[推荐学习]2019年高考数学一轮复习学案+训练+课件(北师大版文科): 第8章 平面解析几何 第2
- 格式:doc
- 大小:151.11 KB
- 文档页数:7
重点强化课(三) 不等式及其应用(对应学生用书第86页)[复习导读] 本章的主要内容是不等式的性质,一元二次不等式及其解法,简单的线性规划问题,基本不等式及其应用,针对不等式具有很强的工具性,应用广泛,解法灵活的特点,应加强不等式基础知识的复习,要弄清不等式性质的条件与结论;一元二次不等式是解决问题的重要工具,如利用导数研究函数的单调性,往往归结为解一元二次不等式问题;函数、方程、不等式三者密不可分,相互转化,因此应加强函数与方程思想在不等式中应用的训练.重点1 一元二次不等式的综合应用(1)(2018·烟台模拟)函数y =1-x22x 2-3x -2的定义域为( )A .(-∞,1]B .[-1,1]C .[1,2)∪(2,+∞)D .⎣⎢⎡⎭⎪⎫-1,-12∪⎝ ⎛⎦⎥⎤-12,1(2)已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1,x <0,则满足不等式f (1-x 2)>f (2x )的x 的取值范围是__________.(1)D (2)(-1,2-1) [(1)由题意得⎩⎪⎨⎪⎧1-x 2≥0,2x 2-3x -2≠0,解得⎩⎪⎨⎪⎧-1≤x ≤1,x ≠2且x ≠-12,即-1≤x ≤1且x ≠-12,所以函数的定义域为-1,-12∪-12,1,故选D .(2)由题意得⎩⎪⎨⎪⎧1-x 2>0,2x <0或⎩⎪⎨⎪⎧1-x 2>2x ,2x ≥0,解得-1<x <0或0≤x <2-1. 所以x 的取值范围为(-1,2-1).][规律方法]一元二次不等式综合应用问题的常见类型及求解方法(1)与函数的定义域、集合的综合,此类问题的本质就是求一元二次不等式的解集. (2)与分段函数问题的综合.解决此类问题的关键是根据分段函数解析式,将问题转化为不同区间上的不等式,然后根据一元二次不等式或其他不等式的解法求解.(3)与函数的奇偶性等的综合.解决此类问题可先根据函数的奇偶性确定函数的解析式,然后求解,也可直接根据函数的性质求解.[对点训练1] 已知f (x )是定义在R 上的奇函数.当x >0时,f (x )=x 2-4x ,则不等式f (x )>x 的解集用区间表示为__________. 【导学号:00090202】 (-5,0)∪(5,+∞) [由于f (x )为R 上的奇函数, 所以当x =0时,f (0)=0;当x <0时,-x >0, 所以f (-x )=x 2+4x =-f (x ),即f (x )=-x 2-4x ,所以f (x )=⎩⎪⎨⎪⎧x 2-4x ,x >0,0,x =0,-x 2-4x ,x <0.由f (x )>x ,可得⎩⎪⎨⎪⎧x 2-4x >x ,x >0或⎩⎪⎨⎪⎧-x 2-4x >x ,x <0,解得x >5或-5<x <0,所以原不等式的解集为(-5,0)∪(5,+∞).] 重点2 线性规划问题(1)(2017·全国卷Ⅲ)设x ,y 满足约束条件⎩⎪⎨⎪⎧3x +2y -6≤0,x ≥0,y ≥0,则z =x -y 的取值范围是( ) A .[-3,0] B .[-3,2] C .[0,2]D .[0,3](2)当实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1时,1≤ax +y ≤4恒成立,则实数a 的取值范围是__________.(1)B (2)⎣⎢⎡⎦⎥⎤1,32 [(1)画出不等式组表示的平面区域,如图中阴影部分所示.由题意可知,当直线y =x -z 过点A (2,0)时,z 取得最大值,即z max =2-0=2;当直线y =x -z 过点B (0,3)时,z 取得最小值,即z min =0-3=-3.所以z =x -y 的取值范围是[-3,2]. 故选B .](2)作出题中线性规划条件满足的可行域如图阴影部分所示,令z =ax +y ,即y =-ax +z .作直线l 0:y =-ax ,平移l 0,最优解可在A (1,0),B (2,1),C ⎝ ⎛⎭⎪⎫1,32处取得. 故由1≤z ≤4恒成立,可得⎩⎪⎨⎪⎧1≤a ≤4,1≤2a +1≤4,1≤a +32≤4,解得1≤a ≤32.][规律方法] 本题(2)是线性规划的逆问题,这类问题的特点是在目标函数或约束条件中含有参数,当在约束条件中含有参数时,那么随着参数的变化,可行域的形状可能就要发生变化,因此在求解时也要根据参数的取值对可行域的各种情况进行分类讨论,以免出现漏解.[对点训练2] 已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y ≤3,y ≥a x -若z =2x +y 的最小值为1,则a =( ) A .14B .12C .1D .2B [作出不等式组表示的可行域,如图(阴影部分). 易知直线z =2x +y 过交点A 时,z 取最小值,由⎩⎪⎨⎪⎧x =1,y =a x -,得⎩⎪⎨⎪⎧x =1,y =-2a ,∴z min =2-2a =1,解得a =12.]重点3 基本不等式的综合应用(2016·江苏高考节选)已知函数f (x )=a x +b x(a >0,b >0,a ≠1,b ≠1).设a =2,b =12. (1)求方程f (x )=2的根;(2)若对于任意x ∈R ,不等式f (2x )≥mf (x )-6恒成立,求实数m 的最大值.【导学号:00090203】[解] 因为a =2,b =12,所以f (x )=2x +2-x.2分(1)方程f (x )=2,即2x+2-x=2,亦即(2x )2-2×2x+1=0,所以(2x-1)2=0,即2x=1,解得x =0.5分(2)由条件知f (2x )=22x+2-2x=(2x+2-x )2-2=(f (x ))2-2.因为f (2x )≥mf (x )-6对于x ∈R 恒成立,且f (x )>0,所以m ≤f x2+4f x 对于x ∈R 恒成立.8分而f x 2+4f x=f (x )+4f x≥2f x ·4f x =4,且f 02+4f=4,所以m ≤4,故实数m 的最大值为4.12分[规律方法] 基本不等式综合应用中的常见类型及求解方法:(1)应用基本不等式判断不等式是否成立或比较大小.解决此类问题通常将所给不等式(或式子)变形,然后利用基本不等式求解.(2)条件不等式问题.通过条件转化成能利用基本不等式的形式求解.(3)求参数的值或范围.观察题目特点,利用基本不等式确定相关成立条件,从而得到参数的值或范围.[对点训练3] (1)(2018·南昌模拟)已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________.(2)已知正数x ,y 满足x +2y =2,则x +8yxy的最小值为__________. (1)6 (2)9 [(1)法一:(消元法) 因为x >0,y >0,所以0<y <3,所以x +3y =9-3y1+y +3y=121+y +3(y +1)-6≥2121+yy +-6=6,当且仅当121+y =3(y +1),即y =1,x =3时,(x +3y )min =6. 法二:(不等式法) ∵x >0,y >0,9-(x +3y )=xy =13x ·(3y )≤13·⎝ ⎛⎭⎪⎫x +3y 22,当且仅当x =3y 时等号成立.设x +3y =t >0,则t 2+12t -108≥0, 解得t ≥6或t ≤-18(舍去)故当x =3,y =1时,x +3y 的最小值为6. (2)由已知得x +2y2=1.则x +8y xy =1y +8x =⎝ ⎛⎭⎪⎫1y +8x ⎝ ⎛⎭⎪⎫x +2y 2 =12⎝⎛⎭⎪⎫10+x y +16y x ≥12(10+2 16)=9,当且仅当x =43,y =13时取等号.]。
第三节二元一次不等式(组)与简单的线性规划问题[考纲传真] 1.会从实际情境中抽象出二元一次不等式组.2.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.3.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.(对应学生用书第83页)[基础知识填充]1.二元一次不等式(组)表示的平面区域确定二元一次不等式表示的平面区域的位置把二元一次不等式Ax+By+C>0(<0)表示为y>kx+b或y<kx+b的形式.若y>kx +b,则平面区域为直线Ax+By+C=0的上方,若y<kx+b,则平面区域为直线Ax+By +C=0的下方.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)不等式Ax+By+C>0表示的平面区域一定在直线Ax+By+C=0的上方.( )(2)线性目标函数的最优解可能不唯一.( )(3)目标函数z=ax+by(b≠0)中,z的几何意义是直线ax+by-z=0在y轴上的截距.( )(4)不等式x2-y2<0表示的平面区域是一、三象限角的平分线和二、四象限角的平分线围成的含有y 轴的两块区域.( ) [答案] (1)× (2)√ (3)× (4)√2.(教材改编)不等式组⎩⎪⎨⎪⎧x -3y +6<0,x -y +2≥0表示的平面区域是( )C [x -3y +6<0表示直线x -3y +6=0左上方的平面区域,x -y +2≥0表示直线x -y +2=0及其右下方的平面区域,故选C .]3.(2017·全国卷Ⅰ)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +3y ≤3,x -y ≥1,y ≥0,则z =x +y 的最大值为( )A .0B .1C .2D .3D [根据题意作出可行域,如图阴影部分所示,由z =x +y得y =-x +z .作出直线y =-x ,并平移该直线,当直线y =-x +z 过点A 时,目标函数取得最大值. 由图知A (3,0), 故z max =3+0=3. 故选D .]4.(2016·保定调研)在平面直角坐标系xOy 中,若点P (m,1)到直线4x -3y -1=0的距离为4,且点P (m,1)在不等式2x +y ≥3表示的平面区域内,则m =__________. 【导学号:00090190】6 [由题意得|4m -3-1|5=4及2m +1≥3,解得m =6.]5.在平面直角坐标系中,不等式组⎩⎪⎨⎪⎧x ≥1,x +y ≤0,x -y -4≤0表示的平面区域的面积是__________.1 [不等式组表示的区域如图中的阴影部分所示, 由x =1,x +y =0得A (1,-1), 由x =1,x -y -4=0得B (1,-3), 由x +y =0,x -y -4=0得C (2,-2), ∴|AB |=2,∴S △ABC =12×2×1=1.](对应学生用书第84页)(1)(2016·浙江高考)若平面区域⎩⎪⎨⎪⎧x +y -3≥0,2x -y -3≤0,x -2y +3≥0夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是( ) A .355B . 2C .322D . 5(2)(2016·衡水中学调研)若不等式组⎩⎪⎨⎪⎧x -y +5≥0,y ≥a ,0≤x ≤2表示的平面区域是一个三角形,则a 的取值范围是( ) A .a <5 B .a ≥7 C .5≤a <7D .a <5或a ≥7(1)B (2)C [(1)根据约束条件作出可行域如图阴影部分,当斜率为1的直线分别过A 点和B点时满足条件,联立方程组⎩⎪⎨⎪⎧x +y -3=0,x -2y +3=0求得A (1,2),联立方程组⎩⎪⎨⎪⎧2x -y -3=0,x +y -3=0求得B (2,1),可求得分别过A ,B 点且斜率为1的两条直线方程为x-y +1=0和x -y -1=0,由两平行线间的距离公式得距离为|1+1|2=2,故选B .