放大电路实验
- 格式:doc
- 大小:58.00 KB
- 文档页数:3
电工实验报告放大电路放大电路是指将输入信号增大的电路,常见的放大电路有共射、共基和共集放大电路。
本实验使用共射放大电路进行实验,实验目的是验证放大电路的放大特性。
实验中使用的元器件有NPN型晶体管、电阻、电容和电源等。
实验中首先搭建共射放大电路,电源的正极连接到电阻R1的一端,另一端通过电源开关连接到晶体管的B端,晶体管的E 端和R2连接在一起,R2的另一端通过电源开关接地。
此外,输入信号通过电容C1与晶体管的B端相连,输出信号通过电容C2与晶体管的C端相连。
接下来,实验中使用函数信号发生器作为输入信号源,将输出信号通过示波器进行观测和测量。
实验中先将函数信号发生器的幅值调至较小值,然后逐渐调大直到观察到输出信号的变化。
在调节函数信号发生器的幅值时,观察示波器上输出信号的幅度,并记录下不同幅值对应的输出信号幅度。
实验数据显示,随着输入信号幅度的增大,输出信号的幅度也随之增大,但增大的幅度相对较小。
通过对比输入信号和输出信号的幅度,我们可以计算出放大倍数。
根据实验数据计算出的放大倍数约为10倍。
通过以上实验结果可以看出,共射放大电路能够将输入信号进行放大,但放大倍数相对较小。
这是因为共射放大电路具有较高的电压放大系数和较小的输入电阻,但也具有较大的输出电阻和较小的输出功率。
因此,在实际应用中,需要根据具体需求选择合适的放大电路。
在放大电路的实验中,还需要注意一些实验技巧。
首先,搭建电路时需要保持良好的接触和连接,避免接触不良或线路松动导致实验结果不准确。
其次,调节函数信号发生器和示波器的参数时,需要采用逐渐调整的方式,避免突然调大或调小幅度,防止电路受损或设备故障。
最后,在实验结束后应注意断开电源和清理实验台,保持实验环境整洁,避免意外发生。
综上所述,通过本实验我们成功验证了共射放大电路的放大特性。
实验结果表明,共射放大电路能够将输入信号进行放大,但放大倍数相对较小。
此外,在实际应用中还需要根据具体需求选择合适的放大电路。
多级放大电路实验报告多级放大电路实验报告引言:多级放大电路是电子工程中常见的一种电路结构,它可以将输入信号放大到所需的幅度,以便用于各种应用。
本实验旨在通过搭建多级放大电路并进行实际测量,探索其工作原理和性能特点。
一、实验目的本实验的主要目的是:1. 了解多级放大电路的基本原理和结构;2. 学习如何搭建和调试多级放大电路;3. 测量和分析多级放大电路的增益、频率响应等性能指标。
二、实验原理多级放大电路由多个级联的放大器组成,每个放大器都有自己的增益和频率响应特性。
在本实验中,我们将使用两个级联的放大器,每个放大器都由一个晶体管和相关的电路组成。
三、实验器材与装置1. 信号发生器:用于产生待放大的输入信号;2. 电阻、电容等被动元件:用于构建放大电路;3. 两个晶体管:作为放大器的核心元件;4. 示波器:用于测量电路的输入输出信号。
四、实验步骤1. 搭建第一级放大电路:根据实验原理,按照电路图连接电阻、电容和晶体管等元件,确保电路连接正确且无短路或接触不良的情况。
2. 调试第一级放大电路:使用信号发生器产生一个输入信号,将其连接到第一级放大电路的输入端,通过示波器观察输出信号的波形和幅度,调整电路参数,使得输出信号能够得到适当的放大。
3. 搭建第二级放大电路:将第一级放大电路的输出端连接到第二级放大电路的输入端,按照相同的步骤进行搭建和调试。
4. 测量电路性能:使用示波器测量多级放大电路的输入输出信号,并记录其幅度、相位和频率等特性。
通过改变输入信号的频率,观察输出信号的变化,以了解电路的频率响应特性。
5. 分析实验结果:根据测量数据和实验原理,计算并比较多级放大电路的增益、频率响应等指标,分析电路的性能和可能的改进方向。
五、实验结果与讨论通过实验测量和分析,我们得到了多级放大电路的增益和频率响应曲线。
根据实验数据,我们可以看到在一定频率范围内,多级放大电路的增益基本稳定,并且随着频率的增加而略微下降。
放大电路multisim实验报告1. 实验目的通过实验,熟悉和掌握放大电路的基本原理和放大倍数的计算方法。
2. 实验原理放大电路是指用于增大输入信号的电压、电流或功率的电路。
常用的放大电路有共射放大电路、共集放大电路和共基放大电路等。
本实验以共射放大电路为例进行研究。
共射放大电路是一种常见的放大电路,其特点是输入信号加在基极上,输出信号从集电极取出。
放大电路的放大倍数可通过直流负载线和交流负载线的交点来确定。
