工程机械设计中力学公式
- 格式:doc
- 大小:581.05 KB
- 文档页数:11
机械设计基础公式概念大全一、材料力学基础公式1.应力公式:材料的应力定义为单位面积上的力,常用公式为:σ=F/A,其中σ为应力,F为作用力,A为横截面积。
2.应变公式:材料的应变定义为单位长度变化量,常用公式为:ε=ΔL/L0,其中ε为应变,ΔL为长度变化量,L0为原长度。
3.模量公式:材料的模量定义为应力和应变的比值,常用公式为:E=σ/ε,其中E为模量,σ为应力,ε为应变。
二、机械设计基础公式1.转矩公式:转矩是指力对物体产生的转动效果,常用公式为:T=F×r,其中T为转矩,F为力,r为力臂的长度。
2.功率公式:机械设备的功率定义为单位时间内做功的能力,常用公式为:P=W/t,其中P为功率,W为做的功,t为时间。
3.速度公式:速度是指物体在单位时间内移动的距离,常用公式为:v=s/t,其中v为速度,s为距离,t为时间。
三、传动基础公式1.推力公式:推力是指传动装置中由于力的作用而产生的推动力,常用公式为:F=P/(N×η),其中F为推力,P为功率,N为转速,η为效率。
2.齿轮传动公式:齿轮的传动比定义为从动齿轮齿数与主动齿轮齿数的比值,常用公式为:i=Z2/Z1,其中i为传动比,Z2为从动齿轮齿数,Z1为主动齿轮齿数。
3.带传动公式:带传动的传动比定义为小轮直径与大轮直径的比值,常用公式为:i=d2/d1,其中i为传动比,d2为小轮直径,d1为大轮直径。
四、力学基础概念1.惯性:物体保持静止或匀速直线运动的性质。
2.动量:物体运动的能量,表示为物体质量与速度乘积的大小。
3.冲量:引起物体速度变化的力乘以作用时间。
4.能量:物体具有的做功的能力。
5.功:力对物体的移动所做的工作。
以上只是机械设计基础公式和概念的一部分,机械设计中还有许多其他重要的公式和概念,如静力学、动力学、挠曲和弯曲等。
掌握这些基础公式和概念能够帮助机械设计师更好地进行设计计算和分析,为机械设备的设计提供准确和可靠的依据。
摩擦扭矩计算公式摩擦扭矩计算公式是工程力学中常用的公式之一,用于计算在旋转运动中由于摩擦力产生的扭矩大小。
摩擦扭矩是指在两个接触面之间由于摩擦力而产生的扭矩。
在工程实践中,摩擦扭矩的计算对于设计和分析各种旋转装置和机械结构都具有重要意义。
摩擦扭矩计算公式的一般形式为:T = μ * F * r其中,T表示摩擦扭矩,μ表示动摩擦系数,F表示垂直于接触面的力的大小,r表示力的作用点到旋转轴的距离。
在实际应用中,摩擦扭矩的计算需要考虑多个因素,如接触面的材料特性、接触面的形状和尺寸、力的方向和大小等。
下面将分别介绍这些因素对摩擦扭矩的影响。
1. 动摩擦系数:动摩擦系数是衡量两个接触面之间的摩擦程度的参数,它反映了接触面的粗糙度和润滑状态等因素。
一般来说,动摩擦系数越大,摩擦扭矩也越大。
因此,在设计中需要选择合适的材料和润滑方式,以降低摩擦扭矩。
2. 接触面的形状和尺寸:接触面的形状和尺寸对于摩擦扭矩的大小有重要影响。
当接触面的面积增大时,摩擦扭矩也会相应增大。
同时,接触面的形状也会影响摩擦扭矩的分布情况。
例如,当接触面是圆柱形时,摩擦扭矩主要集中在接触面的边缘。
3. 力的方向和大小:力的方向和大小对于摩擦扭矩的计算至关重要。
一般来说,力的方向与旋转轴的夹角越大,摩擦扭矩也越大。
此外,力的大小也会直接影响摩擦扭矩的大小。
当力增大时,摩擦扭矩也会相应增大。
在实际应用中,摩擦扭矩的计算需要综合考虑以上因素。
通常情况下,可以通过实验或数值模拟的方法来确定摩擦扭矩的大小。
在实验中,可以通过在实际装置中施加不同大小的力来测量摩擦扭矩。
而在数值模拟中,可以通过建立适当的模型和应用计算机仿真方法来求解摩擦扭矩。
总结起来,摩擦扭矩计算公式是工程力学中重要的计算工具,用于确定旋转装置和机械结构中由于摩擦力产生的扭矩大小。
在实际应用中,需要考虑动摩擦系数、接触面的形状和尺寸、力的方向和大小等因素。
通过实验或数值模拟的方法,可以确定摩擦扭矩的大小,从而为工程设计和分析提供依据。
工程力学抗扭刚度计算公式引言。
在工程力学中,抗扭刚度是指材料或结构在受到扭转力作用时所表现出的抵抗扭转变形的能力。
抗扭刚度的计算对于设计和分析各种工程结构和机械元件都具有重要意义。
本文将从理论和公式两个方面介绍抗扭刚度的计算方法。
理论基础。
在进行抗扭刚度计算之前,首先需要了解一些基本的理论知识。
在工程力学中,材料或结构受到扭转力矩时会发生扭转变形,而扭转变形的大小与受到的扭转力矩成正比。
根据弹性力学理论,扭转变形与扭转力矩之间的关系可以用以下公式表示:θ = T/Gl。
其中,θ为扭转角度,T为扭转力矩,G为剪切模量,l为材料或结构的长度。
从上述公式可以看出,扭转角度与扭转力矩成正比,而与材料或结构的长度和剪切模量成反比。
因此,要提高材料或结构的抗扭刚度,可以通过增加剪切模量或减小长度来实现。
抗扭刚度计算公式。
