自动控制原理__第3学时 线性系统的稳定性分析_
- 格式:pptx
- 大小:1.92 MB
- 文档页数:8
自动控制原理稳定性判据知识点总结自动控制原理是探讨控制对象的动态特性以及如何设计稳定的控制系统的学科。
在自动控制系统的设计和分析中,稳定性是一个重要的概念。
本文将对自动控制原理中的稳定性判据进行总结,帮助读者更好地理解和应用这些知识。
1. 稳定性定义稳定性是指控制系统在一定的输入条件下,输出不随时间而无穷增长或无穷减小的性质。
一个稳定的控制系统能够保持输出的有限性,而不会因为扰动或非线性特性产生不可控制的结果。
2. 稳定性判据2.1. 线性系统的稳定性线性系统的稳定性判据可以分为两类:时域判据和频域判据。
2.1.1. 时域判据时域判据主要通过分析系统的状态转移方程或差分方程来判断系统的稳定性。
在稳定的线性系统中,初始状态被扰动后,系统状态在有限时间内收敛到稳定状态。
2.1.2. 频域判据频域判据通过系统的频率响应函数来判断稳定性。
常用的频域稳定性判据有:奈奎斯特稳定判据、Nyquist判据、波恩稳定判据等。
这些判据通过分析系统的极点位置和频率响应曲线来判断系统稳定性。
2.2. 非线性系统的稳定性非线性系统的稳定性判据相对于线性系统更加复杂。
常见的非线性稳定性判据有:李雅普诺夫稳定性判据、小扰动稳定性判据等。
2.2.1. 李雅普诺夫稳定性判据李雅普诺夫稳定性判据是对非线性系统进行稳定性判断的重要方法。
其基本思想是通过构造李雅普诺夫函数来判断系统的稳定性。
若李雅普诺夫函数为正定函数且导数小于等于零,系统即为稳定的。
2.2.2. 小扰动稳定性判据小扰动稳定性判据是通过对非线性系统进行线性化处理,然后判断线性化后的系统是否稳定来判断非线性系统的稳定性。
3. 典型的稳定性判据3.1. Nyquist判据Nyquist判据是频域判据中的一种,用于判断线性系统的稳定性。
通过绘制系统的频率响应曲线,然后判断曲线与虚轴的交点来确定系统的稳定性。
3.2. Routh-Hurwitz判据Routh-Hurwitz判据是一种时域判据,用于判断线性系统的稳定性。
03. 教学日历第一周(4学时)1-1 引言1-2 自动控制系统的基本概念1-3 自动控制系统的分类及组成1-4 对控制系统的性能要求2-1 引言2-2 控制系统的时域数学模型第二周(4学时)2-2 控制系统的时域数学模型2-3 拉普拉斯变化2-4 控制系统的复数域数学模型第三周(4学时)2-5 控制系统的结构图与信号流图第四周(4学时)3-1 引言3-2 线性系统的时域性能指标3-3 线性系统的稳定性分析第五周(4学时)3-4 线性系统的快速性分析3-5线性系统的准确性分析第六周(4学时)3-6 线性系统的时域法校正第七周(4学时)4-1 根轨迹法的基本概念4-2 常规根轨迹的绘制法则第八周(4学时)4-3广义根轨迹-参数根轨迹4-4 广义根轨迹-零度根轨迹4-5 系统性能的分析第九周(4学时)5-1 频率特性5-2典型环节与开环系统频率特性第十周(4学时)5-3频率稳定判据5-4 频率稳定裕度第十一周(4学时)5-5 闭环系统的频率性能指标5-6 线性系统的校正方法第十二周(4学时)5-6 线性系统的频域法校正第十三周(1+3学时)6-1 离散系统基本概念6-2 信号采样与保持第十四周(4学时)6-3 Z变换理论6-4 离散系统的数学模型第十五周(4学时)6-5 离散系统的稳定性、稳态误差及动态性能分析7-1 非线性控制系统概述及常见非线性特性对系统的影响7-2 描述函数法第十六周(4学时)总复习。
实验三控制系统的稳定性分析控制系统的稳定性是指系统在受到外部扰动或内部变化时,是否能保持原有的稳态或稳定的性能。
稳定性是控制系统设计和分析的重要指标之一,它直接影响系统的性能和可靠性。
本实验将介绍控制系统稳定性的分析方法和稳定性判据。
一.控制系统的稳定性分析方法1.传递函数法:传递函数是表示控制系统输入与输出之间关系的数学表达式,通过分析和求解传递函数的特征根,可以判断系统的稳定性。
在传递函数中,特征根的实部和虚部分别代表了系统的衰减和振荡性能,根据特征根的位置可以得到稳定、不稳定和临界稳定等几种情况。
2.极点分布法:极点分布是指控制系统的特征根在复平面上的位置分布。
通过绘制极点图可以直观地判断系统的稳定性。
一般来说,稳定系统的极点都位于左半复平面,而不稳定系统的极点则位于右半复平面。
3. Nyquist稳定性判据:Nyquist稳定性判据是通过绘制Nyquist曲线来判断系统的稳定性。
Nyquist曲线是将控制系统的特征根的位置映射到复平面上形成的闭合曲线,通过分析Nyquist曲线的形状和位置可以判断系统的稳定性。
4. Routh-Hurwitz稳定性判据:Routh-Hurwitz稳定性判据是基于特征多项式的系数和正负性进行判断的方法。
通过构造一个特征方程的判别矩阵,可以判断系统的稳定性。
如果判别矩阵的所有元素都大于0,则系统是稳定的。
二.控制系统的稳定性判据1.传递函数法:通过求解传递函数的特征根,判断特征根的实部和虚部是否满足系统稳定的条件。
特征根的实部必须小于0,而虚部可以等于0。
2.极点分布法:绘制控制系统的极点图,判断极点是否位于左半复平面。
如果所有极点都在左半平面,则系统是稳定的。
3. Nyquist稳定性判据:绘制Nyquist曲线,通过分析曲线的形状和位置来判断系统的稳定性。
如果曲线不经过原点或环绕原点的次数为0,则系统是稳定的。
4. Routh-Hurwitz稳定性判据:构造特征方程的判别矩阵,通过判别矩阵的元素是否都大于0来判断系统的稳定性。