3. 实验器材和仪器- Multisim电路仿真软件- 电脑4. 实验步骤4.1 搭建电路在Multisim电路仿真软件中,选择适当的元件并搭建共射放大电路。
4.2 设置输入信号为电路添加一个函数信号发生器,设置输入信号的振幅和频率。
4.3 测量输出信号连接示波器,测量输出信号的波形。
4.4 计算放大倍数根据示波器上的波形,测量输入信号和输出信号的幅值,然后计算放大倍数。
5. 实验结果将示波器上测得的信号波形截图作为实验结果。
6. 实验讨论分析实验结果,讨论放大倍数是否符合预期,有无改进的空间。
7. 实验结论通过实验,我们成功搭建了共射放大电路,并计算出放大倍数。
实验结果和预期的结果相符。
通过这次实验,我们对放大电路的原理和计算方法有了更深入的了解。
8. 实验总结本次实验通过Multisim电路仿真软件,从搭建电路到测量输出信号,并计算出放大倍数。
实验过程中我们掌握了放大电路的基本原理和计算方法。
通过实验,我们发现实际电路中可能存在误差,因此在实际应用中应对放大电路进行优化和调整,以获得理想的放大效果。
单管放大电路实验报告实验目的:本实验旨在通过搭建单管放大电路,了解单管放大电路的基本原理,掌握单管放大电路的工作特性,以及对单管放大电路的频率响应进行实验研究。
实验仪器与设备:1. 电源,直流稳压电源。
2. 示波器,双踪示波器。
3. 信号源,正弦波信号源。
4. 电阻,多个不同阻值的电阻。
5. 电容,多个不同容值的电容。
6. 二极管。
7. 三极管。
8. 万用表。
实验原理:单管放大电路是由一个三极管(或者场效应管)和少数几个被动器件(电阻、电容)组成的放大电路。
在单管放大电路中,三极管的基极电流小的特点决定了单管放大电路的输入电阻较高,而集电极电流大的特点决定了单管放大电路的输出电阻较低。
单管放大电路能够将输入信号放大到较大的幅度,同时保持信号波形的不失真。
实验步骤:1. 搭建单管放大电路电路图,连接好各个元器件。
2. 调节电源电压,使其符合三极管的工作电压范围。
3. 使用示波器观察输入信号和输出信号,并记录波形。
4. 改变输入信号的频率,观察输出信号的变化,并记录波形。
5. 测量输入信号和输出信号的幅度,并计算放大倍数。
6. 测量单管放大电路的输入电阻和输出电阻。
实验结果与分析:通过实验观察,我们发现单管放大电路能够将输入信号放大到较大的幅度,且输出信号的波形基本与输入信号一致。
随着输入信号频率的增加,输出信号的幅度有所下降,说明单管放大电路的频率响应存在一定的限制。
通过测量,我们得到了单管放大电路的输入电阻和输出电阻的数值,验证了单管放大电路的输入电阻较高,输出电阻较低的特性。
实验总结:本次实验通过搭建单管放大电路,深入了解了单管放大电路的工作原理和特性,掌握了单管放大电路的频率响应规律,提高了实验操作能力和数据处理能力。
同时,也加深了对电子电路原理的理解,为今后的学习和科研打下了坚实的基础。
通过本次实验,我们对单管放大电路有了更深入的了解,同时也意识到了单管放大电路的局限性,为今后的电子电路设计和应用提供了一定的参考和借鉴。
实验1 单级放大电路1.实验目的1)学习使用电子仪器测量电路参数的方法。
2)学习共射放大电路静态工作点的调整方法。
3)研究共射放大电路动态特性与信号源内阻、负载阻抗、输入信号幅值大小的关系。
2.实验仪器示波器、信号发生器、交流毫伏表、数字万用表。
3.预习内容1)三极管及共射放大器的工作原理。
2)阅读实验内容。
4.实验内容实验电路为共射极放大器,常用于放大电压。
由于采用了自动稳定静态工作点的分压式偏置电路(引入了射极直流电流串联负反馈),所以温度稳定性较好。
1)联接电路(1)用万用表判断实验箱上的三极管的极性和好坏。
由于三极管已焊在实验电路板上,无法用万用表的h EF档测量。
改用万用表测量二极管档测量。
对NPN三极管,用正表笔接基极,用负表笔分别接射极和集电极,万用表应显示PN结导通;再用负表笔接基极,用正表笔分别接射极和集电极,万用表应显示PN结截止。
这说明该三极管是好的。
用万用表判断实验箱上电解电容的极性和好坏。
对于10μF电解电容,可选择200kΩ电阻测量档,用万用表的负极接电解电容的负极,用万用表的正极接电解电容的正极,万用表的电阻示数将不断增加,直到超过示数的范围。
这说明该电解电容是好的。
⑵按图1.1联接电路。
⑶接通实验箱交流电源,用万用表测量直流12V电源电压是否正常。
若正常,则将12V 电源接至图1.1的Vcc。
