北京市西城区2013-2014学年高二上学期期末考试数学文试题(扫描版)
- 格式:doc
- 大小:683.00 KB
- 文档页数:13
2023-2024学年北京市西城区高二(上)期末数学试卷一、选择题共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.直线3x﹣4y+1=0不经过()A.第一象限B.第二象限C.第三象限D.第四象限2.抛物线x2=6y的焦点到准线的距离为()A.12B.1C.2D.33.在空间直角坐标系O﹣xyz中,点A(4,﹣2,8)到平面xOz的距离与其到平面yOz的距离的比值等于()A.14B.12C.2D.44.在(2x+1x)3的展开式中,x的系数为()A.3B.6C.9D.12 5.正四面体ABCD中,AB与平面BCD所成角的正弦值为()A.√63B.√36C.√24D.√336.已知直线a,b和平面α,其中a⊄α,b⊂α,则“a∥b”是“a∥α”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.设A,B为双曲线E:x 2a2−y2b2=1(a>0,b>0)的左、右顶点,M为双曲线E上一点,且△AMB为等腰三角形,顶角为120°,则双曲线E的一条渐近线方程是()A.y=x B.y=2x C.y=√2x D.y=√3x8.在正方体的8个顶点中任选3个,则这3个顶点恰好不在同一个表面正方形中的选法有()A.12种B.24种C.32种D.36种9.如图,在长方体ABCD﹣A1B1C1D1中,AB=3,BC=CC1=4,E为棱B1C1的中点,P为四边形BCC1B1内(含边界)的一个动点.且DP⊥BE,则动点P的轨迹长度为()A.5B.2√5C.4√2D.√1310.在直角坐标系xOy 内,圆C :(x ﹣2)2+(y ﹣2)2=1,若直线l :x +y +m =0绕原点O 顺时针旋转90°后与圆C 存在公共点,则实数m 的取值范围是( ) A .[−√2,√2]B .[−4−√2,−4+√2]C .[−2−√2,−2+√2]D .[−2+√2,2+√2]二、填空题共5小题,每小题5分,共25分.11.过点A (2,﹣3)且与直线x +y +3=0平行的直线方程为 . 12.在(2x +1)4的展开式中,所有项的系数和等于 .(用数字作答)13.两个顶点朝下竖直放置的圆锥形容器盛有体积相同的同种液体(示意图如图所示),液体表面圆的半径分别为3,6,则窄口容器与宽口容器的液体高度的比值等于 .14.若方程x 2m+2+y 24−m =1表示的曲线为双曲线,则实数m 的取值范围是 ;若此方程表示的曲线为椭圆,则实数m 的取值范围是 .15.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,AB =2,E 为棱BB 1的中点,F 为棱CC 1(含端点)上的一个动点.给出下列四个结论:①存在符合条件的点F ,使得B 1F ∥平面A 1ED ; ②不存在符合条件的点F ,使得BF ⊥DE ; ③异面直线A 1D 与EC 1所成角的余弦值为√55; ④三棱锥F ﹣A 1DE 的体积的取值范围是[23,2].其中所有正确结论的序号是 .三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程. 16.(10分)从6男4女共10名志愿者中,选出3人参加社会实践活动.(1)共有多少种不同的选择方法?(2)若要求选出的3名志愿者中有2男1女,且他们分别从事经济、文化和民生方面的问卷调查工作,求共有多少种不同的选派方法?17.(15分)如图,在直三棱柱ABC﹣A1B1C1中,BA⊥BC,BC=3,AB=AA1=4.(1)证明:直线AB1⊥平面A1BC;(2)求二面角B﹣CA1﹣A的余弦值.18.(15分)已知⊙C经过点A(1,3)和B(5,1),且圆心C在直线x﹣y+1=0上.(1)求⊙C的方程;(2)设动直线l与⊙C相切于点M,点N(8,0).若点P在直线l上,且|PM|=|PN|,求动点P的轨迹方程.19.(15分)已知椭圆C:x 2a2+y2b2=1(a>b>0)的一个焦点为(√5,0),四个顶点构成的四边形面积等于12.设圆(x﹣1)2+y2=25的圆心为M,P为此圆上一点.(1)求椭圆C的离心率;(2)记线段MP与椭圆C的交点为Q,求|PQ|的取值范围.20.(15分)如图,在四棱锥P﹣ABCD中,AD⊥平面P AB,AB∥DC,E为棱PB的中点,平面DCE与棱P A相交于点F,且P A=AB=AD=2CD=2,再从下列两个条件中选择一个作为已知.条件①:PB=BD;条件②:P A⊥BC.(1)求证:AB∥EF;(2)求点P到平面DCEF的距离;(3)已知点M在棱PC上,直线BM与平面DCEF所成角的正弦值为23,求PMPC的值.21.(15分)设椭圆C:x 2a2+y2b2=1(a>b>0)左、右焦点分别为F1,F2,过F1的直线与椭圆C相交于A,B两点.已知椭圆C的离心率为12,△ABF2的周长为8.(1)求椭圆C的方程;(2)判断x轴上是否存在一点M,对于任一条与两坐标轴都不垂直的弦AB,使得MF1为△AMB的一条内角平分线?若存在,求点M的坐标;若不存在,说明理由.2023-2024学年北京市西城区高二(上)期末数学试卷参考答案与试题解析一、选择题共10小题,每小题4分,共40分。
2022-2023学年北京市西城区高二上学期期末考试数学试题一、单选题1.直线的倾斜角等于( ) 0x y +=A . B . C . D .45 90 120 135 【答案】D【分析】由得.0x y +==-+y x【详解】由得,则倾斜角为. 0x y +==-+y x 1-135 故选:D2.抛物线的准线方程为( ) 24x y =A . B . C . D .1x ==1x -1y =1y =-【答案】D【分析】根据抛物线方程求出,进而可得焦点坐标以及准线方程. 2p =【详解】由可得,所以焦点坐标为,准线方程为:, 24x y =2p =()0,11y =-故选:D.3.在空间直角坐标系中,点,则( ) O xyz -()()1,3,0,0,3,1A B -A .直线坐标平面 B .直线坐标平面 AB xOy AB ⊥xOy C .直线坐标平面 D .直线坐标平面AB xOz AB ⊥xOz 【答案】C【分析】求出及三个坐标平面的法向量,根据与法向量的关系判断.ABAB【详解】,坐标平面的一个法向量是,坐标平面的一个法向量是(1,0,1)AB =--xOy (0,0,1)xOz ,坐标平面的一个法向量是,这三个法向量与都不平行,(0,1,0)yOz (1,0,0)AB但,点均不在坐标平面上,因此与坐标平面平行,(0,1,0)0AB ⋅=,A B xOz AB xOz 故选:C .4.在的展开式中,的系数为( ) 4(21)x +2x A .6 B .12C .24D .36【答案】C【分析】先求二项式展开式的通项公式,然后根据通项公式计算求解即可.