在实际工程中,为了方便计算和分析,通常会使用一些简化的公式来计算抗扭刚度。
对于圆形截面的材料或结构,抗扭刚度可以用以下公式表示:J = (πr^4)/2。
其中,J为抗扭刚度,r为圆形截面的半径。
从上述公式可以看出,抗扭刚度与圆形截面的半径的四次方成正比。
因此,要提高材料或结构的抗扭刚度,可以通过增加圆形截面的半径来实现。
对于非圆形截面的材料或结构,抗扭刚度的计算则会更加复杂。
一般情况下,可以使用以下公式来计算非圆形截面的抗扭刚度:J = ∫(r^2)dA。
其中,J为抗扭刚度,r为截面上任意一点到截面中心的距离,dA为截面上的微元面积。
从上述公式可以看出,抗扭刚度可以通过对截面上的微元面积进行积分来计算。
这种方法虽然比较复杂,但可以适用于各种形状的截面。
应用举例。
为了更好地理解抗扭刚度的计算方法,下面将通过一个简单的应用举例来说明。
假设有一根圆形截面的钢杆,其半径为10mm,长度为1m。
现在需要计算该钢杆的抗扭刚度。
根据上述公式,可以得到该钢杆的抗扭刚度为:J = (π(10mm)^4)/2 = 785.4mm^4。
轴向拉压杆件内力计算公式在工程力学中,轴向拉压杆件是一种常见的结构元件,它在工程实践中被广泛应用于各种机械设备和建筑结构中。
轴向拉压杆件内力计算公式是用来计算轴向拉压杆件在受力作用下内部产生的拉力或压力的公式,它是工程设计和分析中非常重要的一部分。
在本文中,我们将介绍轴向拉压杆件内力计算公式的推导和应用,希望能够帮助读者更好地理解和应用这一重要的工程知识。
一、轴向拉压杆件的受力分析。
轴向拉压杆件是一种受拉或受压的结构元件,它通常由材料制成,具有一定的截面形状和尺寸。
当轴向拉压杆件受到外部力的作用时,内部会产生拉力或压力,这种内力的大小和方向是由外部力和结构本身的特性共同决定的。
在进行轴向拉压杆件的内力计算时,需要先进行受力分析,确定受力情况和受力方向。
通常情况下,轴向拉压杆件受到的外部力可以分为两种情况,拉力和压力。
对于受拉的轴向拉压杆件,外部力的方向和内部拉力的方向相同;对于受压的轴向拉压杆件,外部力的方向和内部压力的方向相反。
在受力分析的基础上,可以得到轴向拉压杆件内力计算的基本公式:N = A σ。
其中,N为轴向拉压杆件的内力,A为截面积,σ为应力。
根据受力分析的结果,可以确定σ的正负号,从而确定N的正负号,进而确定内力的方向。
二、轴向拉压杆件内力计算公式的推导。
1. 受拉的轴向拉压杆件。
对于受拉的轴向拉压杆件,外部拉力的方向和内部拉力的方向相同,因此内力的大小可以直接由外部拉力计算得到。
假设外部拉力为P,截面积为A,根据胡克定律,可以得到应力σ=P/A,进而得到内力N=P。
因此,受拉的轴向拉压杆件内力计算公式为:N = P。
2. 受压的轴向拉压杆件。
对于受压的轴向拉压杆件,外部压力的方向和内部压力的方向相反,因此内力的大小需要考虑结构的稳定性。
假设外部压力为P,截面积为A,根据胡克定律,可以得到应力σ=P/A,进而得到内力N=P。
然而,受压的轴向拉压杆件在实际应用中往往需要考虑结构的稳定性,因此需要引入材料的材料的屈服强度和稳定性系数,从而得到更加精确的内力计算公式。
设计过程及计算一、提升装置提升力(伸长力)计算因活塞两侧受力面积相等,所以,F 提升=F 伸长=P ·A =P ·[0.25×π×(D 22 –D 12)]=35MPa ×[0.25×3.14×(1662-95.52)]mm 2 =506522N ≈506.5KNF 提升>500KN ,满足设计要求。
式中:● P :提升装置额定工作压力,取35MPa ● F 提升 :提升装置额定提升力,单位N ● F 伸长:提升装置额定伸长力,单位N● A :受力面积,单位mm 2 ● D1:受力面外径,为166mm ● D2:受力面内径,为95.5mm二、传压管耐压强度校核1、传压管抗内压强度校核根据套管(D/δ>14)抗内压计算公式Dn P sδσ2=,得 )(4.4835875.02183352mm n PD s =⨯⨯⨯==σδ, δ小于实际设计壁厚8.5mm ,满足抗内压强度要求。
式中:● Pmax :管内最高工作压力,单位MPa ,此处取Pmax =35MPa ● D :管外径,单位mm● σs :材料屈服极限,单位MPa ,材料为35CrMo ,取σs =835MPa ● P :管子抗内压强度的压力,单位MPa ,● n :安全系数,一般按壁厚的12.5%的负公差,取n =0.8752、传压管抗外压强度校核根据套管(D/δ>14)抗外压计算公式)046.0/503.2(-=δσD n P s ,得 =+=503.2/)]046.0([sn P D σδ7.44mmδ小于实际设计壁厚8.5mm ,满足抗外压强度要求。