图1.1 共射极放大电路⑷ 测量电阻R C 的阻值。
将V i 端接地。
改变R P (有案可查2 2k Ω、100k Ω、680k Ω三个可变电阻可选择),测量集电极电压V C ,求 I C =(V CC -V C )/R C 分别为0.5mA 、1mA 、1.5mA 时三极管的β值。
建议使用以下方法。
bB cc2b B B R V V R V I -=+p 1b b R R R += B C I I=β (1-1) 请注意,电路断电、电阻从电路中开路后才能用万用表测量电阻值。
实验一基本共射放大电路实验报告一、实验目的:1.掌握基本共射放大电路的组成和工作原理;2.学会在实验条件下测量并计算电路的增益。
二、实验仪器:1.示波器;2.多用电表;3.功放电路板。
三、实验原理:基本共射放大电路由NPN晶体管、输入电阻、输出电阻和负载电阻组成。
工作原理如下:当输入信号向基极施加交流信号时,晶体管工作于放大状态。
由于输入电阻的存在,输入信号会将电流注入基极,导致基极电流增大。
而这个增大的电流会引发晶体管的放大作用。
输出电阻起到了与负载电阻相匹配的作用,使原信号可以通过负载电阻得到放大。
四、实验步骤:1.按照电路图搭建基本共射放大电路;2.将输入信号接入示波器的输入端,并调节示波器参数使波形清晰可见;3.测量输出信号的幅值,并用多用电表测量电路各个元件的电压和电流。
五、实验结果与分析:根据示波器上显示的波形,我们可以得到输入信号和输出信号的波形图,并通过测量得到其幅值。
根据实验数据,可以计算电路的输入电阻和输出电阻,以及电路的增益。
具体计算步骤如下:1.计算输入电阻:输入电阻可以通过测量输入电流和输入电压得到,用输入电压除以输入电流即可。
2.计算输出电阻:输出电阻可以通过测量输出电压和输出电流得到,用输出电压除以输出电流即可。
3.计算增益:增益是指输出信号幅值与输入信号幅值之间的比值,通过测量输出信号和输入信号的幅值即可计算。
根据实验数据和上述计算步骤,我们可以得到电路的输入电阻、输出电阻以及增益的数值。
六、实验分析与结论:通过实验,我们成功搭建了基本共射放大电路,并且根据测量数据计算了电路的输入电阻、输出电阻以及增益。
这些数据可以帮助我们评估电路的性能和效果。
实验结果分析:1.输入电阻越大,表示电路对输入信号的损耗越小,但也较容易受到外界干扰。
2.输出电阻越小,表示电路可以驱动更大的负载电阻,但也对负载电阻变化较敏感。
3.增益越大,表示电路对输入信号的放大效果越好,但也容易引起失真。
单级放大电路实验心得(通用4篇)单级放大电路实验心得篇1单级放大电路实验心得1.实验目的通过本次实验,我们旨在探究单级放大电路的基本原理,了解其各个参数的测量方法,并能够分析电路的性能指标,如增益、输入电阻、输出电阻等。
此外,我们还将学习如何使用示波器、电压表和电流表测量电路的输出波形,从而更好地理解放大电路的工作过程。
2.实验原理单级放大电路是一种基本的电子放大器,其原理基于电信号的放大。
通过将输入信号与一个晶体管相连,我们可以实现信号的放大。
晶体管具有放大电流的能力,其输出电流的大小取决于输入信号的大小和晶体管的特性。
3.实验过程实验开始时,我们先搭建了一个单级放大电路。
在测量电路参数时,我们使用电压表和电流表测量电路的输入电阻和输出电阻,使用示波器观察输出波形。
在调整电路时,我们不断尝试不同的电路参数,直到找到最佳的电路配置。
4.实验结果在实验过程中,我们记录了不同输入信号下的输出波形,并使用示波器测量了输出信号的幅值和频率。
通过测量,我们发现输出信号的幅值比输入信号增加了许多,从而证实了放大电路的放大效果。
此外,我们还测量了输入电阻和输出电阻,并记录了它们的大小。
5.实验分析在实验过程中,我们发现输入电阻和输出电阻的大小与理论值非常接近。
同时,我们观察到输出波形具有良好的对称性,说明电路具有良好的稳定性。
此外,我们还发现当输入信号较大时,输出波形会出现失真现象。
这可能是由于晶体管的非线性特性所导致的。
6.实验结论通过本次实验,我们验证了单级放大电路的基本原理和放大效果。
同时,我们还学会了如何使用示波器、电压表和电流表测量电路参数和输出波形。
在实验过程中,我们发现了一些问题,如晶体管的非线性特性可能导致输出波形的失真。
为了改善放大电路的性能,我们可以在实验的基础上进一步研究其他类型的放大器,如差分放大器和集成电路。
这些电路具有更好的线性特性和稳定性,可以提供更高的放大倍数。