(2)如图,当直线y =a 位于直线y =5和y =7之间(不含y =7)时满足条件,故选C .][规律方法] 1.可用“直线定界、特殊点定域”的方法判定二元一次不等式表示的平面区域,若直线不过原点,特殊点常选取原点.2.不等式组表示的平面区域是各个不等式所表示的平面区域的交集,画出图形后,面积关系结合平面几何知识求解.[变式训练1] (1)不等式组⎩⎪⎨⎪⎧x +y -2≥0,x +2y -4≤0,x +3y -2≥0表示的平面区域的面积为__________.【导学号:00090191】(2)(2018·潍坊模拟)已知关于x ,y 的不等式组⎩⎪⎨⎪⎧0≤x ≤2,x +y -2≥0,kx -y +2≥0所表示的平面区域的面积为3,则实数k 的值为________.(1)4 (2)12[(1)不等式组表示的平面区域为如图所示的阴影部分.由⎩⎪⎨⎪⎧x +3y -2=0,x +2y -4=0得⎩⎪⎨⎪⎧x =8,y =-2,∴A (0,2),B (2,0),C (8,-2).直线x +2y -4=0与x 轴的交点D 的坐标为(4,0). 因此S △ABC =S △ABD +S △BCD =12×2×2+12×2×2=4.(2)直线kx -y +2=0恒过点(0,2),不等式组表示的平面区域如图所示,则A (2,2k +2),B (2,0),C (0,2),由题意知 12×2×(2k +2)=3,解得k =12.]角度1 (1)(2017·全国卷Ⅱ)设x ,y 满足约束条件⎩⎪⎨⎪⎧2x +3y -3≤0,2x -3y +3≥0,y +3≥0,则z =2x +y的最小值是( ) A .-15 B .-9 C .1D .9(2)(2017·福州质检)已知实数x ,y 满足⎩⎪⎨⎪⎧x +y ≤2,x ≥12,y ≥x ,且数列4x ,z,2y 为等差数列,则实数z 的最大值是__________. 【导学号:00090192】(1)A (2)3 [(1)不等式组表示的平面区域如图中阴影部分所示.将目标函数z =2x +y 化为y =-2x +z ,作出直线y =-2x 并平移,当直线y =-2x +z 经过点A (-6,-3)时,z 取最小值,且z min =2×(-6)-3=-15. 故选A .(2)在平面直角坐标系内画出题中的不等式组表示的平面区域为以⎝ ⎛⎭⎪⎫12,12,⎝ ⎛⎭⎪⎫12,32,(1,1)为顶点的三角形区域(包含边界),又由题意易得z =2x +y ,所以当目标函数z =2x +y 经过平面区域内的点(1,1)时,z =2x +y 取得最大值z max =2×1+1=3.]角度2 求非线性目标函数的最值(1)(2016·山东高考)若变量x ,y 满足⎩⎪⎨⎪⎧x +y ≤2,2x -3y ≤9,x ≥0,则x 2+y 2的最大值是( ) 【导学号:00090193】 A .4 B .9 C .10D .12(2)(2017·湖北七市4月联考)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥-1,y ≥x ,x +5y ≤8,则z =yx -2的取值范围是__________.(1)C (2)⎣⎢⎡⎦⎥⎤-1,13 [(1)作出不等式组表示的平面区域,如图中阴影部分所示.x 2+y2表示平面区域内的点到原点距离的平方,由⎩⎪⎨⎪⎧x +y =2,2x -3y =9得A (3,-1),由图易得(x 2+y 2)max =|OA |2=32+(-1)2=10.故选C .(2)作出不等式组⎩⎪⎨⎪⎧x ≥-1,y ≥x ,3x +5y ≤8所表示的区域,如图中△ABC 所表示的区域(含边界),其中点A (1,1),B (-1,-1),C ⎝ ⎛⎭⎪⎫-1,115.z =y x -2表示△ABC 区域内的点与点M (2,0)的连线的斜率,显然k MA ≤z ≤k MB ,即11-2≤z ≤-1-1-2,化简得-1≤z ≤13.]角度3 线性规划中的参数问题(2016·河北石家庄质检)已知x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,y ≥-1,4x +y ≤9,x +y ≤3,若目标函数z =y -mx (m >0)的最大值为1,则m 的值是( ) A .-209B .1C .2D .5B [作出可行域,如图所示的阴影部分.∵m >0,∴当z =y -mx 经过点A 时,z 取最大值,由⎩⎪⎨⎪⎧x =1,x +y =3,解得⎩⎪⎨⎪⎧x =1,y =2,即A (1,2),∴2-m =1,解得m =1.故选B .][规律方法] 1.求目标函数的最值的一般步骤为:一作图、二平移、三求值.其关键是准确作出可行域,理解目标函数的意义. 2.常见的目标函数有:(1)截距型:形如z =ax +by .求这类目标函数的最值时常将函数z =ax +by 转化为直线的斜截式:y =-a b x +z b ,通过求直线的截距z b的最值间接求出z 的最值. (2)距离型:形如z =(x -a )2+(y -b )2. (3)斜率型:形如z =y -bx -a. 易错警示:注意转化的等价性及几何意义.三种主要原料.生产1车皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如下表所示:现有A料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元.分别用x ,y 表示计划生产甲、乙两种肥料的车皮数. (1)用x ,y 列出满足生产条件的数学关系式,并画出相应的平面区域;(2)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.[解] (1)由已知,x ,y 满足的数学关系式为⎩⎪⎨⎪⎧4x +5y ≤200,8x +5y ≤360,3x +10y ≤300,x ≥0,y ≥0.该二元一次不等式组所表示的平面区域为图①中的阴影部分.5分(2)设利润为z 万元,则目标函数为z =2x +3y .考虑z =2x +3y ,将它变形为y =-23x +z 3,它的图像是斜率为-23,随z 变化的一族平行直线,z 3为直线在y 轴上的截距,当z3取最大值时,z 的值最大.根据x ,y 满足的约束条件,由图②可知,当直线z =2x +3y 经过可行域上的点M 时,截距z3最大,即z 最大.解方程组⎩⎪⎨⎪⎧4x +5y =200,3x +10y =300,得点M 的坐标为(20,24),所以z max =2×20+3×24=112.答:生产甲种肥料20车皮,乙种肥料24车皮时利润最大,且最大利润为112万元.[规律方法] 1.解线性规划应用题的步骤(1)转化——设元,写出约束条件和目标函数,从而将实际问题转化为线性规划问题; (2)求解——解这个纯数学的线性规划问题;(3)作答——将数学问题的答案还原为实际问题的答案.2.解线性规划应用题,可先找出各变量之间的关系,最好列成表格,然后用字母表示变量,列出线性约束条件;写出要研究的函数,转化成线性规划问题.[变式训练2] (2016·全国卷Ⅰ)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料,生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元. 216 000 [设生产产品A 为x 件,产品B 为y 件,则⎩⎪⎨⎪⎧1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ≥0,x ∈N *,y ≥0,y ∈N *.目标函数z =2 100x +900y .作出可行域为图中的阴影部分(包括边界)内的整数点,图中阴影四边形的顶点坐标分别为(60,100),(0,200),(0,0),(90,0).当直线z=2 100x+900y经过点(60,100)时,z取得最大值,z max=2 100×60+900×100=216 000(元).]。
第二节 函数的单调性与最大(小)值[考纲传真] .理解函数的单调性、最大(小)值及其几何意义.会运用基本初等函数的图像分析函数的性质.(对应学生用书第页)[基础知识填充].函数的单调性()单调函数的定义如果函数=()在区间上是增加的或是减少的,那么就称为单调区间..函数的最大(小)值函数单调性的常用结论()对任意,∈(≠),>⇔()在上是增函数,<⇔()在上是减函数.()对勾函数=+(>)的增区间为(-∞,-]和[,+∞),减区间为[-,)和(,].()在区间上,两个增函数的和仍是增函数,两个减函数的和仍是减函数.()函数(())的单调性与函数=()和=()的单调性的关系是“同增异减”.[基本能力自测].(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)()对于函数(),∈,若对任意,∈,≠且(-)·[()-()]>,则函数()在区间上是增加的.( )()函数=的单调递减区间是(-∞,)∪(,+∞).( )()函数=在上是增加的.( )()函数=-在区间[,+∞)上是增加的,则函数=-的单调递增区间为[,+∞).( ) [答案]()√()×()×()×.(·深圳二次调研)下列四个函数中,在定义域上不是单调函数的是( ).=.=.=.=[选项,中函数在定义域内均为单调递增函数,选项为在定义域内为单调递减函数,选项中,设<(,≠),则-=-=,因为-<,当,同号时>,-<,当,异号时<,->,所以函数=在定义域上不是单调函数,故选.].(教材改编)已知函数()=,∈[],则()的最大值为,最小值为.[可判断函数()=在[]上为减函数,所以()=()=,()=()=.].函数=(+)+在上是减函数,则的取值范围是.[由题意知+<,得<-.].()=-,∈[-]的单调增区间为,()=.[][()=(-)-,故()的单调增区间为[],()=(-)=.](对应学生用书第页).(-∞,-) .(-∞,).(,+∞).(,+∞)()试讨论函数()=+(>)的单调性.【导学号:】() [由-->,得>或<-.设=--,则=在∈(,+∞)上为增函数.欲求函数()的单调递增区间,即求函数=--的单调递增区间.∵函数=--的单调递增区间为(,+∞),∴函数()的单调递增区间为(,+∞).故选.]()法一:由解析式可知,函数的定义域是(-∞,)∪(,+∞).在(,+∞)内任取,,令<<,那么()-()=-=(-)+=(-)·.因为<<,所以->,>.故当,∈(,+∞)时,()<(),即函数在(,+∞)上是增加的.。