式中:● Pmax :管内最高工作压力,单位MPa ,此处取Pmax =35 MPa ● D :管外径,单位mm● σs :材料屈服极限,单位MPa ,材料为35CrMo ,取σs =835MPa ● P :管子抗外压强度的压力,单位MPa , ● n :安全系数,取n =0.75三、下壳体耐压强度校核1、下壳体抗内压强度校核根据套管(D/δ>14)抗内压计算公式Dn P sδσ2=,得 )(91.4835875.02205352mm n PD s =⨯⨯⨯==σδ, δ小于实际设计壁厚10mm ,满足抗内压强度要求。
材料力学常用公式1.外力偶矩计算公式(P功率,n转速)2.弯矩、剪力和荷载集度之间的关系式3.轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力F N,横截面面积A,拉应力为正)4.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x 轴正方向逆时针转至外法线的方位角为正)5.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1)6.纵向线应变和横向线应变7.泊松比8.胡克定律9.受多个力作用的杆件纵向变形计算公式?10.承受轴向分布力或变截面的杆件,纵向变形计算公式11.轴向拉压杆的强度计算公式12.许用应力,脆性材料,塑性材料13.延伸率14.截面收缩率15.剪切胡克定律(切变模量G,切应变g )16.拉压弹性模量E、泊松比和切变模量G之间关系式17.圆截面对圆心的极惯性矩(a)实心圆(b)空心圆18.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r)19.圆截面周边各点处最大切应力计算公式20.扭转截面系数,(a)实心圆(b)空心圆21.薄壁圆管(壁厚δ≤ R0 /10 ,R0为圆管的平均半径)扭转切应力计算公式22.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关系式23.同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时或24.等直圆轴强度条件25.塑性材料;脆性材料26.扭转圆轴的刚度条件? 或27.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式,28.平面应力状态下斜截面应力的一般公式,29.平面应力状态的三个主应力,,30.主平面方位的计算公式31.面内最大切应力32.受扭圆轴表面某点的三个主应力,,33.三向应力状态最大与最小正应力,34.三向应力状态最大切应力35.广义胡克定律36.四种强度理论的相当应力37.一种常见的应力状态的强度条件,38.组合图形的形心坐标计算公式,39.任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式40.截面图形对轴z和轴y的惯性半径? ,41.平行移轴公式(形心轴z c与平行轴z1的距离为a,图形面积为A)42.纯弯曲梁的正应力计算公式43.横力弯曲最大正应力计算公式44.矩形、圆形、空心圆形的弯曲截面系数? ,,45.几种常见截面的最大弯曲切应力计算公式(为中性轴一侧的横截面对中性轴z的静矩,b为横截面在中性轴处的宽度)46.矩形截面梁最大弯曲切应力发生在中性轴处47.工字形截面梁腹板上的弯曲切应力近似公式48.轧制工字钢梁最大弯曲切应力计算公式49.圆形截面梁最大弯曲切应力发生在中性轴处50.圆环形薄壁截面梁最大弯曲切应力发生在中性轴处51.弯曲正应力强度条件52.几种常见截面梁的弯曲切应力强度条件53.弯曲梁危险点上既有正应力σ又有切应力τ作用时的强度条件或,54.梁的挠曲线近似微分方程55.梁的转角方程56.梁的挠曲线方程?57.轴向荷载与横向均布荷载联合作用时杆件截面底部边缘和顶部边缘处的正应力计算公式58.偏心拉伸(压缩)59.弯扭组合变形时圆截面杆按第三和第四强度理论建立的强度条件表达式,60.圆截面杆横截面上有两个弯矩和同时作用时,合成弯矩为61.圆截面杆横截面上有两个弯矩和同时作用时强度计算公式62.63.弯拉扭或弯压扭组合作用时强度计算公式64.剪切实用计算的强度条件65.挤压实用计算的强度条件66.等截面细长压杆在四种杆端约束情况下的临界力计算公式67.压杆的约束条件:(a)两端铰支μ=l(b)一端固定、一端自由μ=2(c)一端固定、一端铰支μ=0.7(d)两端固定μ=0.568.压杆的长细比或柔度计算公式,69.细长压杆临界应力的欧拉公式70.欧拉公式的适用范围71.压杆稳定性计算的安全系数法22cm/kgfm/kgf、工程单位制:线应变单位长度上的变形量,无量纲,其物理意义是构件上一点沿某一方向变形量的大小。
额定轴输出功率计算公式在机械工程中,额定轴输出功率是一个非常重要的参数,它用来衡量机械设备的输出能力和性能。
额定轴输出功率是指在额定工作条件下,机械设备所能输出的功率大小。
计算额定轴输出功率的公式是一个基本的工程计算公式,在机械设计和工程实践中得到了广泛的应用。
额定轴输出功率的计算公式为:P = T ω。