【详解】展开式的通项公式, 4(21)x +444144C (2)12C k kk k k kk T x x---+=⋅=令,得,42k -=2k =所以在的展开式中,的系数为,4(21)x +2x 42242C 4624-=⨯=故选:C5.在长方体中,,则二面角的余弦值为( ) 1111ABCD A B C D -13,2,1AB BC AA ===1D BC D --ABCD【答案】D【分析】画出长方体,为二面角所成的平面角,求出1111ABCD A B C D -1D CD ∠1D BC D --的值即可得出答案.1cosD CD ∠【详解】长方体中,,,1111ABCD A B C D -13,2,1AB BC AA ===1CD ∴=,平面,平面,,BC CD ∴⊥BC ⊥ 11DCC D 1CD ⊂11DCC D 1BC CD ∴⊥又平面平面,1D BCBCD BC =为二面角所成的平面角,∴1D CD ∠1D BC D --11cos CD D CD CD ∠===所以二面角1D BC D --故选:D.6.若直线与圆相离,则实数的取值范围是( ) 340x y m ++=22(1)1x y ++=m A . B . ()(),82,∞∞--⋃+()(),28,∞∞--⋃+C . D .()(),22,∞∞--⋃+()(),88,∞∞--⋃+【答案】B【分析】根据直线与圆相离则圆心到直线的距离大于圆的半径即可求解.【详解】因为直线与圆相离,所以圆心到直线的距离,(1,0)-340x y m ++=1d r =解得或, 2m <-8m >故选:B.7.2名辅导教师与3名获奖学生站成一排照相,要求2名教师分别站在两侧,则不同的站法共有( ) A .种 B .种C .种D .种33A 332A 5353A A -35A 【答案】B【分析】先排好教师再排学生即可.【详解】2名教师排在两边有种排法,3名学生排在中间有 种排法,22A 2=33A 所以共有 种排法; 332A 故选:B.8.设,则“”是“直线与直线平行”的( ) a R ∈1a =1:20l ax y +=()2140+++=:l x a y A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A【解析】计算直线平行等价于或,根据范围大小关系得到答案.1a =2a =-【详解】直线与直线平行,则,或, 1:20l ax y +=()2140+++=:l x a y ()12a a +=1a =2a =-验证均不重合,满足.故“”是“直线与直线平行”的充分不必要条件. 1a =1:20l ax y +=()2140+++=:l x a y 故选:A.【点睛】本题考查了充分不必要条件,意在考查学生的计算能力和推断能力.9.如图是一个椭圆形拱桥,当水面在处时,在如图所示的截面里,桥洞与其倒影恰好构成一个椭l 圆.此时拱顶离水面,水面宽,那么当水位上升时,水面宽度为( )2m 6m 1mA .BC .D 【答案】A【分析】根据题意可得桥洞与其倒影恰好构成的椭圆方程为:,求直线被椭圆所截22194x y +=1y =得的弦长,代入椭圆方程即可求解.【详解】以图中水面所在的直线为轴,水面的垂直平分线所在直线为轴,建立平面直角坐标x y 系,根据已知条件可知:桥洞与其倒影恰好构成的椭圆方程为:,22194x y +=当水位上升时,水面的宽度也即当时,直线被椭圆所截的弦长. 1m 1y =1y =把代入椭圆方程可得: 1y =x =所以当水位上升时,水面的宽度为, 1m 故选:.A 10.设点,,直线,于点,则的最大值为( ) ()1,0A ()2,3N -:210l x ay a ++-=AM l ⊥M MNA B .6C .4D .1【答案】B【分析】依题意可得直线的方程,再联立直线的方程,消后可得到的轨迹方程为AM l a M ,则所求的最大值为圆心到点的距离加上半径,由此即可求解.()()22111x y -++=MN ()2,3N -【详解】依题意可得直线的方程为,AM ()1y a x =-联立,消整理得,()2101x ay a y a x ++-=⎧⎨=-⎩a ()()22111x y -++=所以点的轨迹是以为圆心,1为半径的圆, M ()1,1-故的最大值为,MN 16=故选:B .二、填空题11.设,则过线段的中点,且与垂直的直线方程为__________. ()()3,2,1,4A B --AB AB 【答案】2310x y --=【分析】求出线段的中点坐标和斜率,利用点斜式写出直线方程.AB【详解】因为,所以线段的中点,且.()()3,2,1,4A B --AB ()1,1C --()423132AB k --==---所以与垂直的直线的斜率为, AB 112332ABk k =-=-=-所以过线段的中点,与垂直的直线方程为,即. AB AB ()2113y x +=+2310x y --=故答案为:2310x y --=12.在的展开式中,常数项为_____.61x x ⎛⎫+ ⎪⎝⎭【答案】20【分析】根据展开式的通项公式求解即可.【详解】在的展开式的通项公式为,61x x ⎛⎫+ ⎪⎝⎭6621661kk k k k k T C x C x x --+⎛⎫== ⎪⎝⎭所以令,解得,620k -=3k =所以常数项为3620C =故答案为:.2013.设为抛物线的焦点,点在抛物线上,点,且,则F 2:4C y x =A C ()3,0B AF BF =AB =__________.【答案】【分析】由题意可设,且满足,因为,由两点间的距离公式代入可求(),A x y 24y x ==2AF BF =出,即可求出.()1,2A ±AB 【详解】由题意可得,,,设, ()1,0F 2BF =(),A x y 且满足,此时, 24y x =0x >则,2AF ===解得:,此时,所以, 1x =2y =±()1,2A ±故AB ==故答案为:14.记双曲线的离心率为e ,写出满足条件“直线与C 无公共点”的e 2222:1(0,0)x y C a b a b -=>>2y x =的一个值______________.【答案】2(满足1e <≤【分析】根据题干信息,只需双曲线渐近线中即可求得满足要求的e 值. by x a =±02b a<≤【详解】解:,所以C 的渐近线方程为,2222:1(0,0)x y C a b a b -=>>b y x a=±结合渐近线的特点,只需,即,02b a <≤224b a ≤可满足条件“直线与C 无公共点”2y x =所以===c e a又因为,所以, 1e >1e <≤故答案为:2(满足 1e <≤15.如图,在正方体中,为棱的中点,是正方形内部(含1111ABCD A B C D -2,AB E =1DD F 11CDD C 边界)的一个动点,且平面.