第四节 相关性、最小二乘估计与统计案例[考纲传真] 1.会做两个有关联变量的数据的散点图,并利用散点图认识变量间的相关关系.2.了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程(线性回归系数公式不要求记忆).3.了解回归分析的基本思想、方法及其简单应用.4.了解独立性检验(只要求2×2列联表)的思想、方法及其初步应用.(对应学生用书第141页)[基础知识填充]1.相关性(1)通常将变量所对应的点描出来,这些点就组成了变量之间的一个图,通常称这种图为变量之间的散点图.(2)从散点图上可以看出,如果变量之间存在着某种关系,这些点会有一个集中的大致趋势,这种趋势通常可以用一条光滑的曲线来近似,这样近似的过程称为曲线拟合. (3)若两个变量x 和y 的散点图中,所有点看上去都在一条直线附近波动,则称变量间是线性相关的,若所有点看上去都在某条曲线(不是一条直线)附近波动,则称此相关是非线性相关的.如果所有的点在散点图中没有显示任何关系,则称变量间是不相关的. 2.线性回归方程 (1)最小二乘法如果有n 个点(x 1,y 1),(x 2,y 2),…,(x n ,y n ),可以用[y 1-(a +bx 1)]2+[y 2-(a +bx 2)]2+…+[y n -(a +bx n )]2来刻画这些点与直线y =a +bx 的接近程度,使得上式达到最小值的直线y =a +bx 就是所要求的直线,这种方法称为最小二乘法. (2)线性回归方程方程y =bx +a 是两个具有线性相关关系的变量的一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )的线性回归方程,其中a ,b 是待定参数.⎩⎪⎨⎪⎧b =∑ni =1x i-x y i-y ∑ni =1x i-x 2=∑ ni =1x i y i -n x y ∑ ni =1x 2i -n x2a =y -b x3.回归分析(1)定义:对具有相关关系的两个变量进行统计分析的一种常用方法. (2)样本点的中心对于一组具有线性相关关系的数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )中,(x ,y )称为样本点的中心. (3)相关系数①r =∑ ni =1x i -xy i -y∑ni =1x i -x 2∑ni =1y i -y2=∑ ni =1x i y i -n x y∑ ni =1x 2i -n x2∑ ni =1y 2i -n y2②当r >0时,表明两个变量正相关; 当r <0时,表明两个变量负相关; 当r =0时,表明两个变量线性不相关.|r |值越接近于1,表明两个变量之间的线性相关程度越高. |r |值越接近于0,表明两个变量之间的线性相关程度越低. 4.独立性检验设A ,B 为两个变量,每一个变量都可以取两个值,变量A :A 1,A 2=A 1;变量B :B 1,B 2=B 1.2×2列联表:χ2=n ad -bc 2a +bc +d a +cb +d.利用统计量χ2来判断“两个分类变量有关系”的方法称为独立性检验. 当χ2≤2.706时,没有充分的证据判定变量A ,B 有关联, 可以认为变量A ,B 是没有关联的;当χ2>2.706时,有90%的把握判定变量A ,B 有关联; 当χ2>3.841时,有95%的把握判定变量A ,B 有关联; 当χ2>6.635时,有99%的把握判定变量A ,B 有关联.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)“名师出高徒”可以解释为教师的教学水平与学生的水平成正相关关系.( ) (2)某同学研究卖出的热饮杯数y 与气温x (℃)之间的关系,得回归方程y ^=-2.352x +147.767,则气温为2℃时,一定可卖出143杯热饮.( )(3)因为由任何一组观测值都可以求得一个线性回归方程,所以没有必要进行相关性检验.( )(4)若事件X ,Y 关系越密切,则由观测数据计算得到的χ2的观测值越小.( ) [答案] (1)√ (2)× (3)× (4)×2.(教材改编)已知变量x 与y 正相关,且由观测数据算得样本平均数x =3,y =3.5,则由该观测数据算得的线性回归方程可能是( ) A .y ^=0.4x +2.3 B .y ^=2x -2.4 C .y ^=-2x +9.5D .y ^=-0.3x +4.4A [因为变量x 和y 正相关,排除选项C ,D .又样本中心(3,3.5)在回归直线上,排除B ,选项A 满足.]3.(2015·全国卷Ⅱ)根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( )图941A .逐年比较,2008年减少二氧化硫排放量的效果最显著B .2007年我国治理二氧化硫排放显现成效C .2006年以来我国二氧化硫年排放量呈减少趋势D .2006年以来我国二氧化硫年排放量与年份正相关D [对于A 选项,由图知从2007年到2008年二氧化硫排放量下降得最多,故A 正确.对于B 选项,由图知,由2006年到2007年矩形高度明显下降,因此B 正确.对于C 选项,由图知从2006年以后除2011年稍有上升外,其余年份都是逐年下降的,所以C 正确.由图知2006年以来我国二氧化硫年排放量与年份负相关,故选D .]4.为了评价某个电视栏目的改革效果,在改革前后分别从居民点抽取了100位居民进行调查,经过计算χ2≈0.99,根据这一数据分析,下列说法正确的是( )A .有99%的人认为该电视栏目优秀B .有99%的人认为该电视栏目是否优秀与改革有关系C .有99%的把握认为该电视栏目是否优秀与改革有关系D .没有理由认为该电视栏目是否优秀与改革有关系D [只有χ2≥6.635才能有99%的把握认为“该电视栏目是否优秀与改革有关系”,而即使χ2≥6.635也只是对“该电视栏目是否优秀与改革有关系”这个论断成立的可能性大小的结论,与是否有99%的人等无关,故只有D 正确.]5.(2018·西安模拟)某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验.根据收集到的数据(如下表),由最小二乘法求得回归方程y ^=0.67x +54.9.68 [由x =30,得y =0.67×30+54.9=75. 设表中的“模糊数字”为a ,则62+a +75+81+89=75×5,∴a =68.](对应学生用书第142页)y 与z 正相关.下列结论中正确的是( ) 【导学号:00090333】 A .x 与y 正相关,x 与z 负相关 B .x 与y 正相关,x 与z 正相关 C .x 与y 负相关,x 与z 负相关 D .x 与y 负相关,x 与z 正相关(2)对四组数据进行统计,获得如图942所示的散点图,关于其相关系数的比较,正确的是( )图942A .r 2<r 4<0<r 3<r 1B .r 4<r 2<0<r 1<r 3C .r 4<r 2<0<r 3<r 1D .r 2<r 4<0<r 1<r 3(1)C (2)A [(1)因为y =-0.1x +1的斜率小于0,故x 与y 负相关.因为y 与z 正相关,可设z =b ^y +a ^,b ^>0,则z =b ^y +a ^=-0.1b ^x +b ^+a ^,故x 与z 负相关.(2)由散点图知,图①与图③是正相关,故有r 1>0,r 3>0,图②与图④是负相关,则r 2<0,r 4<0,且图①与图②中的样本点集中在一条直线附近,因此有r 2<r 4<0<r 3<r 1.] [规律方法] 1.利用散点图判断两个变量是否有相关关系是比较直观简便的方法.如果所有的样本点都落在某一函数的曲线附近,变量之间就有相关关系.如果所有的样本点都落在某一直线附近,变量之间就有线性相关关系.若点散布在从左下角到右上角的区域,则正相关,若点散布在左上角到右下角的区域,则负相关. 2.利用相关系数判定,当|r |越趋近于1,相关性越强. 当残差平方和越小,相关指数r 2越大,相关性越强.[变式训练1] (1)四名同学根据各自的样本数据研究变量x ,y 之间的相关关系,并求得线性回归方程,分别得到以下四个结论: ①y 与x 负相关且y ^=2.347x -6.423; ②y 与x 负相关且y ^=-3.476x +5.648; ③y 与x 正相关且y ^=5.437x +8.493; ④y 与x 正相关且y ^=-4.326x -4.578.其中一定不正确的结论的序号是( ) 【导学号:00090334】 A .①② B .②③ C .③④D .①④(2)变量X 与Y 相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U 与V 相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1),r 1表示变量Y 与X 之间的线性相关系数,r 2表示变量V 与U 之间的线性相关系数,则( ) A .r 2<r 1<0 B .0<r 2<r 1 C .r 2<0<r 1D .r 2=r 1(1)D (2)C [(1)由线性回归方程y ^=b ^x +a ^知当b ^>0时,y 与x 正相关,当b ^<0时,y 与x 负相关,∴①④一定错误.(2)对于变量Y 与X 而言,Y 随X 的增大而增大,故Y 与X 正相关,即r 1>0;对于变量V 与U 而言,V 随U 的增大而减小,故V 与U 负相关,即r 2<0,故选C .]](单位:亿吨)的折线图.图943注:年份代码1~7分别对应年份2008~2014.(1)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (2)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.参考数据:∑ 7i =1y i =9.32,∑7i =1t i y i =40.17,∑7i =1y i -y2=0.55,7≈2.646.参考公式:相关系数r =∑ni =1t i -ty i -y∑ni =1t i -t2∑ n i =1y i -y2,回归方程y -=a +b t 中斜率和截距的最小二乘估计公式分别为b ^=∑ ni =1t i -t y i -y ∑ ni =1t i -t2,a =y --b t .[解] (1)由折线图中的数据和附注中的参考数据得 t =4,∑ 7i =1(t i -t )2=28,∑7i =1y i -y2=0.55, 2分∑ 7i =1(t i -t )(y i -y )=∑ 7i =1t i y i -t ∑7i =1y i =40.17-4×9.32=2.89,所以r ≈ 2.890.55×2×2.646≈0.99.因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关程度相当大,从而可以用线性回归模型拟合y 与t 的关系. 5分(2)由y =9.327≈1.331及(1)得b =∑ 7i =1t i -ty i -y∑7i =1t i -t2=2.8928≈0.103.8分a =y -b t ≈1.331-0.103×4≈0.92.所以y 关于t 的回归方程为y =0.92+0.10t .10分将2016年对应的t =9代入回归方程得y =0.92+0.10×9=1.82. 所以预测2016年我国生活垃圾无害化处理量约为1.82亿吨.12分 [规律方法] 1.在分析实际中两个变量的相关关系时,可根据样本数据作出散点图来确定两个变量之间是否具有相关关系,也可计算相关系数r 进行判断.若具有线性相关关系,则可通过线性回归方程估计和预测变量的值.2.(1)正确运用计算b ,a 的公式和准确的计算,是求线性回归方程的关键.(2)回归直线y ^=bx +a 必过样本点的中心(x ,y ).[变式训练2] (2015·全国卷Ⅰ)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t)和年利润z (单位:千元)的影响.对近8年的年宣传费x i 和年销售量y i (i =1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.