其中,P为额定轴输出功率,单位为瓦特(W);T为输出扭矩,单位为牛顿·米(N·m);ω为角速度,单位为弧度/秒(rad/s)。
在这个公式中,输出扭矩T是机械设备输出的力矩,它是由驱动装置(比如电机)传递给机械设备的力矩。
角速度ω则是机械设备的转速,它是描述机械设备转动速度快慢的物理量。
通过这个公式,我们可以很容易地计算出机械设备的额定轴输出功率。
在实际工程中,我们常常需要根据机械设备的设计参数和工作条件来计算额定轴输出功率,以便评估机械设备的性能和选型。
在实际工程中,我们还可以根据额定轴输出功率的计算公式,进行一些衍生的工程计算。
比如,我们可以通过测量机械设备的输出扭矩和转速,来验证机械设备的额定轴输出功率是否符合设计要求;我们还可以根据额定轴输出功率的计算公式,来进行机械设备的动力学分析和优化设计。
除了机械设备的设计和工程实践,额定轴输出功率的计算公式还在工业生产和制造领域得到了广泛的应用。
比如,在汽车制造和船舶工程中,我们常常需要计算发动机的额定轴输出功率,以评估车辆或船舶的动力性能和燃油经济性;在风力发电和水力发电领域,我们也需要根据涡轮机的输出扭矩和转速来计算额定轴输出功率,以评估发电机组的发电能力和效率。
总之,额定轴输出功率的计算公式是一个非常重要的工程计算公式,在机械工程、汽车制造、船舶工程、风力发电、水力发电等领域都得到了广泛的应用。
通过这个公式,我们可以很方便地计算出机械设备的额定轴输出功率,从而评估机械设备的性能和选型,进行动力学分析和优化设计,以及评估发电机组的发电能力和效率。
机械设计功率计算公式《机械设计功率计算公式》随着现代工业的快速发展,机械设备在各个领域得到广泛应用。
而在机械设计中,计算功率是必不可少的一项关键任务。
各种机械设备的功率计算公式基于不同的工作原理和物理性质,但都具有一定的相似性和通用性。
本文将介绍一些常见的机械设计功率计算公式。
机械设计中的功率计算公式可以分为两类:机械动力学功率计算和流体机械功率计算。
在机械动力学中,最基本的功率计算公式是力乘以速度,即P = Fv。
该公式适用于静止或直线运动的机械设备。
其中,P为功率,单位为瓦特(W)或千瓦(kW);F为作用力,单位为牛顿(N);v为速度,单位为米/秒(m/s)。
对于旋转设备,功率的计算需要考虑转速的影响。
这时可以使用公式P = Tω,其中P为功率,T为扭矩(或转矩),单位为牛顿·米(N·m)或千牛·米(kN·m),ω为角速度,单位为弧度/秒(rad/s)。
这个公式适用于转轴上的力和速度连续变化的情况。
流体机械的功率计算公式有一些特殊之处。
例如,对于离心泵,功率可由公式P = ρQHη计算,其中P为功率,ρ为流体密度,单位为千克/立方米(kg/m^3);Q为流量,单位为立方米/秒(m^3/s);H为扬程,单位为米(m);η为泵的效率,取值范围一般在0.5到0.9之间。
另一个例子是压缩机的功率计算公式,即P = QHη/360,其中P为功率,Q为流量,H为扬程,η为压缩机的效率,取值范围一般在0.5到0.9之间。
由于流量和扬程的单位一般是立方米/小时(m^3/h),所以公式中除以了360,将流量单位转换为立方米/秒。
需要注意的是,以上只是一些常见的机械设计功率计算公式,实际应用中可能还会涉及到更加复杂的情况。
对于特定的机械设备,为了准确计算功率,可能需要考虑更多的因素,如摩擦、阻力、电机效率等。
因此,工程师在进行机械设计时,应根据具体情况选择适合的功率计算公式,并合理考虑各种因素的影响,以确保设计的效果和性能符合要求。
机械设计要背的公式知识点机械设计是机械工程学科的重要组成部分,是涉及机械工程设计、制造与应用方面的一门学科。
在进行机械设计时,掌握并熟练运用各种公式是至关重要的。
本文将简要介绍机械设计中需要背诵的一些公式知识点。
一、静力学公式知识点1. 牛顿第二定律F = ma其中,F表示作用在物体上的力,m表示物体的质量,a表示物体的加速度。
2. 重力公式F = mg其中,F表示物体所受的重力,m表示物体的质量,g表示重力加速度。
3. 应力与应变关系σ = Eε其中,σ表示应力,E表示弹性模量,ε表示应变。
4. 复合材料的应力计算公式σ = Qε其中,σ表示应力,Q表示材料的弹性性能指标,ε表示应变。
5. 轴的刚度计算公式k = (π/64)Gd^4/L其中,k表示刚度,G表示剪切模量,d表示轴的直径,L表示轴的长度。
6. 齿轮传动的传动比计算公式i = (N2/N1) = (ω1/ω2) = (d1/d2)其中,i表示传动比,N表示齿轮的齿数,ω表示齿轮的角速度,d表示齿轮的直径。
二、动力学公式知识点1. 线速度公式v = ωr其中,v表示线速度,ω表示角速度,r表示半径。
2. 动量定理FΔt = Δmv其中,F表示作用在物体上的力,Δt表示作用时间,Δm表示物体的质量变化,v表示物体的速度。
3. 力矩公式M = Fd其中,M表示力矩,F表示作用力,d表示力臂长度。