此外,我们还可以将放大电路应用到实际的电子设备中,如音频放大器、无线电接收器等,从而更好地理解放大电路在实际应用中的作用。
实验二_单级共射放大电路实验实验二单级共射放大电路实验原理图2,1为电阻分压式工作点稳定单管共射放大电路实验原理图。
它的偏置电路采用R和R组B1B2成的分压电路,并在发射极中接有电阻R,以稳定放大电路的静态工作点。
当在放大电路的输入端加E入输入信号u后,在放大电路的输出端便可得到一个与u相位相反,幅值被放大了的输出信号u,ii0从而实现了电压放大。
RP1 RC1100K 2KR B114.7K 47µF 47µFR B1210K 510C 3R E151图2,1 共射极单管放大电路实验电路在图2,1电路中,当流过偏置电阻R和R 的电流远大于晶体管T 的 B1B2 基极电流I时(一般5,10倍),则它的静态工作点可用下式估算: BRB1U,U BCCR,RB1B2U,UBBEI,,IECR EU,U,I(R,R) CECCCCE电压放大倍数R // RCLA,,β Vrbe输入电阻R,R// R// r iB1 B2 be实验二单级共射放大电路输出电阻R?R OC由于电子电路件性能的分散性比较大,因此在设计和制作晶体管放大电路时,离不开测量和调试技术。
在设计前应测量所用元电路件的参数,为电路设计提供必要的依据,在完成设计和装配以后,还必须测量和调试放大电路的静态工作点和各项性能指标。
一个优质放大电路,必定是理论设计与实验调整相结合的产物。
因此,除了学习放大电路的理论知识和设计方法外,还必须掌握必要的测量和调试技术。
放大电路的测量和调试一般包括:放大电路静态工作点的测量与调试,消除干扰与自激振荡及放大电路各项动态参数的测量与调试等。
1、放大电路静态工作点的测量与调试1)静态工作点的测量测量放大电路的静态工作点,应在输入信号u,0的情况下进行,即将放大电路输入端与地端i短接,然后选用量程合适的直流毫安表和直流电压表,分别测量晶体管的集电极电流I以及各电极C对地的电位U、U和U。
一般实验中,为了避免断开集电极,所以采用测量电压U或U,然后算出BCEECI的方法,例如,只要测出U,即可用 CEUU,UECCCI,I,I, 算出I(也可根据,由U确定I), CCCCECRREC同时也能算出U,U,U,U,U,U。
实验三—差分式放大电路实验内容:一、典型差分式放大电路性能测试实验电路如图,开关K拨向左边构成典型差分式放大电路。
1.测量静态工作点①调节放大电路零点信号源不接入。
将放大电路输入端A、B与地短接,接通±12V直流电源,用万用表测量输出电压Vo,调节调零电位器Rp,使Vo=0.调节要仔细,力求准确。
②测量静态工作点零点调好后,用万用表测量T1、T2管各电极电位及射极电阻RE两端的电压VBE,记录表中。
2.测量差模电压增益断开直流电源,将函数信号发生器的输出端接放大电路输入A端,地端接放大电路输入B端构成差模输入方式,调节输入信号为频率f=1KHz的正弦信号,并使输出旋钮置零,用示波器监视输出端(集电极C1或C2与地之间)。
接通±12V直流电源,逐渐增大输入电压Vi(约100mV),在输出波形无失真的情况下,用交流毫伏表Vi,V C1,V C2,记录在表中,并观察vi,vc1,vc2之间的相位关系及V BE 随Vi改变而变化的情况。
2.测量共模电压增益将差分放大电路A、B短接,信号源接在A端与地之间,构成共模输入方式,调节输入信号f=1KHz,Vi=1V,在输出电压无失真的情况下,测量V C1、V C2的值记录下表,并观察vi,vc1,vc2之间的相位关系及V RE随Vi改变而改变的情况。
二、具有恒流源的差分放大电路性能测试将电路图中的开关K拨向右边,构成具有恒流源的差分式放大电路,重复一——2、3实验内容的要求,记录入上表。
典型差分式放大电路vi,vc1,vc2的图像:共模输入左图——vi与vc1相位关系右图——vc1与vc2相位关系差模输入左图——vi与vc1相位关系右图——vc1与vc2相位关系具有恒流源的差分放大电路vi,vc1,vc2的图像:差模输入vi与vc1相位关系左图——vi与vc1相位关系右图——vc1与vc2相位关系在共模输入时,V i增大,V RE增大;差输入时,V RE很小,V i变化时,V RE变化不明显。
共射共集放大电路实验报告(共5篇)一、实验目的学习共射共集放大电路的基本原理,掌握共射、共集级的放大作用和特点,熟悉放大电路的设计和调节方法。
二、实验原理共射放大器是以晶体三极管为放大元件,以共射的方式运行的放大电路。
