据三月底可使用的自行车达到7752辆,可得等量关系为:(二月份剩余的可用自行车+三月初投入的自行车)×三月份的损耗率=7752辆列方程求解.【详解】解:(1)设一月份该公司投入市场的自行车x辆,x﹣(7500﹣110)≥10%x,解得x≥7000,答:一月份该公司投入市场的自行车至少有7000辆;(2)由题意可得,[7500×(1﹣1%)+110(1+4a%)](1﹣14a%)=7752,化简,得a2﹣250a+4600=0,解得:a1=230,a2=1,∵1%20%4a ,解得a<80,∴a=1,答:a的值是1.【点睛】本题考查了一元一次不等式和一元二次方程的实际应用,根据一月底的损坏率不低于10%找出不等量关系式解答(1)的关键;根据三月底可使用的自行车达到7752辆找出等量关系是解答(2)的关键.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,△A′B′C′是△ABC 以点O 为位似中心经过位似变换得到的,若△A′B′C′的面积与△ABC 的面积比是4:9,则OB′:OB 为( )A .2:3B .3:2C .4:5D .4:9【答案】A 【解析】根据位似的性质得△ABC ∽△A′B′C′,再根据相似三角形的性质进行求解即可得.【详解】由位似变换的性质可知,A′B′∥AB ,A′C′∥AC ,∴△A′B′C′∽△ABC ,∵△A'B'C'与△ABC 的面积的比4:9,∴△A'B'C'与△ABC 的相似比为2:3, ∴23OB OB '= , 故选A .【点睛】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.2.函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是( )A .B .C .D .【答案】C【解析】根据a 、b 的符号,针对二次函数、一次函数的图象位置,开口方向,分类讨论,逐一排除.【详解】当a >0时,二次函数的图象开口向上,一次函数的图象经过一、三或一、二、三或一、三、四象限,故A 、D 不正确;由B 、C 中二次函数的图象可知,对称轴x=-2b a>0,且a >0,则b <0, 但B 中,一次函数a >0,b >0,排除B .故选C .3.在如图所示的数轴上,点B与点C关于点A对称,A、B两点对应的实数分别是3和﹣1,则点C所对应的实数是( )A.1+3B.2+3C.23﹣1 D.23+1【答案】D【解析】设点C所对应的实数是x.根据中心对称的性质,对称点到对称中心的距离相等,则有()x3=31---,解得x=23+1.故选D.4.如图,△ABC的三个顶点分别为A(1,2)、B(4,2)、C(4,4).若反比例函数y=kx在第一象限内的图象与△ABC有交点,则k的取值范围是()A.1≤k≤4B.2≤k≤8C.2≤k≤16D.8≤k≤16【答案】C【解析】试题解析:由于△ABC是直角三角形,所以当反比例函数kyx=经过点A时k最小,进过点C时k最大,据此可得出结论.∵△ABC是直角三角形,∴当反比例函数kyx=经过点A时k最小,经过点C时k最大,∴k最小=1×2=2,k最大=4×4=1,∴2≤k≤1.故选C.5.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A.144(1﹣x)2=100 B.100(1﹣x)2=144 C.144(1+x)2=100 D.100(1+x)2=144【答案】D【解析】试题分析:2013年的产量=2011年的产量×(1+年平均增长率)2,把相关数值代入即可.解:2012年的产量为100(1+x),2013年的产量为100(1+x)(1+x)=100(1+x)2,即所列的方程为100(1+x)2=144,故选D.点评:考查列一元二次方程;得到2013年产量的等量关系是解决本题的关键.6.如图,将木条a,b与c钉在一起,∠1=70°,∠2=50°,要使木条a与b平行,木条a旋转的度数至少是()A.10°B.20°C.50°D.70°【答案】B【解析】要使木条a与b平行,那么∠1=∠2,从而可求出木条a至少旋转的度数.【详解】解:∵要使木条a与b平行,∴∠1=∠2,∴当∠1需变为50 º,∴木条a至少旋转:70º-50º=20º.故选B.【点睛】本题考查了旋转的性质及平行线的性质:①两直线平行同位角相等;②两直线平行内错角相等;③两直线平行同旁内角互补;④夹在两平行线间的平行线段相等.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.7.如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则AG GF的值是()A.43B.54C.65D.76【答案】C【解析】如图作,FN∥AD,交AB于N,交BE于M.