4. 动能定理ΔE = W其中,ΔE表示动能的变化量,W表示作用在物体上的功。
5. 齿轮传动的转矩计算公式T1/T2 = d1/d2其中,T表示转矩,d表示齿轮的直径。
6. 转动惯量公式I = m*r^2其中,I表示转动惯量,m表示物体的质量,r表示旋转轴到物体质心的距离。
三、流体力学公式知识点1. 压力公式P = F/A其中,P表示压力,F表示作用力,A表示受力面积。
2. 流体的连续性方程A1v1 = A2v2其中,A表示流体通道横截面积,v表示流体的速度。
机械设计机械设计总论考研公式大全机械设计是工程科学的一个重要分支,它涉及到机械结构的设计与分析。
在机械设计的学习和研究过程中,掌握一些基本的公式和定理是非常重要的。
这些公式和定理可以帮助我们更好地理解机械设计原理,解决实际工程中的问题。
一、静力学基础公式1. 刚体平衡条件:∑F = 0∑M = 02. 力矩公式:M = F * d3. 力矩平衡条件:∑M = 04. 弹簧的胡克定律:F = k * x5. 最大摩擦力:F_max = μ * N二、材料力学基础公式1. 应力:σ = F / A2. 应变:ε = ΔL / L3. 震裂应力:σ_f = K * √(π * a)4. 疲劳破坏强度:S = S_e / (1+K_b * S_e * (1/N)^b)5. 韧性:U = Wc / Ac三、机械传动基础公式1. 齿轮传动比:i = N1 / N22. 齿轮传动效率:η = (1 - (1/εa) * (Z1/Z2)) * 100%3. 带传动速比:i = N1 / N24. 带传动效率:η = (T1 - T2) / T1五、机械设计基础公式1. 材料厚度计算:t = K * (F * L) / (σ * W * H)2. 螺栓抗拉强度:σ_a = F / A3. 螺栓抗剪强度:τ = F / A4. 轴的转矩计算:T = F * r这些公式只是机械设计中的一部分,还有很多其他重要的公式和定理。
在学习和应用中,我们需要根据具体的情况选择合适的公式,结合实际工程进行运用。
希望以上机械设计公式对你有所帮助,祝你学习进步!。
动量矩定理公式动量矩定理公式是经典力学中最为重要的定理之一,也是描述质点、力和角动量之间关系的基本公式。
它在物理学和工程学中的应用非常广泛,例如在机械设计中,我们需要利用动量矩定理公式来计算旋转惯量、角加速度等参数,以便进行机器的性能设计和优化。
在本文中,我们将深入探讨动量矩定理公式的含义、意义和应用。
一、动量矩定理的定义动量矩定理公式是描述质点或物体角动量的变化率与施加于物体的力矩之间的关系。
在经典力学中,动量矩定理的形式可以表示为:L = Iω其中,L 表示物体的角动量,I 表示物体的旋转惯量,ω 表示物体的角速度。
动量矩定理的本质是质点或物体的动量守恒定律和角动量守恒定律的延伸和综合。
动量守恒定律和角动量守恒定律分别是描述质点和物体在运动过程中动量和角动量不变的规律。
而动量矩定理则是将它们集成在一起,明确了物体动量和角动量与施加于它的力和力矩之间的关系。
在动量矩定理中,旋转惯量起到了很重要的作用。
旋转惯量是物体绕不同轴旋转时所具有的转动惯性,是物体旋转惯性的度量。
不同形状和密度的物体,其旋转惯量也会有所不同。
例如,某个物体绕它的质心旋转时,它的旋转惯量是最小的。
因为在质心系下,物体的动量为零,只有转动部分的动量和角动量。
二、动量矩定理的应用动量矩定理的具体应用非常广泛。
下面将分别就质点的动量矩定理、刚体的动量矩定理以及动量与角动量的守恒作一些说明。
1. 质点的动量矩定理对于一个质量为 m 的质点,在施加力 F 时,它的动量矩定理为:Ft = Δ(mv)其中,Ft 为施加于物体上的力矩,v 表示质点的速度,Δ(mv) 表示质点动量的变化。
2. 刚体的动量矩定理对于一个刚体在施加力矩 M 时,它的动量矩定理可以表示为:M = Iα其中,M 为施加于刚体上的力矩,I 表示刚体的转动惯量,α 表示刚体的角加速度。
在实际应用中,我们经常需要利用动量矩定理来计算旋转惯量、角加速度等参数。
例如,当我们想设计一个能够快速旋转的机器时,就需要通过动量矩定理来确定机器的转动惯量和角加速度等参数,并根据这些参数来设计机器的各个部分。
机械设计知识点口诀机械设计是一门涉及多个学科的综合性工程学科,它在工业制造中起着重要的作用。
为了帮助学习者更好地掌握机械设计的基本知识点,下面将为大家总结一些机械设计知识点的口诀,希望对大家的学习有所帮助。
1. 材料选择:优环保,强韧性,便加工,降成本。
杂种铝,碳纤维,塑料棉,钢铁铜。
2. 力学公式:力等于质量乘加速度,弯矩等于力乘距离。
压弯扭剪,拉伸压缩,设计合理,保安全。
3. 运动副分类:平动回转,回转平动,回转回转,平动平动。
滚子轴承,滑动轴承,齿轮传动,机构构造。
4. 运动分析:速度位置,加速度,相互运动,力的传递。
好机构,稳精度,力平衡,牛顿定律。
5. 传动链设计:齿轮带链,带齿轮链,摩擦带链,胶带联结。