给出下列四个结论:1//B F 1A BE①动点的轨迹是一段圆弧;F ②存在符合条件的点,使得; F 11B F A B ⊥③三棱锥的体积的最大值为;11B D EF -23④设直线与平面所成角为,则的取值范围是. 1B F 11CDD C θtan θ2,⎡⎣其中所有正确结论的序号是__________. 【答案】②③④【分析】对于①,利用线线平行可证得平面平面,进而知动点的轨迹; 1//A BE 1MNB F 对于②,利用垂直的性质的可判断; 对于③,利用三棱锥的体积公式可求得;对于④,利用线面角的定义结合三角形可求解;【详解】对于①,分别取和的中点,连接,,,1CC 11D C ,N M MN 1MB 1NB 由正方体性质知,,平面,平面,所以1//MN A B 11//NB EA 1,MN NB ⊂/1A BE 11,A B EA ⊂1A BE 平面,又平面,,所以平面平面,1,//MN NB 1A BE 1,MN NB ⊂1MNB 1MN NB N = 1//A BE 1MNB 当在上运动时,有平面,故动点的轨迹是线段,故①错误; F MN 1//B F 1A BE F MN 对于②,当为线段中点时,,, F MN 11MB NB = 1B F MN ∴⊥又,,故②正确;1//MN A B 11B F A B ∴⊥对于③,三棱锥的体积,11B D EF -11111233D EF D EF V S B C S =⋅=又所以三棱锥的体积的最大值为,故③正确;1max 12112D EF S =⨯⨯=23对于④,连接,则与平面所成角,则, 11,B F C F 1B F 11CDD C 11FC Bθ=∠12tan C Fθ=,所以的取值范围是,故④正确; 11C F≤tan θ2,⎡⎣故正确结论的序号是①③④, 故答案为:②③④三、解答题16.从4男3女共7名志愿者中,选出3人参加社区义务劳动. (1)共有多少种不同的选择方法?(2)若要求选中的3人性别不能都相同,求共有多少种不同的选择方法? 【答案】(1)35 (2)30【分析】(1)7名志愿者中选出3人共有种;37C(2)选中的3人性别不能都相同,即为1男2女或2男1女,即.12214343C C C C +【详解】(1)7名志愿者中选出3人共有种; 37765C 353´´==!(2)选中的3人性别不能都相同,即为1男2女或2男1女,则有12214343C C C C 436330+=´+´=种.17.如图,在四棱锥中,平面,底面为正方形,为线段的中P ABCD -PA ⊥ABCD ABCD E AB 点,.2PA AB ==(1)求证:;BC PE ⊥(2)求平面与平面夹角的余弦值. PAB PBD 【答案】(1)证明见解析【分析】(1)根据线面垂直的性质定理可得,再根据底面是正方形可证明线面垂直,即可PA BC ⊥得;(2)建立空间直角坐标系,利用空间向量求得平面与平面的法向量,即可BC PE ⊥PAB PBD 求得二面角的余弦值【详解】(1)由平面,根据线面垂直的性质定理可知, PA ⊥ABCD PA BC ⊥又因为底面为正方形,所以,ABCD AB BC ⊥又因为,且PA,BA 含于平面PAB,所以平面;PA BA A = BC ⊥PAB 为线段的中点,平面, E AB PE ⊂PAB 所以,BC PE ⊥(2)根据题意可知,以A 点为坐标原点,分别以AB 、AD 、AP 所在直线为轴、轴、轴建立x y z 空间直角坐标系,如下图所示:则;(0,0,0),(2,0,0),(0,2,0),(0,0,2)A B D P 则,(2,0,2),(0,2,2)PB PD =-=-设平面的一个法向量为,PBD (,,)n x y z =得,令可得,,即;·220·220n PB x z n PD y z ⎧=-=⎪⎨=-=⎪⎩ 1z =1,1x y ==(1,1,1)n = 易知,是平面的一个法向量, (0,2,0)AD =PAB 设平面与平面的夹角为,PAB PBD θ则cos cos ,n AD n AD n AD θ==== 所以,平面与平面PAB PBD 18.在平面直角坐标系中,,曲线是由满足直线与的斜率之积等于定值()()1,0,1,0A B -C PA PB 的点组成的集合.()λλ∈R P (1)若曲线是一个圆(或圆的一部分),求的值;C λ(2)若曲线是一个双曲线(或双曲线的一部分),且该双曲线的离心率,求的取值范围. C e ≥λ【答案】(1)1-(2) [)1+∞,【分析】(1)由题意知,的斜率存在,设代入斜率公式,再由斜率之积为定值,化,PA PB (),P x y 简满足圆的条件即可求得的值.λ(2)由题意知,的斜率存在,设代入斜率公式,再由斜率之积为定值,化简满足双,PA PB (),Px y 曲线的条件及离心率的取值范围.e ≥λ【详解】(1)设且,,由题意知,的斜率存在, (),P x y 1x ≠±()()1,0,1,0A B -,PA PB 则即, ()0011PA PBy y k k x x λ--⋅=⋅=---()()211y x x λ=-+可化为,()()2211y x x x λλλ=+-=-()1x ≠±因为曲线是一个圆(或圆的一部分),所以,C ()()2211y x x x λλλ=+-=-可化为,220x y λλ-++=所以解得.140λλ-=⎧⎨->⎩1λ=-(2)设且,,由题意知,的斜率存在, (),P x y 1x ≠±()()1,0,1,0A B -,PA PB 则即, ()0011PA PBy y k k x x λ--⋅=⋅=---()()211y x x λ=-+可化为,()()2211y x x x λλλ=+-=-()1x ≠±因为曲线是一个双曲线(或双曲线的一部分),所以,C ()()2211y x x x λλλ=+-=-可化为,()210yx λλ-=≠所以, 222221,,1a b c a b λλ===+=+因为 ce a=≥所以,22211c e a λ+==≥1λ≥所以的取值范围为. λ[)1+∞,19.已知椭圆的一个焦点为,其长轴长是短轴长的2倍.2222:1(0)x y C a b a b +=>>)F(1)求椭圆的方程;C (2)记斜率为1且过点的直线为,判断椭圆上是否存在关于直线对称的两点?若存在,F l C l ,A B 求直线的方程;若不存在,说明理由.AB 【答案】(1)2214x y +=(2)不存在【分析】(1)由及,根据,解得,写出方程.c 2a b =222a b c =+,a b(2)先假设存在,设出直线的方程,与椭圆方程联立,求得中点坐标,代入,求得,验证AB l m ,得结论不存在关于直线对称的两点.