设DE=a,则AE=3a,利用平行线分线段成比例定理解决问题即可.【详解】如图作,FN∥AD,交AB于N,交BE于M.∵四边形ABCD是正方形,∴AB∥CD,∵FN∥AD,∴四边形ANFD是平行四边形,∵∠D=90°,∴四边形ANFD是矩形,∵AE=3DE,设DE=a,则AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,∵AN=BN,MN∥AE,∴BM=ME,∴MN=32a,∴FM=52a,∵AE∥FM,∴36552AG AE aGF FM a===,故选C.【点睛】本题考查正方形的性质、平行线分线段成比例定理、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,学会利用参数解决问题,属于中考常考题型.8.如图,直线a∥b,直线c分别交a,b于点A,C,∠BAC的平分线交直线b于点D,若∠1=50°,则∠2的度数是()A.50°B.70°C.80°D.110°【答案】C【解析】根据平行线的性质可得∠BAD=∠1,再根据AD是∠BAC的平分线,进而可得∠BAC的度数,再根据补角定义可得答案.【详解】因为a∥b,所以∠1=∠BAD=50°,因为AD是∠BAC的平分线,所以∠BAC=2∠BAD=100°,所以∠2=180°-∠BAC=180°-100°=80°.故本题正确答案为C.【点睛】本题考查的知识点是平行线的性质,解题关键是掌握两直线平行,内错角相等.9.下列命题中真命题是()A.若a2=b2,则a=b B.4的平方根是±2C.两个锐角之和一定是钝角D.相等的两个角是对顶角【答案】B【解析】利用对顶角的性质、平方根的性质、锐角和钝角的定义分别判断后即可确定正确的选项.【详解】A、若a2=b2,则a=±b,错误,是假命题;B、4的平方根是±2,正确,是真命题;C、两个锐角的和不一定是钝角,故错误,是假命题;D、相等的两个角不一定是对顶角,故错误,是假命题.故选B.【点睛】考查了命题与定理的知识,解题的关键是了解对顶角的性质、平方根的性质、锐角和钝角的定义,难度不大.10.如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC的值为()A.12B.1 C.33D3【答案】B【解析】连接BC,由网格求出AB,BC,AC的长,利用勾股定理的逆定理得到△ABC为等腰直角三角形,即可求出所求.【详解】如图,连接BC,由网格可得510AB2+BC2=AC2,∴△ABC 为等腰直角三角形,∴∠BAC=45°,则tan ∠BAC=1,故选B .【点睛】本题考查了锐角三角函数的定义,解直角三角形,以及勾股定理,熟练掌握勾股定理是解本题的关键.二、填空题(本题包括8个小题)11.如图,C 为半圆内一点,O 为圆心,直径AB 长为1 cm ,∠BOC=60°,∠BCO=90°,将△BOC 绕圆心O 逆时针旋转至△B′OC′,点C′在OA 上,则边BC 扫过区域(图中阴影部分)的面积为_________cm 1.【答案】4π 【解析】根据直角三角形的性质求出OC 、BC ,根据扇形面积公式计算即可.【详解】解:∵∠BOC=60°,∠BCO=90°,∴∠OBC=30°,∴OC=12OB=1 则边BC 扫过区域的面积为:22112012012=3603604πππ⎛⎫⨯ ⎪⨯⎝⎭- 故答案为4π. 【点睛】考核知识点:扇形面积计算.熟记公式是关键.12.如图,把正方形铁片OABC 置于平面直角坐标系中,顶点A 的坐标为(3,0),点P (1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置…,则正方形铁片连续旋转2017次后,点P 的坐标为____________________.【答案】(6053,2).【解析】根据前四次的坐标变化总结规律,从而得解.【详解】第一次P 1(5,2),第二次P 2(8,1),第三次P 3(10,1),第四次P 4(13,1),第五次P 5(17,2),…发现点P 的位置4次一个循环,∵2017÷4=504余1,P 2017的纵坐标与P 1相同为2,横坐标为5+3×2016=6053,∴P 2017(6053,2),故答案为(6053,2).考点:坐标与图形变化﹣旋转;规律型:点的坐标.13.若直角三角形两边分别为6和8,则它内切圆的半径为_____.【答案】27-1【解析】根据已知题意,求第三边的长必须分类讨论,即8是斜边或直角边的两种情况,然后利用勾股定理求出另一边的长,再根据内切圆半径公式求解即可.【详解】若8226+8=10,∴内切圆的半径为:6+810=22-; 若8228627=-∴内切圆的半径为:6+278712. 故答案为27-1.