传动比,传动效率,工作可靠,操作简易。
6. 零部件设计:标准件选择,设计合理,加工容易,尺寸精确。
轴承支撑,紧固件固定,润滑副润滑,密封防护。
7. 结构强度:式计应力,研材料强度,安全系数,可靠性。
疲劳寿命,预紧压力,刚度系数,结构轻量。
8. 制造工艺:图纸设计,加工工艺,装配顺序,质量控制。
加工精度,设备选型,工艺先进,工期缩短。
9. 试验验证:载荷试验,振动试验,温湿试验,可靠性试验。
数据分析,结论总结,改进优化,产品成功。
10. 创新发展:掌握基础知识,开拓思维,勇于探索,不断创新。
学以致用,实践经验,发现问题,解决难题。
以上是一些机械设计知识点的口诀,通过无压力的背诵和记忆,能够帮助大家更好地理解和掌握机械设计的基本知识。
希望这些口诀能够对大家的学习和工作有所帮助,让我们一起努力,成为优秀的机械设计师!。
设计过程及计算一、提升装置提升力(伸长力)计算因活塞两侧受力面积相等,所以,F 提升=F 伸长=P ·A =P ·[0.25×π×(D 22 –D 12)]=35MPa ×[0.25×3.14×(1662-95.52)]mm 2 =506522N ≈506.5KNF 提升>500KN ,满足设计要求。
式中:● P :提升装置额定工作压力,取35MPa ● F 提升 :提升装置额定提升力,单位N ● F 伸长:提升装置额定伸长力,单位N● A :受力面积,单位mm 2 ● D1:受力面外径,为166mm ● D2:受力面内径,为95.5mm二、传压管耐压强度校核1、传压管抗内压强度校核根据套管(D/δ>14)抗内压计算公式Dn P sδσ2=,得 )(4.4835875.02183352mm n PD s =⨯⨯⨯==σδ, δ小于实际设计壁厚8.5mm ,满足抗内压强度要求。
式中:● Pmax :管内最高工作压力,单位MPa ,此处取Pmax =35MPa ● D :管外径,单位mm● σs :材料屈服极限,单位MPa ,材料为35CrMo ,取σs =835MPa ● P :管子抗内压强度的压力,单位MPa ,● n :安全系数,一般按壁厚的12.5%的负公差,取n =0.8752、传压管抗外压强度校核根据套管(D/δ>14)抗外压计算公式)046.0/503.2(-=δσD n P s ,得 =+=503.2/)]046.0([sn PD σδ7.44mm δ小于实际设计壁厚8.5mm ,满足抗外压强度要求。
式中:● Pmax :管内最高工作压力,单位MPa ,此处取Pmax =35 MPa ● D :管外径,单位mm● σs :材料屈服极限,单位MPa ,材料为35CrMo ,取σs =835MPa ● P :管子抗外压强度的压力,单位MPa , ● n :安全系数,取n =0.75三、下壳体耐压强度校核1、下壳体抗内压强度校核根据套管(D/δ>14)抗内压计算公式Dn P sδσ2=,得 )(91.4835875.02205352mm n PD s =⨯⨯⨯==σδ, δ小于实际设计壁厚10mm ,满足抗内压强度要求。
机械设计机械设计总论考研公式大全机械设计是机械工程领域中的重要学科,它研究的是机械结构的设计原理、实施方法及设计过程中所需的基本公式。
在考研复习中,熟练掌握机械设计相关公式是非常重要的。
下面将为大家整理一份机械设计总论考研公式大全,希望能帮助考生能够更好地备战机械设计考试。
一、材料力学基础公式1. 应力公式(1)正应力公式:\sigma = \frac{F}{A}(2)剪应力公式:\tau = \frac{F}{A}2. 应变公式(1)正应变公式:\varepsilon = \frac{\Delta l}{l}(2)剪应变公式:\gamma = \frac{\Delta x}{L}3. 四大弹性常数(1)杨氏模量:E = \frac{\sigma}{\varepsilon}(2)剪切模量:G = \frac{\tau}{\gamma}(3)泊松比:\nu = -\frac{\varepsilon_l}{\varepsilon_t}(4)线胀系数:\alpha = \frac{\Delta l}{l\Delta t}二、零件设计相关公式1. 轴类零件设计公式(1)挠度公式:\delta = \frac{4F \cdot l^3}{3E \cdot \pi d^4}(2)弯矩公式:M = \frac{4F \cdot l}{\pi d^3}(3)轴的挠曲强度计算公式:\sigma = \frac{M\cdot d}{2W}2. 联接设计公式(1)螺纹联接轴承力计算公式:F = \frac{T \cdot K_s}{d_p}(2)销联接轴承力计算公式:F = \frac{T}{r}三、机构设计相关公式1. 连杆机构设计公式(1)四杆机构综合误差计算公式:\Delta = \sqrt{\Delta x^2 + \Delta y^2}(2)摆线轮轮廓设计公式:x = r(\theta - \sin\theta)2. 凸轮机构设计公式(1)凸轮传动角速度公式:\omega_2 = \omega_1 \cdot \frac{N_1}{N_2}(2)凸轮径向力计算公式:F_r = F_t \cdot \tan\alpha以上是关于机械设计总论考研公式大全的部分内容,这些公式是机械设计领域中的基础公式,掌握这些公式对于考研复习非常关键。