图944表中w i =x i ,w ]=8∑ i =1w i .(1)根据散点图判断,y =a +bx 与y =c +d x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程;(3)已知这种产品的年利润z 与x ,y 的关系为z =0.2y -x .根据(2)的结果回答下列问题: ①年宣传费x =49时,年销售量及年利润的预报值是多少? ②年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v =α+βu 的斜率和截距的最小二乘估计分别为β=∑ni =1u i -uv i -v∑ ni =1u i -u2,α=v -β u .[解] (1)由散点图可以判断,y =c +d x 适宜作为年销售量y 关于年宣传费x 的回归方程类型.2分(2)令w =x ,先建立y 关于w 的线性回归方程.由于d =∑i =18w i -wy i -y∑i =18w i -w2=108.81.6=68, 4分c =y -d w =563-68×6.8=100.6, 5分所以y 关于w 的线性回归方程为y =100.6+68w , 6分 因此y 关于x 的回归方程为y =100.6+68x . 7分(3)①由(2)知,当x =49时,年销售量y 的预报值y =100.6+6849=576.6, 8分 年利润z 的预报值z ^=576.6×0.2-49=66.32. 9分 ②根据(2)的结果知,年利润z 的预报值z =0.2(100.6+68x )-x =-x +13.6x +20.12.10分所以当x =13.62=6.8,即x =46.24时,z 取得最大值.故年宣传费为46.24千元时,年利润的预报值最大. 12分获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:图945(1)记A 表示事件“旧养殖法的箱产量低于50 kg”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关;(3) 附:χ2=n ad -bc 2a +bc +d a +cb +d.[解] (1)旧养殖法的箱产量低于50 kg 的频率为 (0.012+0.014+0.024+0.034+0.040)×5=0.62. 2分 因此,事件A 的概率估计值为0.62.4分(2)根据箱产量的频率分布直方图得列联表分χ2的观测值=-2100×100×96×104≈15.705.7分由于15.705>6.635,故有99%的把握认为箱产量与养殖方法有关. 8分(3)箱产量的频率分布直方图表明:新养殖法的箱产量平均值(或中位数)在50 kg到55 kg 之间,旧养殖法的箱产量平均值(或中位数)在45 kg到50 kg之间,且新养殖法的箱产量分布集中程度较旧养殖法的箱产量分布集中程度高,因此,可以认为新养殖法的箱产量较高且稳定,从而新养殖法优于旧养殖法.12分[规律方法] 1.在2×2列联表中,如果两个变量没有关系,则应满足ad-bc≈0.|ad-bc|越小,说明两个变量之间关系越弱;|ad-bc|越大,说明两个变量之间关系越强.2.解决独立性检验的应用问题,一定要按照独立性检验的步骤得出结论.独立性检验的一般步骤:(1)根据样本数据制成2×2列联表;(2)根据公式χ2=n ad-bc2a +b a+c b+d c+d计算χ2的观测值k;(3)比较k与临界值的大小关系,作统计推断.[变式训练3] (2017·济南联考)某市地铁即将于2017年6月开始运营,为此召开了一个价格听证会,拟定价格后又进行了一次调查,随机抽查了50人,他们的收入与态度如下;【导学号:00090335】“认为价格偏高者”的月平均收入的差距是多少(结果保留2位小数);(2)由以上统计数据填下面2×2列联表,分析是否有99%的把握认为“月收入以55百元为分界点对地铁定价的态度有差异”.生活的色彩就是学习K12的学习需要努力专业专心坚持附:χ2=n ad -bc 2a +bc +d a +ca +d.[解 x 1=20×1+30×2+40×3+50×5+60×3+70×41+2+3+5+3+4≈50.56.“认为价格偏高者”的月平均收入为x 2=20×4+30×8+40×12+50×5+60×2+70×14+8+12+5+2+1=38.75,∴“赞成定价者”与“认为价格偏高者”的月平均收入的差距是x 1-x 2=50.56-38.75=11.81(百元).5分(2)根据条件可得2×2列联表如下:χ2=10×40×18×32≈6.27<6.635,∴没有99%的把握认为“月收入以55百元为分界点对地铁定价的态度有差异”.12分。
第二节 古典概型[考纲传真] 1.理解古典概型及其概率计算公式.2.会用列举法计算一些随机事件所包含的基本事件数及事件发生的概率.(对应学生用书第151页)[基础知识填充]1.基本事件的特点(1)任何两个基本事件是互斥的.(2)任何事件(除不可能事件)都可以表示成基本事件的和.2.古典概型具有以下两个特征的概率模型称为古典概率模型,简称古典概型.(1)试验的所有可能结果只有有限个,每次试验只出现其中的一个结果.(2)每个基本事件出现的可能性相等.3.古典概型的概率公式P (A )=事件A 包含的可能结果数试验的所有可能结果数=m n. [基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)“在适宜条件下,种下一粒种子观察它是否发芽”属于古典概型,其基本事件是“发芽与不发芽”.( )(2)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能事件.( )(3)从-3,-2,-1,0,1,2中任取一数,取到的数小于0与不小于0的可能性相同.( )(4)利用古典概型的概率可求“在边长为2的正方形内任取一点,这点到正方形中心距离小于或等于1”的概率.( )[答案] (1)× (2)× (3)√ (4)×2.(教材改编)下列试验中,是古典概型的个数为( )①向上抛一枚质地不均匀的硬币,观察正面向上的概率;②向正方形ABCD 内,任意抛掷一点P ,点P 恰与点C 重合;③从1,2,3,4四个数中,任取两个数,求所取两数之一是2的概率;④在线段[0,5]上任取一点,求此点小于2的概率.A .0B .1C .2D .3B [由古典概型的意义和特点知,只有③是古典概型.]3.(2016·全国卷Ⅲ)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M ,I ,N 中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是( )【导学号:00090351】A .815B .18C .115D .130C [∵Ω={(M,1),(M,2),(M,3),(M,4),(M,5),(I,1),(I,2),(I,3),(I,4),(I,5),(N,1),(N,2),(N,3),(N,4),(N,5)},∴事件总数有15种.∵正确的开机密码只有1种,∴P =115.] 4.(2015·全国卷Ⅰ)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )A .310B .15C .110D .120C [从1,2,3,4,5中任取3个不同的数共有如下10个不同的结果:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),其中勾股数只有(3,4,5),所以概率为110.故选C .] 5.甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为________.13[甲、乙两名运动员选择运动服颜色的情况为(红,红),(红,白),(红,蓝),(白,白),(白,红),(白,蓝),(蓝,蓝),(蓝,白),(蓝,红),共9种.而同色的有(红,红),(白,白),(蓝,蓝),共3种.所以所求概率P =39=13.](对应学生用书第151页)1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( )A .110B .15C .310D .25(2)(2016·全国卷Ⅰ)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( )A .13B .12C .23D .56(1)D (2)C [(1)从5张卡片中随机抽取1张,放回后再随机抽取1张的情况如图:基本事件总数为25,第一张卡片上的数大于第二张卡片上的数的事件数为10,∴所求概率P =1025=25. 故选D .(2)从4种颜色的花中任选2种颜色的花种在一个花坛中,余下2种颜色的花种在另一个花坛的种数有:红黄—白紫、红白—黄紫、红紫—白黄、黄白—红紫、黄紫—红白、白紫—红黄,共6种,其中红色和紫色的花不在同一花坛的种数有:红黄—白紫、红白—黄紫、黄紫—红白、白紫—红黄,共4种,故所求概率为P =46=23,故选C .] [规律方法] 1.计算古典概型事件的概率可分三步,(1)计算基本事件总个数n ;(2)计算事件A 所包含的基本事件的个数m ;(3)代入公式求出概率P .2.用列举法写出所有基本事件时,可借助“树状图”列举,以便做到不重、不漏.[变式训练1] (1)从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于...该正方形边长的概率为( ) A .15B .25C .35D .45(2)(2016·江苏高考)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是________.(1)C (2)56[(1)设正方形的四个顶点分别是A ,B ,C ,D ,中心为O ,从这5个点中,任取两个点的事件分别为AB,AC,AD,AO,BC,BD,BO,CD,CO,DO,共有10种,其中只有顶点到中心O的距离小于正方形的边长,分别是AO,BO,CO,DO,共有4种.所以所求事件的概率P=1-410=35.(2)将一颗质地均匀的骰子先后抛掷2次,所有等可能的结果有(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),…,(6,6),共36种情况.设事件A=“出现向上的点数之和小于10”,其对立事件A=“出现向上的点数之和大于或等于10”,A包含的可能结果有(4,6),(5,5),(5,6),(6,4),(6,5),(6,6),共6种情况.所以由古典概型的概率公式,得P(A)=636=16,所以P(A)=1-16=56.]儿童需转动如图1021所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x,y.奖励规则如下:①若xy≤3,则奖励玩具一个;②若xy≥8,则奖励水杯一个;③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.(1)求小亮获得玩具的概率;(2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.【导学号:00090352】图1021[解]用数对(x,y)表示儿童参加活动先后记录的数,则基本事件空间Ω与点集S={(x,y)|x∈N,y∈N,1≤x≤4,1≤y≤4}一一对应.因为S中元素的个数是4×4=16,所以基本事件总数n=16. 3分(1)记“xy≤3”为事件A,则事件A包含的基本事件数共5个,即(1,1),(1,2),(1,3),(2,1),(3,1).