【点睛】本题考查了勾股定理,三角形的内切圆,以及分类讨论的数学思想,分类讨论是解答本题的关键. 14.某种商品每件进价为20元,调查表明:在某段时间内若以每件x 元(20≤x≤30,且x 为整数)出售,可卖出(30﹣x )件.若使利润最大,每件的售价应为______元.【答案】3【解析】试题分析:设最大利润为w 元,则w=(x ﹣30)(30﹣x )=﹣(x ﹣3)3+3,∵30≤x≤30,∴当x=3时,二次函数有最大值3,故答案为3.考点:3.二次函数的应用;3.销售问题.15.已知x=2是一元二次方程x2﹣2mx+4=0的一个解,则m的值为.【答案】1.【解析】试题分析:直接把x=1代入已知方程就得到关于m的方程,再解此方程即可.试题解析:∵x=1是一元二次方程x1-1mx+4=0的一个解,∴4-4m+4=0,∴m=1.考点:一元二次方程的解.16.如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,过D点作AB的垂线交AC于点E,BC=6,sinA=35,则DE=_____.【答案】15 4【解析】∵在Rt△ABC中,BC=6,sinA=3 5∴AB=10∴22AC1068=-=.∵D是AB的中点,∴AD=12AB=1.∵∠C=∠EDA=90°,∠A=∠A∴△ADE∽△ACB,∴DE ADBC AC=即DE5 68=解得:DE=154.17.如图,直线y=x+2与反比例函数y=kx的图象在第一象限交于点P.若OP=10,则k的值为________.【答案】1【解析】设点P(m,m+2),。
2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图是一个正方体的表面展开图,如果对面上所标的两个数互为相反数,那么图中x的值是().A.3 B.3C.2D.82.如图,△ABC在边长为1个单位的方格纸中,它的顶点在小正方形的顶点位置.如果△ABC的面积为10,且sinA=5,那么点C的位置可以在()A.点C1处B.点C2处C.点C3处D.点C4处3.下列图标中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.甲、乙、丙三家超市为了促销同一种定价为m元的商品,甲超市连续两次降价20%;乙超市一次性降价40%;丙超市第一次降价30%,第二次降价10%,此时顾客要购买这种商品,最划算的超市是( ) A.甲B.乙C.丙D.都一样5.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是()A.45B.35C.25D.156.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:甲 2 6 7 7 8乙 2 3 4 8 8关于以上数据,说法正确的是()A.甲、乙的众数相同B.甲、乙的中位数相同C.甲的平均数小于乙的平均数D.甲的方差小于乙的方差7.如图,在等边三角形ABC 中,点P 是BC 边上一动点(不与点B 、C 重合),连接AP ,作射线PD ,使∠APD=60°,PD 交AC 于点D ,已知AB=a ,设CD=y ,BP=x ,则y 与x 函数关系的大致图象是( )A .B .C .D .8.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是( )A .B .C .D .9.如图,△ABC 的内切圆⊙O 与AB ,BC ,CA 分别相切于点D ,E ,F ,且AD =2,BC =5,则△ABC 的周长为( )A .16B .14C .12D .1010.函数228y x x m =--+的图象上有两点()11,A x y ,()22,B x y ,若122x x <<-,则( ) A .12y y <B .12y y >C .12 y y =D .1y 、2y 的大小不确定二、填空题(本题包括8个小题)11.某种商品每件进价为10元,调查表明:在某段时间内若以每件x 元(10≤x≤20且x 为整数)出售,可卖出(20﹣x )件,若使利润最大,则每件商品的售价应为_____元. 12.函数21y x =-中,自变量x 的取值范围是_____. 13.因式分解:3x 2-6xy+3y 2=______.14.抛物线y=﹣x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是_____.15.若4a+3b=1,则8a+6b-3的值为______.16.不等式组21736xx->⎧⎨>⎩的解集是_____.17.已知点(﹣1,m)、(2,n )在二次函数y=ax2﹣2ax﹣1的图象上,如果m>n,那么a____0(用“>”或“<”连接).18.|-3|=_________;三、解答题(本题包括8个小题)19.