Δ0<l 【详解】(1)2222244()c a b a b a c ==∴==-24,2,1a a b ∴===椭圆的方程 C 2214x y +=(2)假设存在关于对称的两点l ,A B的方程为:l y x = AB y x m =-+直线与椭圆的方程联立得 AB C 2214y x m x y =-+⎧⎪⎨+=⎪⎩2258440x mx m -+-=设1122(,),(,)A x y B x y 则, 12121282,()255m m x x y y x x m +=+=-++=的中点代入AB 4(,55mm y x =解得 m =此时,216800m ∆=-+<所以椭圆上不存在关于直线对称的两点.C l ,A B 20.如图,在四棱柱中,平面,1111ABCD A B C D -1AA ⊥1,,ABCD AB CD AD CD ==∥为线段的中点,再从下列两个条件中选择一个作为已知.12,AA AB E ==1AA 条件①:;条件②:AD BE ⊥BC =(1)求直线与所成角的余弦值;CE 11B D (2)求点到平面的距离;1C BCE (3)已知点在线段上,直线与平面的长. M 1CC EM 11BCCB CM 【答案】(3)的长为或. CM 1232【分析】选①或②,都能得到,,后如图以为原点建立空间直角坐标系.则可利用向量DA AB ⊥A 方法求线线角,点面距离,面面角解决问题.【详解】(1)若选择①,因平面ABCD ,平面ABCD ,则,1AA ⊥DA ⊂1DA AA ⊥又,平面,平面,,则AD BE ⊥1AA ⊂11ABB A EB ⊂11ABB A 1∩AA EB E =DA ⊥平面,又平面,则;11ABB A AB ⊂11ABB A DA AB ⊥若选择②,做,交AB 于F ,又,则四边形DCFA 是平行四边形,则CF AD ∥AB CD ,又,则.1CD CF AD AF ====2AB =1FB =则在中,,得,又,则.CFB 222CF FB BC +=CF AB ⊥CF AD ∥AD AB ⊥故,则如图建立以A 为原点的空间直角坐标系.11,,DA AA DA AB AA AB ⊥⊥⊥则,()()()()11110001102022,,,,,,,,,,,C E D B 得,则直线与所成角的余弦值为: ()()11111120,,,,,CE B D =--=-CE 11B D(2)因,()()()()1020110001112,,,,,,,,,,,B C E C 则. ()()()1110111002,,,,,,,,CB CE CC =-=--=设平面的法向量为,则, BCE ()111,,x n y z = 111110000x y z n CE x y n CB ⎧--+=⋅=⎧⎪⇒⎨⎨-+=⋅=⎩⎪⎩ 取,则求点到平面的距离()1,1,2n = 1C BCE d (3)因点在线段上,则设,其中. M 1CC ()11,,M t []0,2t ∈又,则.又, ()0,0,1E ()111,,EM t =-()()11,1,00,0,2CB CC =-= ,设平面法向量为,则, 11BCC B ()222,,m x y z = 222100200x y m CB z m CC ⎧-+=⎧⋅=⎪⇒⎨⎨=⋅=⎪⎩⎩取,则直线与平面所成角的正弦值为: ()1,1,0m =u r EM 11BCC B或.12EM mtEM m⋅==⇒=⋅32t=得线段的长为或.CM123221.已知椭圆的焦点在轴上,且离心率为.22:116x yCt t+=+-x12(1)求实数的值;t(2)若过点可作两条互相垂直的直线,且均与椭圆相切.证明:动点组成的集合(),P m n12,l l12,l l C P是一个圆.【答案】(1)3t=(2)见解析【分析】(1)根据椭圆的离心率即可求解,(2)联立直线与椭圆的方程,根据相切得判别式为0,进而代入切线中的,化简k k,km n b¢=-+=即可求解.【详解】(1)椭圆的焦点在轴上,且离心率为,所以,解22:116x yCt t+=+-x12()216114t tet+--==+得,3t=(2)当时,椭圆方程为,3t=22143x y+=设与椭圆相切,且斜率存在的直线方程为,y k x b'=+所以,()222223484120143y k x bk x k bx bx y''=+⎧⎪⇒+++-=⎨+=⎪⎩'由于相切,所以,化简得—①,()()()222=84344120k b k b¢¢D-+->22430k b¢-+=设过点且斜率为的直线方程为,即,(),P m n0k'≠()y k x m n¢=-+y kx km n=-+所以将代入①得,k k,km n b¢=-+=()22430k km n--++=化简得—②,22224230k n kmn k m -+-+=将代入②得,化简得—③, 1k -22221114230n mn m k k k æöç÷-+--+=ç÷èø22224230n k kmn m k ---+=由②③相加得, ()()()2222227117k k m n m n +=++Þ+=当其中一条切线无斜率时,此时,也满足,12,l l (2P ,±227m n +=综上可知:动点组成的集合是一个圆,且圆的方程为(),P m n 227m n +=【点睛】根据直线与曲线相切,转化成判别式为0,进而得到等量关系式,可将关系式进行适当的变形,根据弦长公式,或者利用向量共线等方式,化简运算即可求解.。
北京市西城区2013 — 2014学年度第一学期期末试卷高二数学 2014.1(理科)试卷满分:150分 考试时间:120分钟题号一二三本卷总分1718 19 20 21 22分数一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.圆2221x y y ++=的半径为( ) A. 1B.C. 2D. 42.双曲线1922=-y x 的实轴长为( ) A. 4B. 3C. 2D. 13.若(,1,3)x =-a ,(2,,6)y =b ,且//a b ,则( ) A. 1,2x y ==- B. 1,2x y == C. 1,22x y ==- D. 1,2x y =-=-4.命题“x ∀∈R ,20x ≥”的否定为( ) A. x ∀∈R ,20x < B. x ∀∈R ,20x ≤ C. x ∃∈R ,20x ≥D. x ∃∈R ,20x <5. “n m =”是“方程122=+ny mx 表示圆”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件D. 既不充分也不必要条件6.关于直线,a b 以及平面,M N ,下列命题中正确的是( ) A. 若//a M ,//b M ,则//a b B. 若//a M ,b a ⊥,则b M ⊥ C. 若b M ⊂,且a b ⊥,则a M ⊥D. 若a M ⊥,//a N ,则M N ⊥7.已知12,F F 为椭圆192522=+y x 的两个焦点,过1F 的直线交椭圆于,A B 两点, 8AB =,则22AF BF +=( ) A. 2B. 10C. 12D. 148.某几何体的三视图如图所示,则它的体积等于( ) A. 8B. 6C. 4D.839.