所以P(A)=516,即小亮获得玩具的概率为516. 5分(2)记“xy ≥8”为事件B ,“3<xy <8”为事件C .则事件B 包含的基本事件数共6个,即(2,4),(3,3),(3,4),(4,2),(4,3),(4,4),所以P (B )=616=38. 8分事件C 包含的基本事件数共5个,即(1,4),(2,2),(2,3),(3,2),(4,1).10分 所以P (C )=516. 因为38>516, 所以小亮获得水杯的概率大于获得饮料的概率. 12分 [规律方法] 1.本题易错点有两个:(1)题意理解不清,不能把基本事件列举出来;(2)不能恰当分类,列举基本事件有遗漏.2.求较复杂事件的概率问题,解题关键是理解题目的实际含义,把实际问题转化为概率模型,必要时将所求事件转化成彼此互斥事件的和,或者先求其对立事件的概率,进而再用互斥事件的概率加法公式或对立事件的概率公式求解.[变式训练2] (2017·潍坊质检)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)(2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A 1,A 2,A 3,A 4,A 5,3名女同学B 1,B 2,B 3.现从这5名男同学和3名女同学中各随机选1人,求A 1被选中且B 1未被选中的概率. 【导学号:00090353】[解] (1)由调查数据可知,既未参加书法社团又未参加演讲社团的有30人,2分 故至少参加上述一个社团的共有45-30=15人,所以从该班随机选1名同学,该同学至少参加上述一个社团的概率为P =1545=13. 5分(2)从这5名男同学和3名女同学中各随机选1人,其一切可能的结果组成的基本事件有 {A 1,B 1},{A 1,B 2},{A 1,B 3},{A 2,B 1},{A 2,B 2},{A 2,B 3},{A 3,B 1},{A 3,B 2},{A 3,B 3},{A 4,B 1},{A 4,B 2},{A 4,B 3},{A 5,B 1},{A 5,B 2},{A 5,B 3},共15个.8分根据题意,这些基本事件的出现是等可能的.事件“A1被选中且B1未被选中”所包含的基本事件有{A1,B2},{A1,B3},共2个.因此A1被选中且B1未被选中的概率为P=215. 12分查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表.A地区用户满意度评分的频率分布直方图图1022①B地区用户满意度评分的频数分布表地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可).B地区用户满意度评分的频率分布直方图图1022②(2)根据用户满意度评分,将用户的满意度分为三个等级:[解](1)如图所示.4分通过两地区用户满意度评分的频率分布直方图可以看出,B地区用户满意度评分的平均值高于A地区用户满意度评分的平均值;B地区用户满意度评分比较集中,而A地区用户满意度评分比较分散. 6分(2)A地区用户的满意度等级为不满意的概率大. 8分记C A表示事件:“A地区用户的满意度等级为不满意”;C B表示事件:“B地区用户的满意度等级为不满意”.由直方图得P(C A)的估计值为(0.01+0.02+0.03)×10=0.6,P(C B)的估计值为(0.005+0.02)×10=0.25. 11分所以A地区用户的满意度等级为不满意的概率大. 12分[规律方法] 1.本题求解的关键在于作出茎叶图,并根据茎叶图准确提炼数据信息,考查数据处理能力和数学应用意识.2.有关古典概型与统计结合的题型是高考考查概率的一个重要题型,已成为高考考查的热点,概率与统计结合题,无论是直接描述还是利用概率分布表、分布直方图、茎叶图等给出信息,准确从题中提炼信息是关键.[变式训练3] (2018·湘潭模拟)长沙某购物中心在开业之后,为了解消费者购物金额的分布情况,在当月的电脑消费小票中随机抽取n张进行统计,将结果分成6组,分别是[0,100),[100,200),[200,300),[300,400),[400,500),[500,600],制成如图1023所示的频率分布直方图(假设消费金额均在[0,600]元的区间内).(1)若按分层抽样的方法在消费金额为[400,600]元区间内抽取6张电脑小票,再从中任选2张,求这2张小票均来自[400,500)元区间的概率;(2)为做好五一劳动节期间的商场促销活动,策划人员设计了两种不同的促销方案.方案一:全场商品打八折.方案二:全场购物满100元减20元,满300元减80元,满500元减120元,以上减免只取最高优惠,不重复减免.利用直方图的信息分析:哪种方案优惠力度更大,并说明理由(直方图中每个小组取中间值作为该组数据的替代值)图1023[解] (1)由题意知,在[400,500)元区间内抽4张,分别记为a ,b ,c ,d ,在[500,600]元区间内抽2张,分别记为E ,F , 2分 设“2张小票均来自[400,500)元区间”为事件A ,从中任选2张,有以下选法:ab 、ac 、ad 、aE 、aF 、bc 、bd 、bE 、bF 、cd 、cE 、cF 、dE 、dF 、EF ,共15种. 4分 其中,2张小票均来自[400,500)元区间的有ab 、ac 、ad 、bc 、bd 、cd ,共6种,∴P (A )=25. 6分(2)法一:由频率分布直方图可知,各组频率依次为0.1,0.2,0.25,0.3,0.1,0.05.方案一:购物的平均费用为0.8×(50×0.1+150×0.2+250×0.25+350×0.3+450×0.1+550×0.05)=0.8×275=220(元). 8分 方案二:购物的平均费用为50×0.1+130×0.2+230×0.25+270×0.3+370×0.1+430×0.05=228(元). 10分 ∵220<228,∴方案一的优惠力度更大. 12分法二:由频率分布直方图可知,各组频率依次为0.1,0.2,0.25,0.3,0.1,0.05,方案一:平均优惠金额为0.2×(50×0.1+150×0.2+250×0.25+350×0.3+450×0.1+550×0.05)=0.2×275=55(元). 8分方案二:平均优惠金额为20×(0.2+0.25)+80×(0.3+0.1)+120×0.05=47(元).10分 ∵55>47.∴方案一的优惠力度更大. 12分。
第二节 不等式的证明[考纲传真] 通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法.(对应学生用书第166页)[基础知识填充]1.不等式证明的方法 (1)比较法: ①求差比较法:知道a >b ⇔a -b >0,a <b ⇔a -b <0,因此要证明a >b ,只要证明a -b >0即可,这种方法称为求差比较法. ②求商比较法:由a >b >0⇔ab >1且a >0,b >0,因此当a >0,b >0时,要证明a >b ,只要证明a b>1即可,这种方法称为求商比较法. (2)分析法:从所要证明的结论入手向已知条件反推直至达到已知条件为止.这种证法称为分析法,即“执果索因”的证明方法. (3)综合法:从已知条件出发,利用不等式的性质(或已知证明过的不等式),推出了所要证明的结论,即“由因寻果”的方法.这种证明不等式的方法称为综合法.(4)几何法:通过构造几何图形,利用几何图形的性质来证明不等式的解法称为几何法. (5)放缩法和反证法:在证明不等式时,有时可以通过缩小(或放大)分式的分母(或分子),或通过放大(或缩小)被减式(或减式)来证明不等式,这种证明不等式的方法称为放缩法.反证法是常用的证明方法.它是通过证明命题结论的否定不能成立,来肯定命题结论一定成立.其证明的步骤是:①作出否定结论的假设;②进行推理,导出矛盾;③否定假设,肯定结论. 2.几个常用基本不等式 (1)柯西不等式:①柯西不等式的代数形式:对任意实数a ,b ,c ,d ,有(a 2+b 2)(c 2+d 2)≥(ac +bd )2(当向量(a ,d )与向量(c ,d )共线时.等号成立).②柯西不等式的向量形式:设α,β是两个向量,则|α||β|≥|α·β|,当且仅当β是零向量,或存在实数k ,使α=k β时,等号成立. ③一般形式的柯西不等式设a 1,a 2,…,a n 与b 1,b 2,…,b n 是两组实数,则有(a 21+a 22+…+a 2n )(b 21+b 22+…+b 2n )≥(a 1b 1+a 2b 2+…+a n b n )2,当向量(a 1,a 2,…,a n )与向量(b 1,b 2,…,b n )共线时,等号成立. (2)算术—几何平均不等式 若a 1,a 2,…,a n 为正数,则a 1+a 2+…+a n n≥na 1a 2…a n ,当且仅当a 1=a 2=…=a n 时,等号成立.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)比较法最终要判断式子的符号得出结论.( )(2)综合法是从原因推导到结果的思维方法,它是从已知条件出发,经过逐步推理,最后达到待证的结论.( )(3)分析法又叫逆推证法或执果索因法,是从待证结论出发,一步一步地寻求结论成立的必要条件,最后达到题设的已知条件或已被证明的事实.( ) (4)使用反证法时,“反设”不能作为推理的条件应用.( ) [答案] (1)× (2)√ (3)× (4)×2.(教材改编)若a >b >1,x =a +1a ,y =b +1b,则x 与y 的大小关系是( )A .x >yB .x <yC .x ≥yD .x ≤yA [x -y =a +1a -⎝ ⎛⎭⎪⎫b +1b=a -b +b -a ab =a -b ab -ab.由a >b >1得ab >1,a -b >0, 所以a -bab -ab>0,即x -y >0,所以x >y .]3.(教材改编)已知a ≥b >0,M =2a 3-b 3,N =2ab 2-a 2b ,则M ,N 的大小关系为________.M ≥N [2a 3-b 3-(2ab 2-a 2b )=2a (a 2-b 2)+b (a 2-b 2)=(a 2-b 2)(2a +b )=(a -b )(a +b )(2a +b ).因为a ≥b >0,所以a -b ≥0,a +b >0,2a +b >0, 从而(a -b )(a +b )(2a +b )≥0,故2a 3-b 3≥2ab 2-a 2B .] 4.已知a >0,b >0且ln(a +b )=0,则1a +1b的最小值是________.【导学号:00090380】4 [由题意得,a +b =1,a >0,b >0,∴1a +1b =⎝ ⎛⎭⎪⎫1a +1b (a +b )=2+b a +a b≥2+2b a ·ab=4, 当且仅当a =b =12时等号成立.]5.已知x >0,y >0,证明:(1+x +y 2)(1+x 2+y )≥9xy . [证明] 因为x >0,y >0,所以1+x +y 2≥33xy 2>0,1+x 2+y ≥33x 2y >0, 故(1+x +y 2)(1+x 2+y )≥33xy 2·33x 2y =9xy .(对应学生用书第167页)已知a >0,b >0,求证:b +a≥a +b . [证明] 法一:∵⎝⎛⎭⎪⎫a b +b a -(a +b ) =⎝ ⎛⎭⎪⎫a b -b +⎝ ⎛⎭⎪⎫b a -a =a -b b +b -aa=a -ba -b ab=a +ba -b2ab≥0,∴a b +ba≥a +b .10分法二:由于a b +ba a +b=a a +b bab a +b=a +ba -ab +bab a +b=a +bab-1 ≥2abab-1=1.8分又a >0,b >0,ab >0, ∴a b +ba≥a +b . 