(6分)有一项工程,若甲队单独做,恰好在规定日期完成,若乙队单独做要超过规定日期3天完成;现在先由甲、乙两队合做2天后,剩下的工程再由乙队单独做,也刚好在规定日期完成,问规定日期多少天?20.(6分)某市A,B两个蔬菜基地得知四川C,D两个灾民安置点分别急需蔬菜240t和260t的消息后,决定调运蔬菜支援灾区,已知A蔬菜基地有蔬菜200t,B蔬菜基地有蔬菜300t,现将这些蔬菜全部调运C,D两个灾区安置点.从A地运往C,D两处的费用分别为每吨20元和25元,从B地运往C,D两处的费用分别为每吨15元和18元.设从B地运往C处的蔬菜为x吨.请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x的值;C D 总计/tA 200B x 300总计/t 240 260 500(2)设A,B两个蔬菜基地的总运费为w元,求出w与x之间的函数关系式,并求总运费最小的调运方案;经过抢修,从B地到C处的路况得到进一步改善,缩短了运输时间,运费每吨减少m元(m>0),其余线路的运费不变,试讨论总运费最小的调动方案.21.(6分)某商场将进价40元一个的某种商品按50元一个售出时,每月能卖出500个.商场想了两个方案来增加利润:方案一:提高价格,但这种商品每个售价涨价1元,销售量就减少10个;方案二:售价不变,但发资料做广告.已知当这种商品每月的广告费用为m(千元)时,每月销售量将是原销售量的p倍,且p =.试通过计算,请你判断商场为赚得更大的利润应选择哪种方案?请说明你判断的理由!22.(8分)如图,AB是⊙O的直径,点C是的中点,连接AC并延长至点D,使CD=AC,点E是OB 上一点,且,CE的延长线交DB的延长线于点F,AF交⊙O于点H,连接BH.求证:BD是⊙O的切线;(2)当OB=2时,求BH的长.23.(8分)制作一种产品,需先将材料加热达到60℃后,再进行操作,设该材料温度为y(℃)从加热开始计算的时间为x(min).据了解,当该材料加热时,温度y与时间x成一次函数关系:停止加热进行操作时,温度y与时间x成反比例关系(如图).已知在操作加热前的温度为15℃,加热5分钟后温度达到60℃.分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?24.(10分)抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:本次抽样调查共抽取了多少名学生?求测试结果为C等级的学生数,并补全条形图;若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.25.(10分)如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.求证:BC是⊙O的切线;若⊙O的半径为6,BC=8,求弦BD的长.26.(12分)有A 、B 两组卡片共1张,A 组的三张分别写有数字2,4,6,B 组的两张分别写有3,1.它们除了数字外没有任何区别,随机从A 组抽取一张,求抽到数字为2的概率;随机地分别从A 组、B 组各抽取一张,请你用列表或画树状图的方法表示所有等可能的结果.现制定这样一个游戏规则:若选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.D 【解析】 【分析】根据正方体平面展开图的特征得出每个相对面,再由相对面上的两个数互为相反数可得出x 的值. 【详解】解:“3”与“-3”相对,“y”与“-2”相对,“x”与“-8”相对, 故x=8,故选D . 【点睛】本题主要考查了正方体相对面上的文字,解决本题的关键是要熟练掌握正方体展开图的特征. 2.D 【解析】 如图:∵AB=5,10ABC S =△, ∴D 4C =4, ∵5sin A =, ∴54DC AC AC ==,∴5∵在RT △AD 4C 中,D 44C =,AD=8, ∴A 4C 228445+=故答案为D. 3.D 【解析】试题分析:根据轴对称图形和中心对称图形的概念,可知:A既不是轴对称图形,也不是中心对称图形,故不正确;B不是轴对称图形,但是中心对称图形,故不正确;C是轴对称图形,但不是中心对称图形,故不正确;D即是轴对称图形,也是中心对称图形,故正确.故选D.考点:轴对称图形和中心对称图形识别4.B【解析】【分析】根据各超市降价的百分比分别计算出此商品降价后的价格,再进行比较即可得出结论.【详解】解:降价后三家超市的售价是:甲为(1-20%)2m=0.64m,乙为(1-40%)m=0.6m,丙为(1-30%)(1-10%)m=0.63m,∵0.6m<0.63m<0.64m,∴此时顾客要购买这种商品最划算应到的超市是乙.故选:B.