已知平面内两个定点(1,0),(1,0)A B -,过动点M 作直线AB 的垂线,垂足为N .若2MN AN BN =⋅,则动点M 的轨迹是( )A. 圆B. 抛物线C. 椭圆D. 双曲线10. 已知正方体1111D C B A ABCD -,点E ,F ,G 分别 是线段B B 1,AB 和1A C 上的动点,观察直线CE 与F D 1,CE 与1DG .给出下列结论:①对于任意给定的点E ,存在点F ,使得1D F ⊥CE ; ②对于任意给定的点F ,存在点E ,使得⊥CE F D 1; ③对于任意给定的点E ,存在点G ,使得1D G ⊥CE ; ④对于任意给定的点G ,存在点E ,使得⊥CE 1D G .其中正确结论的个数是( ) A. 1个 B. 2个C. 3个D. 4个二、填空题:本大题共6小题,每小题5分,共30分. 把答案填在题中横线上. 11. 已知抛物线的准线为1-=x ,则其标准方程为_______.俯视图侧视图正视图F D A BC A 1B 1C 1D 1E G12. 命题“若x y >,则x y >”的否命题是:__________________.13. 双曲线221412x y -=的离心率为_______;渐近线方程为_______. 14. 一个正方体的八个顶点都在同一个球面上,则球的表面积与这个正方体的表面积之比为_______.15. 如图,长方体1111ABCD A B C D -中,ABCD 是边长为1的正方形,1D B 与平面ABCD 所成的角为45, 则棱1AA 的长为_______;二面角1B DD C --的 大小为_______. 16. 已知M 为椭圆22143x y +=上一点,N 为椭圆长轴上一点,O 为坐标原点. 给出下列结论:① 存在点,M N ,使得OMN ∆为等边三角形; ② ②不存在点,M N ,使得OMN ∆为等边三角形;③存在点,M N ,使得90OMN ∠=;④不存在点,M N ,使得90OMN ∠=. 其中,所有正确结论的序号是__________.三、解答题:本大题共6小题,共80分. 解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分13分)如图,在四棱锥ABCD P -中,底面ABCD 为矩形,⊥PA 底面ABCD ,M 、N 分别是AB 、PC 中点.(Ⅰ)求证://MN 平面PAD ; (Ⅱ)求证:MN AB ⊥.18.(本小题满分13分)已知圆C 经过坐标原点O 和点(2,2),且圆心在x 轴上.(Ⅰ)求圆C 的方程;(Ⅱ)设直线l 经过点(1,2),且l 与圆C 相交所得弦长为32,求直线l 的方程.ABCDNPMDABCA 1B 1C 1D 119.(本小题满分13分)如图,在直三棱柱111ABC A B C -中,90ACB ∠=︒,12AC CB CC ===,E 是AB 中点.(Ⅰ)求证:1AB ⊥平面1A CE ;(Ⅱ)求直线11A C 与平面1A CE 所成角的正弦值.20.(本小题满分14分)如图所示,四边形ABCD 为直角梯形,CD AB //,BC AB ⊥,ABE ∆为等边三角形,且平面ABCD ⊥平面ABE ,222AB CD BC ===,P 为CE 中点.(Ⅰ)求证:AB ⊥DE ;(Ⅱ)求平面ADE 与平面BCE 所成的锐二面角的余弦值;(Ⅲ)在ABE ∆内是否存在一点Q ,使PQ ⊥平ABECDP·ABCA 1B 1C 1E面CDE ,如果存在,求PQ 的长;如果不存在,说明理由.21.(本小题满分13分)已知抛物线2:12C y x =,点(1,0)M -,过M 的直线l 交抛物线C于,A B 两点.(Ⅰ)若线段AB 中点的横坐标等于2,求直线l 的斜率; (Ⅱ)设点A 关于x 轴的对称点为A ',求证:直线A B '过定点.22.(本小题满分14分)已知,,A B C 为椭圆22:22W x y +=上的三个点,O 为坐标原点.(Ⅰ)若,A C 所在的直线方程为1y x =+,求AC 的长;(Ⅱ)设P 为线段OB 上一点,且3OB OP =,当AC 中点恰为点P 时,判断OAC ∆的面积是否为常数,并说明理由.北京市西城区2013 — 2014学年度第一学期期末试卷高二数学(理科)参考答案及评分标准2014.1一、选择题:本大题共10小题,每小题4分,共40分.1.B2.C3.A4.D5.B6.D7.C8.C9.D 10. B 二、填空题:本大题共6小题,每小题5分,共30分.11. x y 42= 12. 若x y ≤,则x y ≤. 13. 2,y =14. π:2 15.45 16. ①④注:一题两空的试题,第一空3分,第二空2分;16题,仅选出①或④得3分;错选得0分.三、解答题:本大题共6小题,共80分. 17. 证明:(Ⅰ)取PD 中点Q ,连结AQ,NQ .因为 N 是PC 中点, 所以 1//2NQ DC . ………………2分 又M 是AB 中点,1//2AM DC , 所以 //AM NQ ,四边形AQNM 是平行四边形. ………4分 所以 //MN AQ . ………………5分 因为 MN Ë平面PAD ,AQ Ì平面PAD , 所以 //MN 平面PAD . ………………7分(Ⅱ)因为 PA ^平面ABCD ,所以 PA AB ^. ………………8分又 ABCD 是矩形,所以 AB AD ^. (9)ABCDNPM Q分所以 AB ^平面PAD , ………………10分 所以 AB AQ ^. ………………11分又 //AQ MN ,所以 AB MN ^. ………………13分18. 解:(Ⅰ)设圆C 的圆心坐标为(,0)a ,依题意,有a =, ………………2分即2248a a a =-+,解得2a =, ………………4分 所以圆C 的方程为22(2)4x y -+=. ………………6分 (Ⅱ)依题意,圆C 的圆心到直线l 的距离为1, ………………8分所以直线1x =符合题意. ………………9分 另,设直线l 方程为2(1)y k x -=-,即20kx y k --+=,1=, ………………11分解得34k =-, ………………12分 所以直线l 的方程为32(1)4y x -=--,即34110x y +-=. ………………13分综上,直线l 的方程为10x -=或34110x y +-=. 19.(Ⅰ)证明:因为111ABC A B C -是直三棱柱, 所以11CC AC ,CC BC ^^,又90ACB?o ,即AC BC ^. ………………2分 如图所示,建立空间直角坐标系C xyz -.