10分[规律方法] 1.在法一中,采用局部通分,优化了解题过程;在法二中,利用不等式的性质,把证明a >b 转化为证明a b>1(b >0).2.作差(商)证明不等式,关键是对差(商)式进行合理的变形,特别注意作商证明不等式,不等式的两边应同号.提醒:在使用作商比较法时,要注意说明分母的符号. [变式训练1] (2018·长沙模拟)设a ,b 是非负实数, 求证:a 2+b 2≥ab (a +b ). [证明] 因为a 2+b 2-ab (a +b ) =(a 2-a ab )+(b 2-b ab ) =a a (a -b )+b b (b -a ) =(a -b )(a a -b b ) =.6分因为a ≥0,b ≥0,所以不论a ≥b ≥0,还是0≤a ≤b ,都有a -b 与a -b同号,所以(a 12-b 12)⎝ ⎛⎭⎪⎫a 32-b 32≥0,所以a 2+b 2≥ab (a +b ).10分(1)ab +bc +ac ≤13;(2)a 2b +b 2c +c 2a≥1.[证明] (1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca , 得a 2+b 2+c 2≥ab +bc +ca , 由题设得(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1, 所以3(ab +bc +ca )≤1, 即ab +bc +ca ≤13.5分(2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a +a ≥2c ,故a 2b +b 2c +c 2a+(a +b +c )≥2(a +b +c ),则a 2b +b 2c +c 2a ≥a +b +c ,所以a 2b +b 2c +c 2a≥1.10分[规律方法] 1.综合法证明的实质是由因导果,其证明的逻辑关系是:A ⇒B 1⇒B 2⇒…⇒B n⇒B (A 为已知条件或数学定义、定理、公理,B 为要证结论),它的常见书面表达式是“∵,∴”或“⇒”.2.综合法证明不等式,要着力分析已知与求证之间,不等式的左右两端之间的差异与联系.合理进行转换,恰当选择已知不等式,这是证明的关键. [变式训练2] (2017·石家庄调研)已知函数f (x )=2|x +1|+|x -2|. (1)求f (x )的最小值m ;(2)若a ,b ,c 均为正实数,且满足a +b +c =m ,求证:b 2a +c 2b +a 2c≥3.【导学号:00090381】[解] (1)当x <-1时,f (x )=-2(x +1)-(x -2)=-3x >3; 2分当-1≤x <2时,f (x )=2(x +1)-(x -2)=x +4∈[3,6); 当x ≥2时,f (x )=2(x +1)+(x -2)=3x ≥6. 综上,f (x )的最小值m =3.5分 (2)证明:a ,b ,c 均为正实数,且满足a +b +c =3,因为b 2a +c 2b +a 2c +(a +b +c )=⎝ ⎛⎭⎪⎫b 2a +a +⎝ ⎛⎭⎪⎫c 2b +b +⎝ ⎛⎭⎪⎫a 2c +c ≥2⎝⎛⎭⎪⎫b 2a ·a +c 2b·b +a 2c ·c =2(a +b +c ). 8分(当且仅当a =b =c =1时取“=”)所以b 2a +c 2b +a 2c ≥a +b +c ,即b 2a +c 2b +a 2c≥3.10分(1)若ab >cd ,则a +b >c +d ;(2)a +b >c +d 是|a -b |<|c -d |的充要条件. [证明] (1)∵a ,b ,c ,d 为正数,且a +b =c +d , 欲证a +b >c +d ,只需证明(a +b )2>(c +d )2,也就是证明a+b+2ab>c+d+2cd,只需证明ab>cd,即证ab>cD.由于ab>cd,因此a+b>c+d. 5分(2)①若|a-b|<|c-d|,则(a-b)2<(c-d)2,即(a+b)2-4ab<(c+d)2-4cD.因为a+b=c+d,所以ab>cD.由(1),得a+b>c+d. 8分②若a+b>c+d,则(a+b)2>(c+d)2,即a+b+2ab>c+d+2cd.因为a+b=c+d,所以ab>cD.于是(a-b)2=(a+b)2-4ab<(c+d)2-4cd=(c-d)2.因此|a-b|<|c-d|.综上,a+b>c+d是|a-b|<|c-d|的充要条件. 10分[规律方法] 1.本题将不等式证明与充要条件的判定渗透命题,考查推理论证能力和转化与化归的思想方法,由于两个不等式两边都是正数,可通过两边平方来证明.2.当要证的不等式较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆.3.分析法证明的思路是“执果索因”,其框图表示为:Q⇐P1→P1⇐P2→P2⇐P3→…→得到一个明显成立的条件[变式训练3] 已知a>b>c,且a+b+c=0,求证:b2-ac<3A.[证明]要证b2-ac<3a,只需证b2-ac<3a2.∵a+b+c=0,只需证b2+a(a+b)<3a2,只需证2a2-ab-b2>0,4分只需证(a-b)(2a+b)>0,只需证(a-b)(a-c)>0.∵a>b>c,∴a-b>0,a-c>0,∴(a-b)(a-c)>0显然成立,故原不等式成立. 10分。
第三节平面向量的数量积及其应用[考纲传真] .理解平面向量数量积的含义及其物理意义.了解平面向量的数量积与向量投影的关系.掌握数量积的坐标表达式,会进行平面向量数量积的运算.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.会用向量方法解决某些简单的平面几何问题.会用向量方法解决简单的力学问题与其他一些实际问题.(对应学生用书第页)[基础知识填充].向量的夹角()定义:已知两个非零向量和,如图,作=,=,则∠=θ(°≤θ≤°)叫作与的夹角.图()当θ=°时,与共线同向.当θ=°时,与共线反向.当θ=°时,与互相垂直..平面向量的数量积()定义:已知两个非零向量和,它们的夹角为θ,则数量· θ叫做与的数量积(或内积).规定:零向量与任一向量的数量积为.()几何意义:数量积·等于的长度与在的方向上的投影θ的乘积或的长度与在方向上射影θ的乘积..平面向量数量积的运算律()交换律:·=·;()数乘结合律:(λ)·=λ(·)=·(λ);()分配律:·(+)=·+·..平面向量数量积的性质及其坐标表示设非零向量=(,),=(,),θ=〈,〉.[.两个向量,的夹角为锐角⇔·>且,不共线;两个向量,的夹角为钝角⇔·<且,不共线..平面向量数量积运算的常用公式()(+)·(-)=-.()(+)=+·+.()(-)=-·+..当与同向时,·=;当与反向时,·=-.[基本能力自测].(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)()两个向量的数量积是一个实数,向量的数乘运算的运算结果是向量.( )()由·=,可得=或=.( )()由·=·及≠不能推出=.( )()在四边形中,=且·=,则四边形为矩形. ( )[答案]()√()×()√()×.(·全国卷Ⅲ)已知向量=,=,则∠=( ).°.°.°.°[因为=,=,所以·=+=.又因为·=∠=××∠,所以∠=.又°≤∠≤°,所以∠=°.故选.].(·全国卷Ⅱ)向量=(,-),=(-),则(+)·=( ).-...[法一:∵=(,-),=(-),∴=,·=-,从而(+)·=+·=-=.法二:∵=(,-),=(-),∴+=(,-)+(-)=(),从而(+)·=()·(,-)=,故选.].(教材改编)已知=,=,与的夹角θ=°,则向量在向量方向上的投影为.-[由数量积的定义知,在方向上的投影为θ=× °=-.].(·全国卷Ⅰ)已知向量=(-),=().若向量+与垂直,则=.。
第五节综合法与分析法、反证法[考纲传真] 1.了解直接证明的两种基本方法:综合法和分析法;了解综合法和分析法的思考过程和特点.2.了解反证法的思考过程和特点.(对应学生用书第89页)[基础知识填充]1.直接证明Q⇐P1→P1⇐P2→…→得到一个明显成立的条件2间接证明是不同于直接证明的又一类证明方法,反证法是一种常用的间接证明方法.(1)反证法的定义:在假定命题结论反面成立的前提下,经过推理,若推出的结果与定义、公理、定理矛盾,或与命题中的已知条件相矛盾,或与假定相矛盾,从而说明命题结论的反面不可能成立,由此断定命题结论成立的方法叫反证法.(2)用反证法证明的一般步骤:①反设——假设命题的结论不成立;②归谬——根据假设进行推理,直到推出矛盾为止;③结论——断言假设不成立,从而肯定原命题的结论成立.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)综合法的思维过程是由因导果,逐步寻找已知的必要条件.( )(2)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.( )(3)用反证法证明时,推出的矛盾不能与假设矛盾.( )(4)在解决问题时,常常用分析法寻找解题的思路与方法,再用综合法展现解决问题的过程.( )[答案] (1)√ (2)× (3)× (4)√ 2.要证a 2+b 2-1-a 2b 2≤0 ,只要证明( ) A .2ab -1-a 2b 2≤0 B .a 2+b 2-1-a 4+b 42≤0C .a +b22-1-a 2b 2≤0D .(a 2-1)(b 2-1)≥0D [a 2+b 2-1-a 2b 2≤0⇔(a 2-1)(b 2-1)≥0.]3.用反证法证明命题:“已知a ,b 为实数,则方程x 2+ax +b =0至少有一个实根”时,要做的假设是( )A .方程x 2+ax +b =0没有实根 B .方程x 2+ax +b =0至多有一个实根 C .方程x 2+ax +b =0至多有两个实根 D .方程x 2+ax +b =0恰好有两个实根A [“方程x 2+ax +b =0至少有一个实根”的反面是“方程x 2+ax +b =0没有实根”,故选A .]4.已知a ,b ,x 均为正数,且a >b ,则b a 与b +xa +x的大小关系是__________.b +x a +x >b a [∵b +x a +x -b a =x a -b a +x a >0,∴b +x a +x >ba.] 5.(教材改编)在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,且A ,B ,C 成等差数列,a ,b ,c 成等比数列,则△ABC 的形状为__________三角形.【导学号:00090218】等边 [由题意2B =A +C ,又A +B +C =π,∴B =π3,又b 2=ac ,由余弦定理得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac , ∴a 2+c 2-2ac =0,即(a -c )2=0,∴a =c , ∴A =C ,∴A =B =C =π3,∴△ABC 为等边三角形.](对应学生用书第90页)对于定义域为 ①对任意的x ∈[0,1],总有f (x )≥0; ②f (1)=1;③若x 1≥0,x 2≥0,x 1+x 2≤1,都有f (x 1+x 2)≥f (x 1)+f (x 2)成立,则称函数f (x )为理想函数.