机械原理公式机械原理是研究机械运动和力学性质的一门学科,它是现代工程学的基础,对于理解和设计各种机械设备至关重要。
在机械原理的学习过程中,掌握和运用各种机械原理公式是非常重要的,下面将介绍一些常见的机械原理公式。
1. 力的平衡公式。
在静力学中,力的平衡是一个基本概念,它描述了物体受到的各个力之间的平衡关系。
力的平衡公式可以用来解决各种静力学问题,其表达式为ΣF = 0,即所有作用在物体上的力的合力为零。
这个公式在工程学中有着广泛的应用,可以用来分析各种机械结构的受力情况。
2. 动能公式。
动能是描述物体运动状态的物理量,它与物体的质量和速度有关。
动能公式可以用来计算物体的动能,其表达式为 K = 0.5mv^2,其中 K 为动能,m 为物体的质量,v 为物体的速度。
这个公式在机械工程中常常用来计算机械设备的动能,对于设计和优化机械系统具有重要意义。
3. 力的功率公式。
在机械系统中,力的功率是描述力对物体做功的物理量,它与力的大小和物体的速度有关。
力的功率公式可以用来计算力对物体做功的功率,其表达式为 P = Fv,其中 P 为功率,F 为力的大小,v 为物体的速度。
这个公式在机械工程中常常用来评估机械设备的工作性能,对于提高机械设备的效率具有重要意义。
4. 力的合成与分解公式。
在机械系统中,常常会出现多个力共同作用在一个物体上的情况,此时需要用力的合成与分解公式来分析这些力的合成效果。
力的合成与分解公式可以用来计算多个力的合成结果,其表达式为 Fx = F1 + F2 + ... + Fn,Fy = F1sinθ1 + F2sinθ2+ ... + Fnsinθn,其中 Fx 和 Fy 分别为合成后的力在 x 和 y 方向上的分量,F1、F2...Fn 分别为各个力的大小,θ1、θ2...θn 分别为各个力与 x 轴的夹角。
这个公式在机械设计中常常用来分析和优化机械结构的受力情况。
5. 力矩公式。
机械设计机械设计总论考研公式大全机械设计是机械工程的重要分支之一,其涉及到各种机械元件的设计、计算和应用。
在考研阶段,掌握相关的机械设计公式是非常重要的。
下面将介绍一份关于机械设计的考研公式大全,以帮助考生更好地备考。
一、静力学基础公式1. 力的平衡条件ΣF=02. 力矩的平衡条件ΣM=03. 螺距公式S=πd4. 平面受力分析Fx=RcosθFy=Rsinθ5. 空间受力分析Fx=RcosαcosβFy=RcosαsinβFz=Rsinα6. 计算力矩M=Fd7. 冲击力计算F=mv/t二、材料力学公式1. 应力计算σ=F/A2. 应变计算ε=ΔL/L3. 弹性模量计算E=σ/ε4. 塑性变形计算δ=ΔL5. 疲劳强度计算σm=(σa+σm)/26. 弯曲应力计算σ=M*c/I三、轴类零件设计公式1. 轴的弯矩计算M=π/32*σ*(d^3)2. 轴的转角计算θ=TL/GJ3. 轴的循环弯曲应力计算σa=(4M)/(πd^3)4. 轴的疲劳强度计算σm=(σa+σm)/2四、联接零件设计公式1. 螺纹强度计算σt=F/(π*d^2/4)2. 螺母受力计算F=π*σt*d^2/43. 锥面连接强度计算σt=4F/(π*d^2)五、传动机构设计公式1. 齿轮传动比计算i=n1/n2=d2/d1=z2/z12. 直齿轮传动计算P=2π*ω*T3. 带传动弧长计算L=(π/2)*(D+d+2C)以上是关于机械设计的考研公式大全,希望对考生备考有所帮助。
在备考过程中,可以结合这些公式进行练习和应用,加深对机械设计知识的理解和掌握。
机械设计基础掌握机械力学基本公式在机械设计中,掌握机械力学基本公式是非常重要的。
机械力学是研究物体力学特性和相互作用的力学学科,通过运用基本公式可以解决机械系统的力学问题。
本文将介绍几个重要的机械力学基本公式,以及它们在机械设计中的应用。
1. 牛顿第二定律牛顿第二定律是机械力学的基础,它描述了物体受力运动的规律。
根据牛顿第二定律,物体所受的合力等于物体的质量乘以加速度,可以用以下公式表示:F = m * a其中F表示合力,m表示物体的质量,a表示物体的加速度。
这个公式在机械设计中经常用于计算物体所受的合力或加速度。
2. 力的合成力的合成是机械力学中常见的问题之一。
当一个物体同时作用多个力时,可以将这些力合成为一个合力。
根据力的合成原理,可以使用以下公式进行计算:F = √(Fx² + Fy²)其中F表示合力,Fx和Fy表示分力。
这个公式可以帮助工程师计算多个力的合力方向和大小。
3. 力矩力矩是描述力在物体上产生转动效果的物理量。