(200)A ,,,1(022)B ,,,(110)E ,,,1(202)A ,,, 所以 1=(222)AB ,,-uuu r ,=(110)CE ,,u u r , 1=(202)CA ,,uuu r. ………………4分又因为 10AB CE ?uuu r uu r ,110AB CA ?uuu r uuu r, ………………6分所以 1AB CE ^,11AB CA ^,1AB ^平面1A CE . ………………7分(Ⅱ)解:由(Ⅰ)知,1=(222)AB ,,-uuu r是平面1A CE 的法向量, ………………9分11==(200)C A CA ,,uuu r uu r, ………………10分则 111111111cos C A AB C A ,AB C A AB×狁=uuu u r uuu ruuu u r uuu r uuu u r uuu r 3=. ………………12分 设直线11A C与平面1A CE 所成的角为q , 则111sin =cos C A ,AB狁uuu u r uuu rq 3=. 所以直线11AC 与平面1A CE 所成角的正弦值为3. ………………13分 20. (Ⅰ)证明:取AB 中点O ,连结OD,OE , ………………1分因为△ABE 是正三角形,所以AB OE ^. 因为 四边形ABCD 是直角梯形,12DC AB =,AB //CD , 所以 四边形OBCD 是平行四边形,OD //BC , 又 AB BC ^,所以 AB OD ^. 所以 AB ^平面ODE ,………………3分 所以 AB DE ^. ………………4分 (Ⅱ)解:因为平面ABCD ⊥平面ABE ,AB OE ^,所以OE ^平面ABCD ,所以 OE OD ⊥. ………………5分 如图所示,以O 为原点建立空间直角坐标系则 (100)A ,,,(100)B ,,-,(001)D ,,,(101)C ,,-,(00)E .所以 =(101)AD ,,-uuu r ,=(01)DE -u u u r, ………………6分设平面ADE 的法向量为1n 111=()x ,y ,z ,则1100DE ADìï?ïíï?ïïîuuu r uuu r n n 11110z x z ìï-=ïÛíï-+=ïî, ………………7分 令11z =,则11x =,13y =.所以1n =(11)3,. ………………8分 同理求得平面BCE 的法向量为2n =(10),-, ………………9分设平面ADE 与平面BCE 所成的锐二面角为θ,则cos θ1212×=n n n n 7=.所以平面ADE 与平面BCE所成的锐二面角的余弦值为7. ………………10分 (Ⅲ)解:设22(0)Q x ,y ,,因为11()22P -,所以2211()22PQ x ,y =+--uu u r ,=(100)CD ,,uu u r,=(01)DE -uu u r . 依题意00PQ CD PQ DEìï?ïíï?ïïîuu u r uu u ruu u r uuu r ,,即22102102x ,y ,ìïï+=ïïïíïï-+=ïïïî………………11分 解得 212x =-,2y = ………………12分符合点Q 在三角形ABE 内的条件. ………………13分所以,存在点1(0)23Q ,-,使PQ ^平面CDE,此时3PQ =.…………14分 21.解:(Ⅰ)设过点(1,0)M -的直线方程为(1)y k x =+,由 2(1),12,y k x y x =+⎧⎨=⎩ 得2222(212)0k x k x k +-+=. ………………2分因为 20k ≠,且2242(212)4144480k k k ∆=--=->,所以,((0,3)k ∈. ………………3分设11(,)A x y ,22(,)B x y ,则2122122k x x k -+=,121x x =. ………………5分 因为线段AB 中点的横坐标等于2,所以2122622x x k k+-==, ………………6分解得k =符合题意. ………………7分 (Ⅱ)依题意11(,)A x y '-,直线212221:()y y A B y y x x x x +'-=--, ………………8分又 21112y x =,22212y x =,所以 222112()y x x y y y =-+-, ………………9分12212112y y x y y y y =--- (10)分因为 221212144144y y x x ==, 且12,y y 同号,所以1212y y =, (11)分所以 2112(1)y x y y =--, ………………12分所以,直线A B '恒过定点(1,0). ………………13分22. 解:(Ⅰ)由2222,1x y y x ⎧+=⎨=+⎩ 得2340x x +=,解得0x =或43x =-, ………………2分 所以,A C 两点的坐标为(0,1)和41(,)33--, ………………4分所以AC =………………5分(Ⅱ)①若B 是椭圆的右顶点(左顶点一样),则B , 因为3OB OP =,P 在线段OB上,所以3P,求得AC =6分 所以OAC ∆的面积等于4=23391⨯. ………………7分 ②若B 不是椭圆的左、右顶点,设:(0)AC y kx m m =+≠,1122(,),(,)A x y C x y , 由22,22y kx m x y =+⎧⎨+=⎩ 得222(21)4220k x kmx m +++-=, ………………8分122421kmx x k +=-+,21222221m x x k -=+, 所以,AC 的中点P 的坐标为222(,)2121km mk k -++, ………………9分所以2263(,)2121km m B k k -++,代入椭圆方程,化简得22219k m +=. ……………10分计算AC ==…………11分=9m. ………………12分 因为点O 到AC 的距离O AC d -=. ………………13分所以,OAC ∆的面积2OACO AC S AC d ∆-1=⋅4299m 1=⨯=. 综上,OAC ∆面积为常数49. ………………14分高考资源网版权所有!投稿可联系QQ :1084591801。
北京市西城区2013-2014学年下学期高二年级期末考试数学(文)试卷试卷满分:150分 考试时间:120分钟一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合要求的。