它的信号输入在集-发极之间,输出在集-基极之间。
共射电路的输入电阻较低,输出电阻较高,放大系数较大。
但它的频率特性差,相位反向和输出幅度变化比较大。
共射、共集级的组合可以形成共射共集放大电路,由于两级的互补性,可以克服它们各自的缺点,达到比较理想的放大效果。
在实际应用中,经常用共射共集级组成放大电路,用于通过各种接口将信号处理后送到外围设备,并隔离载波。
共射共集放大电路的放大系数较大,输入输出阻抗均低,相位差小,具有广泛的应用。
三、实验步骤1.检查实验装置,准备好实验用品,并按照电路图连接电路。
2.接通电源,调节稳压电源直至设定值。
3.打开测量仪器,调整电位器,使输入端电压到达工作点。
4.调整电位器,使输出端交流信号最大。
5.更改输入信号,测量输出信号幅度的变化,记录测量结果。
6.重复操作5,并更改电源电压和电阻值,记录实验结果。
7.实验结束后,关闭电源,拆除实验装置,清理现场。
四、实验结果与分析1.实验中电路连接正确,电源电压、电阻值选择合适,实验过程稳定。
2.实验结果表明,当输入信号发生变化时,输出信号幅度随之变化。
同时,当电源电压或电阻值发生变化时,放大电路的增益也会发生变化。
3.对于共射放大器,输入阻抗低,输出阻抗高,放大系数大,但是频率特性差相位反向。
对于共集放大器,输入输出阻抗均低,放大系数小,但具有良好的频率特性和相位不反向等特点。
4.当通电电压较是3V时,测量到的输入电压为2.1V,输出电压为6V,增益约2.9倍。
输出波形为正弦波。
5.整个实验过程中,注意电源电压不要过高或过低,否则会影响实验结果。
同时,要注意接线正确,切勿操作不当以免损坏实验装置。
五、实验总结通过本次实验,掌握了共射共集放大电路的基本原理和调节方法。
一、实验目的1. 熟悉放大电路的基本组成和原理。
2. 掌握放大电路静态工作点的调试方法。
3. 学习放大电路动态性能的测试方法。
4. 了解放大电路频率响应的特性。
5. 熟悉常用电子仪器的使用方法。
二、实验原理放大电路是模拟电子技术中的基础,它通过三极管等电子器件对输入信号进行放大,输出一个与输入信号相位相反、幅度放大的信号。
本实验主要研究共射极放大电路,其基本原理如下:1. 共射极放大电路:输入信号加在基极与发射极之间,输出信号从集电极取出。
2. 静态工作点:放大电路在没有输入信号时的工作状态,通常通过调整偏置电阻来设置。
3. 动态性能:放大电路在有输入信号时的性能,包括电压放大倍数、输入电阻、输出电阻等。
4. 频率响应:放大电路对不同频率信号的放大能力,受电路元件和三极管频率特性的影响。
三、实验仪器与材料1. 模拟电路实验箱2. 函数信号发生器3. 双踪示波器4. 交流毫伏表5. 万用电表6. 连接线若干四、实验内容与步骤1. 搭建共射极放大电路:根据实验原理图,搭建共射极放大电路,包括三极管、电阻、电容等元件。
2. 调试静态工作点:调整偏置电阻,使放大电路达到合适的静态工作点,通常通过观察集电极电流和集电极电压的变化来实现。
3. 测试动态性能:- 输入不同频率和幅度的信号,观察输出信号的幅度和相位变化。
- 测量电压放大倍数、输入电阻、输出电阻等参数。
4. 测试频率响应:- 改变输入信号的频率,观察输出信号的幅度变化。
- 绘制频率响应曲线。
五、实验结果与分析1. 静态工作点调试:通过调整偏置电阻,使放大电路达到合适的静态工作点,集电极电流和集电极电压满足设计要求。
2. 动态性能测试:- 电压放大倍数:根据输入信号和输出信号的幅度比值计算得出,符合理论预期。
- 输入电阻:根据输入信号和基极电流的比值计算得出,符合理论预期。
- 输出电阻:根据输出信号和集电极电流的比值计算得出,符合理论预期。
3. 频率响应测试:- 频率响应曲线:随着输入信号频率的增加,输出信号的幅度逐渐减小,符合理论预期。
实验一单级交流放大电路一、实验目的1.熟悉电子元器件和模拟电路实验箱,2.掌握放大电路静态工作点的调试方法及其对放大电路性能的影响。
3.学习测量放大电路Q点,AV ,ri,ro的方法,了解共射极电路特性。
4.学习放大电路的动态性能。
二、实验仪器1.示波器2.信号发生器3.数字万用表三、实验原理1.三极管及单管放大电路工作原理。
以NPN三极管的共发射极放大电路为例说明三极管放大电路的基本原理:三极管的放大作用是:集电极电流受基极电流的控制,并且基极电流很小的变化,会引起集电极电流很大的变化,。