力矩可以用以下公式计算:M = F * d * sin(θ)其中M表示力矩,F表示作用力,d表示作用力与物体转轴的距离,θ表示作用力与物体转轴的夹角。
力矩在机械设计中常用于计算零件的受力情况和选择适当的转轴位置。
4. 压力和应力在机械设计中,压力和应力是重要的力学概念。
压力是单位面积上受力的大小,可以用以下公式计算:P = F / A其中P表示压力,F表示受力,A表示受力面积。
应力则是单位面积上所受拉力或压力的大小,可以用以下公式计算:σ = F / A其中σ表示应力,F表示受力,A表示受力面积。
压力和应力的计算在机械设计中常用于材料的强度分析和结构的设计。
5. 动能和势能动能和势能是描述物体运动状态的物理量。
动能可以用以下公式计算:E = 1/2 * m * v²其中E表示动能,m表示物体的质量,v表示物体的速度。
势能可以用以下公式计算:E = m * g * h其中E表示势能,m表示物体的质量,g表示重力加速度,h表示物体的高度。
锻造轴的破断拉力计算公式锻造轴是一种常见的机械零件,广泛应用于各种机械设备中。
在设计和制造锻造轴时,了解其破断拉力是非常重要的。
破断拉力是指在轴的拉伸过程中,轴材料发生破断的最大拉力。
通过计算破断拉力,可以帮助工程师确定轴的安全工作范围,从而保证设备的可靠性和安全性。
破断拉力的计算公式可以通过材料力学的知识和轴的几何形状来推导。
在本文中,我们将讨论锻造轴的破断拉力计算公式,并且解释如何应用这个公式来进行实际的工程设计。
首先,我们需要了解一些基本的材料力学知识。
在拉伸过程中,材料会受到拉力,导致材料内部产生应力。
根据胡克定律,应力和应变之间存在线性关系。
这意味着在弹性阶段,应力和应变成正比。
当拉力增大到一定程度时,材料将会发生塑性变形,最终导致破断。
对于圆柱形的锻造轴,其破断拉力可以通过以下公式进行计算:\[ P = \frac{\pi \times d^2 \times \sigma_{b}}{4} \]其中,P表示破断拉力,d表示轴的直径,σb表示轴材料的抗拉强度。
这个公式的推导过程可以通过材料力学的知识和轴的几何形状来进行推导。
在这里,我们不做详细的推导,只是简单地介绍一下这个公式的应用。
首先,我们需要确定轴的直径和材料的抗拉强度。
轴的直径可以通过设计要求或者实际测量得到。
材料的抗拉强度可以通过材料的力学性能表格或者实验测定得到。
一旦确定了这些参数,我们就可以使用上面的公式来计算破断拉力。
举个例子,假设我们有一根直径为50mm的锻造轴,材料的抗拉强度为400MPa。
我们可以通过上面的公式来计算这根轴的破断拉力:\[ P = \frac{\pi \times (50mm)^2 \times 400MPa}{4} = 9817.8kN \]通过这个计算,我们可以得到这根锻造轴的破断拉力约为9817.8kN。
这个数值可以帮助工程师评估轴的安全工作范围,并且进行合理的设计和选择。
需要注意的是,上述公式只适用于圆柱形的轴。
力学功的公式力学是物理学中的一个重要分支,研究物体运动和相互作用的规律。
在力学中,功是一个基本的概念,用来描述物体受力时所做的功。
功是一个标量,通常用符号W表示。
在本文中,我们将介绍力学功的公式,以及它的应用。
力学功的定义在力学中,功是由一个力在物体上所做的功。
当一个物体受到一个力时,它会发生位移,这个位移方向和力的方向可以相同也可以相反。
如果一个力在物体上所做的功为正,那么这个力会使物体的运动速度增加;如果一个力在物体上所做的功为负,那么这个力会使物体的运动速度减少。
力学功的公式根据力学的定义,力学功可以用以下公式来计算:W = F × d × cosθ其中,W表示力学功,F表示施加在物体上的力,d表示物体的位移,θ表示力和位移间的夹角。
这个公式可以用来计算任何类型的力学功,包括重力、弹力、摩擦力等。
例如,当一个物体受到一个恒定的力F作用,沿着一个固定的方向移动了一定的距离d时,力学功可以用以下公式计算:W = F × d这个公式可以用来计算重物体在重力作用下的势能变化,以及机械设备在工作时所做的功。
力学功的应用力学功在物理学中有着广泛的应用。
它可以用来描述物体的运动、能量变化和机械设备的工作。
以下是一些力学功的应用:1. 机械工程在机械工程中,力学功被广泛应用于机械设备的设计和分析中。
例如,当一个机械设备在工作时,它所做的功可以用来计算设备的能量消耗和效率。
这个信息可以帮助工程师设计更高效的机械设备。
2. 物理实验在物理实验中,力学功被用来描述物体受力时的能量变化。
例如,在一个弹簧振子实验中,当一个弹簧受到外力作用时,它会发生振动。
这个振动过程中,弹簧所做的功可以用来计算弹簧的弹性势能和动能。
3. 运动学在运动学中,力学功被用来描述物体的速度和位移之间的关系。
例如,当一个物体沿着一条曲线运动时,它所做的功可以用来计算物体的角动量和动能。
总结力学功是一个重要的物理学概念,用来描述物体在受力时所做的功。