1. 设集合{1,2,3,4,5},{1,3,5}==U M ,则U C M =( ) A. UB. {2,4}C. {1,3,5}D. {1,2,4}2. 下列函数中,既是奇函数又是增函数的为( ) A. 1=+y xB. 2=-y xC. 1=y xD. 3=y x3. 已知{}n a 是等比数列,142,16==a a ,则公比q 等于( ) A.14B.12C. 2D. 44. 命题“对任意实数x ,都有x>1”的否定是( ) A. 对任意实数x ,都有x<1 B. 不存在实数x ,使x ≤1 C. 对任意实数x ,都有x ≤1 D. 存在实数x ,使x ≤15. “1=a ”是“函数2()(1)=-f x x 在区间[,)+∞a 上为增函数”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充要条件D. 既不充分也不必要条件6. 已知31ln 4,log ,12===-x y z ,则( ) A. <<x z y B. <<z x yC. <<z y xD. <<y z x7. 函数1()=-x f x a a的图象可能是( )ABCD8. 设函数()ln =f x x x ,则()f x 的极小值点为( )A. =x eB. ln 2=xC. 2=x eD. 1=x e9. 已知数列{}n a 的前n 项和21,1,2,3,=-=n n S n ,那么数列{}n a ( )A. 是等差数列但不是等比数列B. 是等比数列但不是等差数列C. 既是等差数列又是等比数列D. 既不是等差数列也不是等比数列10. 函数32()=-+f x ax bx cx 的图象如图所示,且()f x 在0=x x 与1=x 处取得极值,给出下列判断:①0>c ;②(1)(1)0+->f f ;③函数()'=y f x 在区间(0,)+∞上是增函数。
北京市西城区2013-2014学年下学期高二年级期末考试数学试卷(理科)试卷满分:150分 考试时间:120分钟一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合要求的。
1. 复数31i i-等于( )A.1122i + B.1122i -C. 1122i -+ D. 1122i -- 2. 3244A C -=( )A. 6B. 12C. 18D. 203. 计算定积分2xdx ⎰=( )A. 2B. 1C. 4D. -24. 已知从A 口袋中摸出一个球是红球的概率为13,从B 口袋中摸出一个球是红球的概率为25。
现从两个口袋中各摸出一个球,那么这两个球中没有红球的概率是( ) A.215B.25C.715D.355. 从0,1,2,3中选取三个不同的数字组成一个三位数,则不同的三位数有( ) A. 24个B. 20个C. 18个D. 15个6. 如果用反证法证明“数列{}n a 的各项均小于2”,那么应假设( ) A. 数列{}n a 的各项均大于2B. 数列{}n a 的各项均大于或等于2C. 数列{}n a 中存在一项,2k k a a >D. 数列{}n a 中存在一项k a ,2k a ≥7. 已知100件产品中有97件正品和3件次品,现从中任意抽出3件产品进行检查,则恰好抽出2件次品的抽法种数是( )A. 21398C CB. 21398A AC. 21397C CD. 21397A A8. 由直线2,,033x x y ππ===与曲线sin y x =所围成的封闭图形的面积为( )A. 1B.12C.2D.9. 若5个人站成一排,且要求甲必须站在乙、丙两人之间,则不同的排法有( ) A. 80种B. 40种C. 36种D. 20种10. 函数32()=-+f x ax bx cx 的图象如图所示,且()f x 在0=x x 与1=x 处取得极值,给出下列判断:①0>c ;②(1)(1)0+->f f ;③函数()'=y f x 在区间(0,)+∞上是增函数。
北京市西城区2014 — 2015学年度第一学期期末试卷高二数学(文科)试卷满分:150分考试时间:120分钟一、选择题:本大题共10小题,每小题4分,共40分. 在每小题给出的四个选项中,只有一项是符合要求的.二、填空题:本大题共6小题,每小题5分,共30分. 把答案填在题中横线上.11. 抛物线24y x =的准线方程为_______________.12. 命题“2,20x x x ∃∈-<R ”的否定是_____________________. 13. 右图是一个四棱锥的三视图,则该四棱锥的 体积为_______.14. 圆心在直线y x =上,且与x 轴相切于点(2,0) 的圆的方程为____________________.15. 已知F 为双曲线22:14y C x -=的一个焦点, 则点F 到双曲线C 的一条渐近线的距离为__________. 16. “降水量”是指从天空降落到地面上的液态或固态(经融 化后)降水,未经蒸发、渗透、流失而在水平面上积聚的 深度.降水量以m m 为单位.为了测量一次降雨的降水量,一个同学使用了如图所 示的简易装置:倒置的圆锥. 雨后,用倒置的圆锥接到的 雨水的数据如图所示,则这一场雨的降水量为 m m .三、解答题:本大题共6小题,共80分. 解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分13分)如图,四边形ABCD 为矩形,AD ⊥平面ABE ,90AEB ∠=o,F 为CE 上的点. (Ⅰ)求证://AD 平面BCE ; (Ⅱ)求证:AE ⊥BF .侧(左)视图俯视图AEBCDF18.(本小题满分13分)已知△ABC 三个顶点的坐标分别为(0,0)A ,(4,0)B ,(3,1)C . (Ⅰ)求△ABC 中AC 边上的高线所在直线的方程; (Ⅱ)求△ABC 外接圆的方程.19.(本小题满分14分)如图,已知直三棱柱111ABC A B C -中,AB BC =,E 为AC 中点. (Ⅰ)求证:1//AB 平面1BC E ; (Ⅱ)求证:平面1BC E ⊥平面11ACC A .20.(本小题满分13分)如图,,A B 是椭圆22:13x W y +=的两个顶点,过点A 的直线与椭圆W 交于另一点C . (Ⅰ)当AC 的斜率为31时,求线段AC 的长;(Ⅱ)设D 是AC 的中点,且以AB 为直径的圆恰过点D . 求直线AC 的斜率.AB CEA 1B 1C 121.(本小题满分13分)如图,四棱锥P ABCD -中,底面ABCD 为矩形,平面PCD ⊥平面ABCD ,且3PD PC BC ===,CD =E 为PB 中点.(Ⅰ)求三棱锥P BCD -的体积; (Ⅱ)求证:CE ⊥平面PBD ;(Ⅲ)设M 是线段CD 上一点,且满足2DM MC =,试在线段PB 上确定一点N ,使得//MN 平面PAD ,并求出BN 的长.22.(本小题满分14分)已知,A B 是抛物线24y x =上的不同两点,弦AB (不平行于y 轴)的垂直平分线与x 轴交于点P .(Ⅰ)若直线AB 经过抛物线24y x =的焦点,求,A B 两点的纵坐标之积;(Ⅱ)若点P 的坐标为(4,0),弦AB 的长度是否存在最大值?若存在,求出其最大值;若不存在,请说明理由.北京市西城区2014 — 2015学年度第一学期期末试卷PABCDEM·高二数学(文科)参考答案及评分标准 2015.1一、选择题:本大题共10小题,每小题4分,共40分.1.B2.B3.D4. C5. D6.D7.A8. A9.C 10. C 二、填空题:本大题共6小题,每小题5分,共30分.11. 1x =- 12. 2,20x x x ∀∈-≥R 13.8314. 22(2)(2)4x y -+-= 15. 2 16. 