如果将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,导致了Ic很大的变化。
如果集电极电流Ic是流过一个电阻R的,那么根据电压计算公式U=R*I可以算得,这电阻上电压就会发生很大的变化。
我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。
2.放大电路静态和动态测量方法。
放大电路良好工作的基础是设置正确的静态工作点。
因此静态测试应该是指放大电路静态偏置的设置是否正确,以保证放大电路达到最优性能。
放大电路的动态特性指对交流小信号的放大能力。
因此动态特性的测试应该指放大电路的工作频带,输入信号的幅度范围,输出信号的幅度范围等指标。
四、实验内容及步骤1.装接电路与简单测量图1.1 工作点稳定的放大电路(1)用万用表判断实验箱上三极管V 的极性和好坏,电解电容C 的极性和好坏。
测三极管B 、C 和B 、E 极间正反向导通电压,可以判断好坏;测电解电容的好坏必须使用指针万用表,通过测正反向电阻。
三极管导通电压UBE=0.7V 、UBC=0.7V ,反向导通电压无穷大。
(2)按图1.1所示,连接电路(注意:接线前先测量+12V 电源,关断电源后再连线),将RP 的阻值调到最大位置。
2.静态测量与调整接线完毕仔细检查,确定无误后接通电源。
改变R P ,记录I C 分别为0.5mA 、1mA 、1.5mA 时三极管V 的β值。
三极管放大电路实验报告三极管放大电路实验报告引言在现代电子技术中,三极管放大电路是最常见的一种放大电路。
它具有放大信号、增加电流和功率的功能,广泛应用于收音机、电视、音响等电子设备中。
本实验旨在通过搭建三极管放大电路并进行实际测量,探究三极管的工作原理和放大特性。
实验材料与方法本实验所用材料包括:三极管、电阻、电容、信号发生器、示波器等。
首先,按照电路图搭建三极管放大电路,其中包括三极管的基极、发射极和集电极,以及相应的电阻和电容。
接下来,将信号发生器的输出端与放大电路的输入端相连,将示波器的输入端与放大电路的输出端相连。
最后,调节信号发生器的频率和幅度,通过示波器观察和测量输出信号的变化。
实验结果与分析在实验过程中,我们首先调节信号发生器的频率和幅度,使其输出一个稳定的正弦波信号。
然后,通过示波器观察到放大电路输出信号的波形。
实验中,我们分别改变三极管的工作状态,即改变基极电流和集电极电流,观察输出信号的变化。
当三极管处于截止状态时,即基极电流为零时,输出信号几乎为零。
这是因为在截止状态下,三极管无法放大输入信号,输出电流几乎为零。
当三极管处于饱和状态时,即基极电流较大时,输出信号会有明显的放大。
这是因为在饱和状态下,三极管可以将输入信号放大到较大的幅度,输出电流也相应增加。
通过调节三极管的工作状态,我们可以得到不同的放大倍数。
实验中,我们发现当基极电流较小时,输出信号的幅度较小,放大倍数较低;而当基极电流较大时,输出信号的幅度较大,放大倍数较高。
这说明三极管的放大特性与工作状态密切相关。
此外,我们还观察到三极管放大电路的频率响应特性。
当信号发生器输出的频率较低时,输出信号的波形较为完整;而当频率较高时,输出信号的波形变得扭曲。
这是因为三极管放大电路在高频时会出现截止现象,无法正常放大信号。
实验总结通过本次实验,我们深入了解了三极管放大电路的工作原理和特性。
三极管作为一种重要的电子元件,在现代电子技术中发挥着重要作用。
单管放大电路的实验报告单管放大电路的实验报告引言在电子技术领域中,放大电路是一种非常重要的电路。
放大电路可以将输入信号进行放大,以便更好地驱动输出设备,如扬声器或显示器。
本实验旨在研究单管放大电路的工作原理和性能。
实验目的1. 了解单管放大电路的基本原理和组成部分。
2. 掌握单管放大电路的参数测量方法。
3. 分析单管放大电路的频率响应和失真情况。
实验器材和元件1. 信号发生器2. 双踪示波器3. 直流电源4. 电阻、电容等元件5. NPN型晶体管实验步骤1. 按照电路图连接电路,并将信号发生器的输出与放大电路的输入相连。
2. 调节信号发生器的频率和幅度,观察输出信号的变化。
3. 使用示波器测量输入信号和输出信号的幅度,并计算电压增益。
4. 测量电路的频率响应曲线,并分析其特点。
5. 测量电路的失真情况,包括谐波失真和交调失真。
实验结果与分析1. 在不同频率下,观察到输出信号的幅度随频率的变化。
当频率在一定范围内时,输出信号的幅度较为稳定,说明放大电路具有一定的频率响应特性。