【点睛】此题考查了列代数式,解题的关键是根据题目中的数量关系列出代数式,并对代数式比较大小.5.B【解析】试题解析:列表如下:∴共有20种等可能的结果,P (一男一女)=123=205. 故选B . 6.D 【解析】 【分析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得. 【详解】甲:数据7出现了2次,次数最多,所以众数为7, 排序后最中间的数是7,所以中位数是7,26778==65x ++++甲,()()()()()2222221S =26666767865⎡⎤⨯-+-+-+-+-⎣⎦甲=4.4,乙:数据8出现了2次,次数最多,所以众数为8, 排序后最中间的数是4,所以中位数是4,23488==55x 乙++++,()()()()()2222221S =25354585855乙⎡⎤⨯-+-+-+-+-⎣⎦=6.4,所以只有D 选项正确, 故选D. 【点睛】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键. 7.C 【解析】 【分析】根据等边三角形的性质可得出∠B=∠C=60°,由等角的补角相等可得出∠BAP=∠CPD ,进而即可证出△ABP ∽△PCD ,根据相似三角形的性质即可得出y=- 1ax 2+x ,对照四个选项即可得出. 【详解】∵△ABC 为等边三角形,∴∠B=∠C=60°,BC=AB=a ,PC=a-x . ∵∠APD=60°,∠B=60°,∴∠BAP+∠APB=120°,∠APB+∠CPD=120°, ∴∠BAP=∠CPD , ∴△ABP ∽△PCD ,∴CD PC BP AB =,即y a xx a-=, ∴y=-1ax 2+x. 故选C. 【点睛】考查了动点问题的函数图象、相似三角形的判定与性质,利用相似三角形的性质找出y=-1ax 2+x 是解题的关键. 8.A 【解析】 【分析】根据俯视图即从物体的上面观察得得到的视图,进而得出答案. 【详解】该几何体的俯视图是:.故选A . 【点睛】此题主要考查了几何体的三视图;掌握俯视图是从几何体上面看得到的平面图形是解决本题的关键. 9.B 【解析】 【分析】根据切线长定理进行求解即可. 【详解】∵△ABC 的内切圆⊙O 与AB ,BC ,CA 分别相切于点D ,E ,F , ∴AF =AD =2,BD =BE ,CE =CF , ∵BE+CE =BC =5, ∴BD+CF =BC =5,∴△ABC 的周长=2+2+5+5=14, 故选B . 【点睛】本题考查了三角形的内切圆以及切线长定理,熟练掌握切线长定理是解题的关键. 10.A 【解析】 【分析】根据x 1、x 1与对称轴的大小关系,判断y 1、y 1的大小关系.【详解】解:∵y=-1x1-8x+m,∴此函数的对称轴为:x=-b2a =-()-82-2⨯=-1,∵x1<x1<-1,两点都在对称轴左侧,a<0,∴对称轴左侧y随x的增大而增大,∴y1<y1.故选A.【点睛】此题主要考查了函数的对称轴求法和函数的单调性,利用二次函数的增减性解题时,利用对称轴得出是解题关键.二、填空题(本题包括8个小题)11.1【解析】【分析】本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价﹣每件进价.再根据所列二次函数求最大值.【详解】解:设利润为w元,则w=(20﹣x)(x﹣10)=﹣(x﹣1)2+25,∵10≤x≤20,∴当x=1时,二次函数有最大值25,故答案是:1.【点睛】本题考查了二次函数的应用,此题为数学建模题,借助二次函数解决实际问题.12.x≠1【解析】【分析】根据分母不等于0,可以求出x的范围;【详解】解:(1)x-1≠0,解得:x≠1;故答案是:x≠1,【点睛】考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.3(x﹣y)1【解析】试题分析:原式提取3,再利用完全平方公式分解即可,得到3x1﹣6xy+3y1=3(x1﹣1xy+y1)=3(x﹣y)1.考点:提公因式法与公式法的综合运用14.-3<x<1【解析】试题分析:根据抛物线的对称轴为x=﹣1,一个交点为(1,0),可推出另一交点为(﹣3,0),结合图象求出y>0时,x的范围.解:根据抛物线的图象可知:抛物线的对称轴为x=﹣1,已知一个交点为(1,0),根据对称性,则另一交点为(﹣3,0),所以y>0时,x的取值范围是﹣3<x<1.故答案为﹣3<x<1.考点:二次函数的图象.15.-1【解析】【分析】先求出8a+6b的值,然后整体代入进行计算即可得解.【详解】∵4a+3b=1,∴8a+6b=2,8a+6b-3=2-3=-1;故答案为:-1.【点睛】本题考查了代数式求值,整体思想的利用是解题的关键.16.x>1【解析】【分析】首先分别求出两个不等式的解集,再根据大大取大确定不等式组的解集.【详解】。