1三、解答题:本大题共6小题,共80分. 17. (本小题满分13分)(Ⅰ)证明:因为四边形ABCD 为矩形,所以//AD BC . ………………2分 又因为BC ⊂平面BCE ,AD ⊄平面BCE , ………………4分所以//AD 平面BCE . ………………5分 (Ⅱ)证明:因为AD ⊥平面ABE ,BC AD //,所以BC ⊥平面ABE ,则BC AE ⊥ . ………………7分 又因为90AEB ∠=o,所以AE BE ⊥. ………………9分 所以AE ⊥平面BCE . ………………11分 又BF ⊂平面BCE , ………………12分 所以AE BF ⊥. ………………13分18. (本小题满分13分)解:(Ⅰ)因为(0,0)A ,(3,1)C ,所以直线AC 的斜率为13k =, ………………2分 又AC 边上的高所在的直线经过点(4,0)B ,且与AC 垂直,所以所求直线斜率为3-, ………………4分 所求方程为03(4)y x -=--,即 3120x y +-=. ………………5分 (Ⅱ)设△ABC 外接圆的方程为220x y Dx Ey F ++++=, ………………6分因为点(0,0)A ,(4,0)B ,(3,1)C 在圆M 上,则AEBCDF2220,440,3130.F D F D E F =⎧⎪++=⎨⎪++++=⎩………………9分解得4D =-,2E =,0F =. ………………12分所以△ABC ∆外接圆的方程为22420x y x y +-+=. ………………13分19. (本小题满分14分)(Ⅰ)证明:连结1CB ,与1BC 交于点F ,连结EF . ………………1分因为三棱柱111ABC A B C -是直三棱柱, 所以四边形11BCC B 是矩形,点F 是1B C 中点. ………………3分又E 为AC 中点,所以1//EF AB . …………5分 因为EF ⊂平面1BC E ,1AB ⊄平面1BC E ,所以1//AB 平面1BC E . ………………7分 (Ⅱ)证明:因为AB BC =,E 为AC 中点,所以BE AC ⊥. ………………9分 又因为三棱柱111ABC A B C -是直三棱柱,所以1CC ⊥底面ABC ,从而1CC BE ⊥. ………………11分 所以BE ⊥平面11ACC A . ………………12分 因为BE ⊂平面1BC E , ………………13分 所以平面1BC E ⊥平面11ACC A . ………………14分20. (本小题满分13分) 解:(Ⅰ)由已知(0,1)A -,直线AC 的方程为13y x 1=-. ………………1分 由221,313y x x y 1⎧=-⎪⎪⎨⎪+=⎪⎩ 得2230x x -=, ………………2分 解得32x =或0x =(舍), ………………3分所以点C 的坐标为31(,)22-, ………………4分所以AC ==………………5分ABCEA 1B 1C 1F(Ⅱ)依题意,设直线AC 的方程为1y kx =-,0k ≠.由221,13y kx x y =-⎧⎪⎨+=⎪⎩ 得22(31)60k x kx +-=, ………………7分 解得2631kx k =+或0x =(舍), ………………8分 所以点C 的横坐标为2631kk +,设点D 的坐标为00(,)x y ,则02331kx k =+, ………………9分 0021131y kx k -=-=+, ………………10分因为以AB 为直径的圆恰过点D ,所以1OD =,即222231()()13131k k k -+=++. ………………11分 整理得23k 1=, ………………12分所以k =. ………………13分21. (本小题满分13分)(Ⅰ)解:由已知3PD PC ==,CD =△PCD 是等腰直角三角形,90CPD ∠=o. ………………1分 因为平面PCD ⊥平面ABCD ,底面ABCD 为矩形,BC CD ⊥,所以BC ⊥平面PCD . ………………2分 三棱锥P BCD -的体积1119()3322PCD V S BC PC PD BC ∆=⨯=⨯⨯⨯=. ………………4分(Ⅱ)证明:由(Ⅰ)知,BC ⊥平面PCD , 所以BC ⊥PD .因为90CPD ∠=o,即PD PC ⊥,所以PD ⊥平面PBC . ………………5分 因为CE ⊂平面PBC ,所以PD CE ⊥. ………………6分 因为PC BC =,E 为PB 中点,所以CE PB ⊥, ………………7分 因为PD PB P =I ,所以CE ⊥平面PBD . ………………8分(Ⅲ)解:在面PCD 上,过M 作//MF PD 交PC 于F .在面PBC 上,过F 作//FN BC 交PB 于N ,连结MN . ………………9分PABCDE M· FN因为//MF PD ,MF ⊄平面PAD ,PD ⊂平面PAD , 所以//MF 平面PAD .因为////FN BC AD ,FN ⊄平面PAD ,AD ⊂平面PAD , 所以//FN 平面PAD .所以平面//MNF 平面PAD . ………………10分 从而,//MN 平面PAD . ………………11分由所作可知,△CMF 为等腰直角三角形,CM =所以1CF =,2PF =. ………………12分△PNF ,△PBC 均为等腰直角三角形,所以PN =PB =.所以N 为线段PB 上靠近点B 的三等分点,且BN =. ………………13分22. (本小题满分14分)解:(Ⅰ)抛物线24y x =的焦点为(1,0)F , ………………1分依题意,设直线AB 方程为(1)y k x =-,其中0k ≠. ………………2分将24y x =代入直线方程,得2(1)4y y k =-, 整理得2440ky y k --=, ………………4分 所以4A B y y =-,即,A B 两点的纵坐标之积为4-. ………………5分 (Ⅱ)设:(0)AB y kx b k =+≠,11(,)A x y ,22(,)B x y .由24,y x y kx b⎧=⎨=+⎩ 得222(24)0k x kb x b +-+=. ………………6分 由222241616416160k b kb k b kb ∆=+--=->,得1kb <. ………………7分所以12242kb x x k -+=,2122b x x k=. ………………8分设AB 中点坐标为00(,)x y ,则120222x x kb x k +-==, 002y kx b k=+=, ………………9分 所以弦AB 的垂直平分线方程为2212()kby x k k k--=--, 令0y =,得222kbx k -=+. ………………10分由已知2224kbk-+=,即222k kb =-. ………………11分AB ====== ……………12分当2112k =,即k =AB 的最大值为6. ………………13分当k =b =;当k =b =均符合题意.所以弦AB 的长度存在最大值,其最大值为6. ………………14分。