2. 根据测量数据计算得到的电压增益表明,放大电路能够将输入信号放大到更大的幅度,从而驱动输出设备。
3. 频率响应曲线显示出放大电路在不同频率下的增益变化情况。
曲线的形状与电路中的元件参数有关,可以通过调整元件值来改变放大电路的频率响应特性。
4. 失真测量结果显示,放大电路在工作过程中会引入一定的失真。
谐波失真和交调失真是常见的失真类型,可以通过合理设计电路来减少失真程度。
实验总结通过本次实验,我们深入了解了单管放大电路的工作原理和性能。
我们学会了测量放大电路的参数,分析其频率响应和失真情况。
实验结果表明,单管放大电路能够有效地放大输入信号,并具有一定的频率响应特性。
然而,放大电路在工作过程中会引入一定的失真,需要进一步优化设计以提高性能。
未来展望在未来的研究中,我们可以进一步探索不同类型的放大电路,并研究它们的性能优化方法。
基本放大电路的实验报告篇一:电子技术实验报告_基本共射放大电路学生实验报告篇二:实验一基本共射放大电路实验报告学生实验报告篇三:三极管放大电路实验报告三极管放大电路1、问题简述:要求设计一放大电路,电路部分参数及要求如下:(1)信号源电压幅值:0.5V;(2)信号源内阻:50kohm;(3)电路总增益:2倍;(4)总功耗:小于30mW;(5)增益不平坦度:20 ~ 200kHz范围内小于0.1dB。
2、问题分析:通过分析得出放大电路可以采用三极管放大电路。
2.1 对三种放大电路的分析(1)共射级电路要求高负载,同时具有大增益特性;(2)共集电极电路具有负载能力较强的特性,但增益特性不好,小于1;(3)共基极电路增益特性比较好,但与共射级电路一样带负载能力不强。
综上所述,对于次放大电路来说单采用一个三极管是行不通的,因为它要求此放大电路具有比较好的增益特性以及有较强的带负载能力。
2.2 放大电路的设计思路在此放大电路中采用两级放大的思路。
先采用共射级电路对信号进行放大,使之达到放大两倍的要求;再采用共集电极电路提高电路的负载能力。
3、实验目的(1)进一步理解三极管的放大特性;(2)掌握三极管放大电路的设计;(3)掌握三种三极管放大电路的特性;(4)掌握三极管放大电路波形的调试;(5)提高遇到问题时解决问题的能力。
4、问题解决测量调试过程中的电路:增益调试:首先测量各点(电源、基极、输出端)的波形:结果如下:绿色的线代表电压变化,红色代表电源。
调节电阻R2、R3、R5使得电压的最大值大于电源电压的2/3。
VA=R2//R3//(1+β)R5 / [R2//R3//(1+β)R5+R1],其中由于R1较大因此R2、R3也相对较大。
第一级放大输出处的波形调试(采用共射级放大电路):结果为:红色的电压最大值与绿色电压最大值之比即为放大倍数。
则需要适当增大R2,减小R3的阻值。
总输出的调(转自:小草范文网:基本放大电路的实验报告)试:如果放大倍数不合适,则调节R4与R5的阻值。
基本放大电路实验报告引言:在电子学领域中,放大电路是非常重要的一部分。
它们被广泛用于信号处理、通信系统和音频应用等领域。
本文将介绍一个基本的放大电路实验,并对实验结果进行分析和讨论。
一、实验目的本实验的主要目的是通过搭建和测试一个基本的放大电路,了解放大电路的基本工作原理和性能指标。
二、实验材料和方法实验所需材料有电源、电阻、电容、运放芯片,实验仪器有万用表、示波器等。
以下是具体的实验步骤:1. 按照实验电路图搭建电路,运放芯片的引脚和电阻、电容的连接需要按照正确的顺序和极性进行。
2. 连接电源并适当调节工作电压,确保电路正常供电。
3. 使用万用表测量并记录各个元件的参数值,例如电阻的阻值、电容的容值等。
4. 将电压输入信号连接到放大电路的输入端,观察输出信号在示波器上的波形。
5. 根据实验结果,对放大电路进行分析并进行必要的调整。
三、实验结果与数据分析通过搭建和测试基本放大电路,我们得到了以下的实验结果和数据:1. 输入信号的幅度为1V,频率为1kHz。
2. 经过放大电路放大后,输出信号的幅度为5V,频率保持不变。
通过分析实验结果,我们可以得出以下结论和解释:1. 放大电路能够将低幅度的输入信号放大到较高的输出幅度。
2. 放大电路能够保持输入信号的频率不变。
四、实验讨论在这个基本放大电路实验中,我们观察到了信号的放大效果,并通过实验数据进行了分析。
然而,这只是一个简单的实验,还有很多其他因素需要考虑。
1. 噪声:实际电子系统中会存在各种噪声源,这些噪声会降低放大电路的性能。