(1)若函数f (x )为理想函数,证明:f (0)=0;(2)试判断函数f (x )=2x (x ∈[0,1]),f (x )=x 2(x ∈[0,1]),f (x )=x (x ∈[0,1])是否是理想函数.【导学号:00090219】[解] (1)证明:取x 1=x 2=0,则x 1+x 2=0≤1,∴f (0+0)≥f (0)+f (0),∴f (0)≤0. 又对任意的x ∈[0,1],总有f (x )≥0,∴f (0)≥0.于是f (0)=0.5分(2)对于f (x )=2x ,x ∈[0,1],f (1)=2不满足新定义中的条件②,∴f (x )=2x (x ∈[0,1])不是理想函数.7分对于f (x )=x 2,x ∈[0,1],显然f (x )≥0,且f (1)=1.对任意的x 1,x 2∈[0,1],x 1+x 2≤1,f (x 1+x 2)-f (x 1)-f (x 2)=(x 1+x 2)2-x 21-x 22=2x 1x 2≥0,即f (x 1)+f (x 2)≤f (x 1+x 2).∴f (x )=x 2(x ∈[0,1])是理想函数.9分对于f (x )=x ,x ∈[0,1],显然满足条件①②.对任意的x 1,x 2∈[0,1],x 1+x 2≤1, 有[f (x 1+x 2)]2-[f (x 1)+f (x 2)]2=(x 1+x 2)-(x 1+2x 1x 2+x 2)=-2x 1x 2≤0,即[f (x 1+x 2)]2≤[f (x 1)+f (x 2)]2,∴f (x 1+x 2)≤f (x 1)+f (x 2),不满足条件③. ∴f (x )=x (x ∈[0,1])不是理想函数.11分综上,f (x )=x 2(x ∈[0,1])是理想函数,f (x )=2x (x ∈[0,1])与f (x )=x (x ∈[0,1])不是理想函数.12分[规律方法] 综合法是“由因导果”的证明方法,其逻辑依据是三段论式的演绎推理方法,常与分析法结合使用,用分析法探路,综合法书写,但要注意有关定理、性质、结论题设条件的正确运用.[变式训练1] 已知函数f (x )=ln(1+x ),g (x )=a +bx -12x 2+13x 3,函数y =f (x )与函数y=g (x )的图像在交点(0,0)处有公共切线. (1)求a ,b 的值; (2)证明:f (x )≤g (x ).[解] (1)f ′(x )=11+x ,g ′(x )=b -x +x 2,2分由题意得⎩⎪⎨⎪⎧g=f ,f =g,解得a =0,b =1.5分(2)证明:令h (x )=f (x )-g (x ) =ln(x +1)-13x 3+12x 2-x (x >-1).h ′(x )=1x +1-x 2+x -1=-x 3x +1.8分所以h (x )在(-1,0)上为增函数,在(0,+∞)上为减函数.h (x )max =h (0)=0,h (x )≤h (0)=0,即f (x )≤g (x ).12分已知a >0 [证明] 要证a 2+1a 2-2≥a +1a-2,只需要证a 2+1a 2+2≥a +1a+ 2. 2分因为a >0,故只需要证⎝ ⎛⎭⎪⎫a 2+1a 2+22≥⎝⎛⎭⎪⎫a +1a +22,即a 2+1a2+4a 2+1a 2+4≥a 2+2+1a 2+22⎝ ⎛⎭⎪⎫a +1a +2,8分从而只需要证2a 2+1a 2≥2⎝ ⎛⎭⎪⎫a +1a , 只需要证4⎝ ⎛⎭⎪⎫a 2+1a 2≥2⎝ ⎛⎭⎪⎫a 2+2+1a2,即a 2+1a2≥2,而上述不等式显然成立,故原不等式成立.12分[规律方法] 1.当已知条件与结论之间的联系不够明显、直接,或证明过程中所需用的知识不太明确、具体时,往往采用分析法,特别是含有根号、绝对值的等式或不等式,常考虑用分析法.2.分析法的特点和思路是“执果索因”,逐步寻找结论成立的充分条件,即从“未知”看“需知”,逐步靠拢“已知”或本身已经成立的定理、性质或已经证明成立的结论等,通常采用“欲证—只需证—已知”的格式,在表达中要注意叙述形式的规范性. [变式训练2] 已知△ABC 的三个内角A ,B ,C 成等差数列,A ,B ,C 的对边分别为a ,b ,C . 求证:1a +b +1b +c =3a +b +c. 【导学号:00090220】[证明] 要证1a +b +1b +c =3a +b +c, 即证a +b +c a +b +a +b +c b +c =3,也就是c a +b +ab +c=1, 3分只需证c (b +c )+a (a +b )=(a +b )(b +c ), 需证c 2+a 2=ac +b 2,5分又△ABC 三内角A ,B ,C 成等差数列, 故B =60°, 由余弦定理,得b 2=c 2+a 2-2ac cos 60°,10分即b 2=c 2+a 2-ac ,故c 2+a 2=ac +b 2成立. 于是原等式成立.12分设{an }是公比为q (1)推导{a n }的前n 项和公式;(2)设q ≠1,证明数列{a n +1}不是等比数列. [解] (1)设{a n }的前n 项和为S n , 当q =1时,S n =a 1+a 1+…+a 1=na 1; 当q ≠1时,S n =a 1+a 1q +a 1q 2+…+a 1qn -1,①qS n =a 1q +a 1q 2+…+a 1q n ,②①-②得,(1-q )S n =a 1-a 1q n,∴S n =a 1-q n1-q,∴S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-q n1-q,q ≠1. 5分(2)证明:假设{a n +1}是等比数列,则对任意的k ∈N *, (a k +1+1)2=(a k +1)(a k +2+1),a 2k +1+2a k +1+1=a k a k +2+a k +a k +2+1,a 21q 2k +2a 1q k =a 1qk -1·a 1q k +1+a 1q k -1+a 1q k +1. 8分 ∵a 1≠0,∴2q k =qk -1+qk +1.∵q ≠0,∴q 2-2q +1=0, ∴q =1,这与已知矛盾.∴假设不成立,故{a n +1}不是等比数列. 12分 [规律方法] 用反证法证明问题的步骤:(1)反设:假定所要证的结论不成立,而设结论的反面成立;(否定结论)(2)归谬:将“反设”作为条件,由此出发经过正确的推理,导出矛盾,矛盾可以是与已知条件、定义、公理、定理及明显的事实矛盾或自相矛盾;(推导矛盾)(3)立论:因为推理正确,所以产生矛盾的原因在于“反设”的谬误.既然原命题结论的反面不成立,从而肯定了原命题成立.(命题成立)[变式训练3] 已知a ≥-1,求证三个方程:x 2+4ax -4a +3=0,x 2+(a -1)x +a 2=0,x 2+2ax -2a =0中至少有一个方程有实根. [证明] 假设三个方程都没有实数根,则⎩⎪⎨⎪⎧a 2--4a +,a -2-4a 2<0,a 2--2a ⇒⎩⎪⎨⎪⎧-32<a <12,a >13或a <-1,-2<a <0,6分∴-32<a <-1.10分 这与已知a ≥-1矛盾,所以假设不成立,故原结论成立.12分。
第二节 平面向量基本定理及坐标表示[考纲传真] 1.了解平面向量的基本定理及其意义.2.掌握平面向量的正交分解及其坐标表示.3.会用坐标表示平面向量的加法、减法与数乘运算.4.理解用坐标表示的平面向量共线的条件.(对应学生用书第59页)[基础知识填充]1.平面向量基本定理(1)定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.(2)基底:不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 2.平面向量的坐标表示在平面直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量i ,j 作为基底,该平面内的任一向量a 可表示成a =x i +y j ,由于a 与数对(x ,y )是一一对应的,把有序数对(x ,y )叫做向量a 的坐标,记作a =(x ,y ). 3.平面向量的坐标运算(1)向量加法、减法、数乘及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标. ②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1), |AB →|=x 2-x 12+y 2-y 12.4.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.a ,b 共线⇔x 1y 2-x 2y 1=0.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)平面内的任何两个向量都可以作为一组基底.( ) (2)同一向量在不同基底下的表示是相同的.( )(3)若a ,b 不共线,且λ1a +μ1b =λ2a +μ2b ,则λ1=λ2,μ1=μ2.( )(4)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件可以表示成x 1x 2=y 1y 2.( ) [答案] (1)× (2)× (3)√ (4)×2.已知平面向量a =(2,-1),b =(1,3),那么|a +b |等于 ( ) A .5 B .13 C .17D .13B [因为a +b =(2,-1)+(1,3)=(3,2),所以|a +b |=32+22=13.]3.(2018·洛阳模拟)已知点A (0,1),B (3,2),向量AC →=(-4,-3),则向量BC →=( ) A .(-7,-4) B .(7,4) C .(-1,4)D .(1,4)A [AB →=(3,2)-(0,1)=(3,1),BC →=AC →-AB →=(-4,-3)-(3,1)=(-7,-4). 故选A .]4.(2016·全国卷Ⅱ)已知向量a =(m,4),b =(3,-2),且a ∥b ,则m =________. -6 [∵a =(m,4),b =(3,-2),a ∥b , ∴-2m -4×3=0,∴m =-6.]5.(教材改编)已知▱ABCD 的顶点A (-1,-2),B (3,-1),C (5,6),则顶点D 的坐标为________. (1,5) [设D (x ,y ),则由AB →=DC →,得(4,1)=(5-x,6-y ), 即⎩⎪⎨⎪⎧4=5-x ,1=6-y ,解得⎩⎪⎨⎪⎧x =1,y =5.](对应学生用书第60页)(1)12面内所有向量的一组基底的是 ( ) A .e 1与e 1+e 2 B .e 1-2e 2与e 1+2e 2 C .e 1+e 2与e 1-e 2 D .e 1+3e 2与6e 2+2e 1(2)(2018·太原模拟)在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,若AC →=λAE →+μAF →,其中λ,μ∈R ,则λ+μ=________. 【导学号:00090130】(1)D (2)43 [(1)选项A 中,设e 1+e 2=λe 1,则⎩⎪⎨⎪⎧1=λ,1=0无解;选项B 中,设e 1-2e 2=λ(e 1+2e 2),则⎩⎪⎨⎪⎧λ=1,-2=2λ无解;选项C 中,设e 1+e 2=λ(e 1-e 2),则⎩⎪⎨⎪⎧λ=1,1=-λ无解;选项D 中,e 1+3e 2=12(6e 2+2e 1),所以两向量是共线向量.