我们在实验中没有对噪声进行特别的考虑,但在实际应用中,需要采取合适的方法来降低噪声水平。
2. 频率响应:不同的放大电路在频率响应方面可能会有所差异。
在实验中,我们只测试了一个特定的频率,但在实际应用中,需要对放大电路的频率响应范围进行充分的考虑。
五、结论通过这个基本放大电路实验,我们对放大电路的基本工作原理和性能指标有了一定的了解。
模电共射放大电路实验报告一、实验目的1.了解共射放大电路的基本原理。
2.学习使用示波器和函数信号发生器进行实验测量。
3.通过实验观察和分析,掌握共射放大电路的输入输出特性及放大倍数。
二、实验原理共射放大电路是一种常用的B级放大电路,其基本原理如下:1.输入信号加在基极上,输出信号从集电极获取。
2.NPN型晶体管工作于放大区,理想状态下其输入电流为零。
3.放大因子(放大倍数)由以下公式表示:β=ΔIC/ΔIB,其中,IC 表示集电极电流,IB表示基极电流。
三、实验器材和器件1.功率放大电路板2.BJT型晶体管(1个)3.示波器(1台)4.函数信号发生器(1台)5.变阻器(1个)6.电阻(若干)7.电压表(1个)8.电流表(1个)四、实验步骤1.按照电路图连接好实验电路。
2.设置示波器,将函数信号发生器的正弦波输出连接到电路的输入端,并调整信号发生器输出幅度和频率。
3.通过示波器测量电路的输入和输出电压,并记录数据。
4.设计合适的电路参数,并计算出放大倍数。
5.测量电路中晶体管的电流,包括基极电流和集电极电流,并记录数据。
6.分析并比较不同参数下的输入输出特性及放大倍数。
五、实验结果1.随着输入信号幅度的增加,输出信号也相应地增加,但增长速率逐渐减小,最终达到饱和状态。
2.随着输入信号频率的增加,放大倍数逐渐下降,输出信号失真。
3.实验测得的放大倍数与理论计算值基本吻合。
六、实验讨论1.分析造成实验测得的放大倍数与理论值存在差异的原因,如电路元件的参数、电压、电流等。
2.探讨共射放大电路在实际应用中的优缺点,并比较不同类型放大电路的特点。
七、实验结论通过共射放大电路实验,我们了解了共射放大电路的基本原理和特性,掌握了使用示波器和函数信号发生器进行实验测量的方法。
实验中,我们观察了输入输出特性及放大倍数,并进行了数据分析和比较。
此外,我们还对共射放大电路的优缺点进行了探讨。
通过本次实验,我们对模拟电路的工作原理有了更深入的理解,并掌握了一定的实验技能。
项目:放大电路实验
一、教学目的:
知识目标:
熟悉共发射极放大电路的动态分析,掌握电压放大倍数、输入电阻、输出电阻等参数的计算
技能目标:
1、学会函数信号发生器、双踪示波器的使用方法
2、学会基本共发射极放大电路中的动态测试。
二、仪器设备:
模电实验箱、双踪示波器、函数信号发生器、直流电压表、万用表、单管多级放
大及反馈实验板
三、注意事项:
1、在使用双踪示波器时,要特别注意其外接触头的接线,应该将其外部的旁路线与地相连,主触头与正极相连。
2、确认接线正确后才能通电测试。
四、试验原理和电路图
下图为电阻分压式工作点稳定单管放大器实验电路图。
它的偏置电路采用R B1和R B2组成的分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。
当在放大器的输入端加入输入信号u i 后,在放大器的输出端便可得到一个与u i 相位相反,幅值被放大了的输出信号u 0,从而实现了电压放大。
五、操作步骤:
1、按照上图进行接线。
2、调节R
W 使I
C
=2mA即U
R5
=6.6V,用直流电压表将测得的U
CQ
、U
BQ
、U
EQ
值填入表1中。
3、调节函数发生器,使其输出正弦波信号,频率为f=1KHZ,信号加在放大器的输入端,逐渐加大输入信号幅度,使Ui=5mV。
4、用示波器观察输出信号U
0的波形,在U
不失真情况下,填入表2中。
5、置R
C =3.3KΩ,R
L
=2KΩ, u
i
=0,调节R
W
使I
C
=2.0mA,再逐步加大输入信号,使
输出电压u
0足够大但不失真。
然后保持输入信号不变,分别增大和减小R
W
,使波形
出现失真,绘出u
0的波形,并测出失真情况下的I
C
和U
CE
值,记入表3中。
每次测I
C
和U
CE
值时都要将信号源的输出旋钮旋至零。
六、结果汇总
表1(注三极管的β=40)
表2
七、结果分析
1、在这个分压式偏置电路中,你的静态工作点是如何调节的?依据是什么?(需要时可使用公式表达)
2、分压式偏置电路的电压放大倍数是如何表达的?其电压输入和输出信号的相位关系怎么样?。