(2)选择AB →,AD →作为平面向量的一组基底,则AC →=AB →+AD →,AE →=12AB →+AD →,AF →=AB →+12AD →,又AC →=λAE →+μAF →=⎝ ⎛⎭⎪⎫12λ+μAB →+⎝ ⎛⎭⎪⎫λ+12μAD →, 于是得⎩⎪⎨⎪⎧12λ+μ=1,λ+12μ=1,解得⎩⎪⎨⎪⎧λ=23,μ=23,所以λ+μ=43.][规律方法] 1.利用平面向量基本定理表示向量时,要选择一组恰当的基底来表示其他向量,即用特殊向量表示一般向量.2.利用已知向量表示未知向量,实质就是利用三角形法则进行向量的加减运算,在解题时,注意方程思想的运用.如解答本题(2)的关键是根据平面向量基本定理列出关于λ,μ的方程组.[变式训练1] 如图421,在梯形ABCD 中,AD ∥BC ,且AD =13BC ,E ,F 分别为线段AD与BC 的中点.设BA →=a ,BC →=b ,则EF →=________,DF →=________,CD →=________(用向量a ,b 表示).图42113b -a 16b -a a -23b [EF →=EA →+AB →+BF →=-16b -a +12b =13b -a ,DF →=DE →+EF →=-16b +⎝ ⎛⎭⎪⎫13b -a =16b -a ,CD →=CF →+FD →=-12b -⎝ ⎛⎭⎪⎫16b -a =a -23B .]已知A (-2,4),B (3,-1),C (-3,-4).设AB =a ,BC =b ,CA =c ,且CM →=3c ,CN →=-2b ,(1)求3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n ; (3)求M ,N 的坐标及向量MN →的坐标.[解] 由已知得a =(5,-5),b =(-6,-3),c =(1,8). (1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8) =(15-6-3,-15-3-24)=(6,-42). (2)∵m b +n c =(-6m +n ,-3m +8n ),∴⎩⎪⎨⎪⎧-6m +n =5,-3m +8n =-5,解得⎩⎪⎨⎪⎧m =-1,n =-1.(3)设O 为坐标原点.∵CM →=OM →-OC →=3c , ∴OM →=3c +OC →=(3,24)+(-3,-4)=(0,20). ∴M (0,20).又∵CN →=ON →-OC →=-2b ,∴ON →=-2b +OC →=(12,6)+(-3,-4)=(9,2),∴N (9,2),∴MN →=(9,-18).[规律方法] 1. 向量的坐标运算主要是利用向量加、减、数乘运算的法则来进行求解的,若已知有向线段两端点的坐标,则应先求向量的坐标.常利用向量相等则其坐标相同列方程(组)求解.2.平面向量的坐标运算的引入为向量提供了新的语言——“坐标语言”,实质是“形”化为“数”.向量的坐标运算,使得向量的线性运算都可用坐标来进行,实现了向量运算完全代数化,将数与形紧密结合起来.[变式训练2] (2017·合肥三次质检)已知a =(1,t ),b =(t ,-6),则|2a +b |的最小值为________.25 [由条件得2a +b =(2+t,2t -6),所以|2a +b |=+t2+t -2=t -2+20,当t =2时,|2a +b |的最小值为2 5.]已知a(1)当k 为何值时,k a -b 与a +2b 共线?(2)若AB →=2a +3b ,BC →=a +m b 且A 、B 、C 三点共线,求m 的值.【导学号:00090131】[解] (1)k a -b =k (1,0)-(2,1)=(k -2,-1),a +2b =(1,0)+2(2,1)=(5,2).∵k a -b 与a +2b 共线,∴2(k -2)-(-1)×5=0,即2k -4+5=0,得k =-12.(2)法一:∵A 、B 、C 三点共线,∴AB →=λBC →,即2a +3b =λ(a +m b ),∴⎩⎪⎨⎪⎧2=λ3=m λ,解得m =32.法二:AB →=2a +3b =2(1,0)+3(2,1)=(8,3), BC →=a +m b =(1,0)+m (2,1)=(2m +1,m ). ∵A 、B 、C 三点共线,∴AB →∥BC →. ∴8m -3(2m +1)=0,即2m -3=0, ∴m =32.[规律方法] 1.两平面向量共线的充要条件有两种形式:(1)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2-x 2y 1=0;(2)若a ∥b (a ≠0),则b =λA .2.向量共线的坐标表示既可以判定两向量平行,也可以由平行求参数.当两向量的坐标均非零时,也可以利用坐标对应成比例求解.[变式训练3] (1)(2017·郑州模拟)已知向量a =(1-sin θ,1),b =⎝ ⎛⎭⎪⎫12,1+sin θ,若a ∥b ,则锐角θ=________.(2)已知向量OA →=(1,-3),OB →=(2,-1),OC →=(k +1,k -2),若A ,B ,C 三点能构成三角形,则实数k 应满足的条件是________.(1)π4 (2)k ≠1 [(1)由a ∥b ,得(1-sin θ)(1+sin θ)=12,所以cos 2θ=12,所以cos θ=22或-22,又θ为锐角,所以θ=π4. (2)若点A ,B ,C 能构成三角形,则向量AB →,AC →不共线.因为AB →=OB →-OA →=(2,-1)-(1,-3)=(1,2), AC →=OC →-OA →=(k +1,k -2)-(1,-3)=(k ,k +1), 所以1×(k +1)-2k ≠0, 解得k ≠1.]。
第一节函数及其表示[考纲传真] 1.了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用(函数分段不超过三段).(对应学生用书第7页)[基础知识填充]1.函数与映射的概念2.(1)函数的定义域、值域在函数y=f(x),x∈A中,x叫作自变量,集合A叫作函数的定义域;与x的值相对应的y值叫作函数值,函数值的集合{f(x)|x∈A}叫作函数的值域.(2)函数的三要素:定义域、对应关系和值域.(3)函数的表示法表示函数的常用方法有解析法、图像法和列表法.3.分段函数(1)若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.(2)分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.[知识拓展]求函数定义域的依据(1)整式函数的定义域为R ; (2)分式的分母不为零;(3)偶次根式的被开方数不小于零; (4)对数函数的真数必须大于零;(5)正切函数y =tan x 的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π+π2,k ∈Z; (6)x 0中x ≠0;(7)实际问题中除要考虑函数解析式有意义外,还应考虑实际问题本身的要求.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)函数是特殊的映射.( )(2)函数y =1与y =x 0是同一个函数.( )(3)与x 轴垂直的直线和一个函数的图像至多有一个交点.( ) (4)分段函数是两个或多个函数.( ) [答案] (1)√ (2)× (3)√ (4)× 2.(教材改编)函数y =2x -3+1x -3的定义域为( ) A .⎣⎢⎡⎭⎪⎫32,+∞ B .(-∞,3)∪(3,+∞) C .⎣⎢⎡⎭⎪⎫32,3∪(3,+∞) D .(3,+∞)C [由题意知 ⎩⎪⎨⎪⎧2x -3≥0,x -3≠0,解得x ≥32且x ≠3.]3.(2018·西安模拟)已知函数f (x )=⎩⎪⎨⎪⎧2x,x ≤1log 12x ,x >1则f [f (4)]=________.【导学号:00090012】14 [f (4)=log 124=-2,所以f [f (4)]=f (-2)=2-2=14.] 4.(2015·全国卷Ⅱ)已知函数f (x )=ax 3-2x 的图像过点(-1,4),则a =________. -2 [∵f (x )=ax 3-2x 的图像过点(-1,4), ∴4=a ×(-1)3-2×(-1),解得a =-2.] 5.给出下列四个命题:①函数是其定义域到值域的映射; ②f (x )=x -3+2-x 是一个函数;③函数y =2x (x ∈N )的图像是一条直线; ④f (x )=lg x 2与g (x )=2lg x 是同一个函数. 其中正确命题的序号是________. ① [由函数的定义知①正确.∵满足⎩⎪⎨⎪⎧x -3≥0,2-x ≥0的x 不存在,∴②不正确.∵y =2x (x ∈N )的图像是位于直线y =2x 上的一群孤立的点, ∴③不正确.∵f (x )与g (x )的定义域不同,∴④也不正确.](对应学生用书第8页)A .(-2,1)B .[-2,1]C .(0,1)D .(0,1](2)(2017·郑州模拟)若函数y =f (x )的定义域为[0,2],则函数g (x )=f x x -1的定义域是________.(1)C (2)[0,1) [(1)由题意得⎩⎪⎨⎪⎧-x 2-x +2≥0ln x ≠0x >0,解得0<x <1,故选C .(2)由0≤2x ≤2,得0≤x ≤1,又x -1≠0,即x ≠1, 所以0≤x <1,即g (x )的定义域为[0,1).][规律方法] 1.求给出解析式的函数的定义域,可构造使解析式有意义的不等式(组)求解.2.(1)若已知f (x )的定义域为[a ,b ],则f (g (x ))的定义域可由a ≤g (x )≤b 求出; (2)若已知f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域. [变式训练1] (1)函数f (x )=1-2x+1x +3的定义域为( )A .(-3,0]B .(-3,1]C .(-∞,-3)∪(-3,0]D .(-∞,-3)∪(-3,1](2)已知函数f (2x)的定义域为[-1,1],则f (x )的定义域为________.(1)A (2)⎣⎢⎡⎦⎥⎤12,2 [(1)由题意,自变量x 应满足⎩⎪⎨⎪⎧1-2x≥0,x +3>0,解得⎩⎪⎨⎪⎧x ≤0,x >-3,∴-3<x ≤0.(2)∵f (2x)的定义域为[-1,1], ∴12≤2x≤2,即f (x )的定义域为⎣⎢⎡⎦⎥⎤12,2.](1)已知f ⎝ ⎛⎭⎪⎫2x+1=lg x ,求f (x )的解析式.(2)已知f (x )是二次函数且f (0)=2,f (x +1)-f (x )=x -1,求f (x )的解析式.(3)已知f (x )+2f ⎝ ⎛⎭⎪⎫1x=x (x ≠0),求f (x )的解析式.[解] (1)令2x +1=t ,由于x >0,∴t >1且x =2t -1,∴f (t )=lg2t -1,即f (x )=lg 2x -1(x >1). (2)设f (x )=ax 2+bx +c (a ≠0),由f (0)=2,得c =2,f (x +1)-f (x )=a (x +1)2+b (x +1)-ax 2-bx =x -1,即2ax +a +b =x -1,∴⎩⎪⎨⎪⎧2a =1,a +b =-1,即⎩⎪⎨⎪⎧a =12,b =-32,∴f (x )=12x 2-32x +2.(3)∵f (x )+2f ⎝ ⎛⎭⎪⎫1x =x ,∴f ⎝ ⎛⎭⎪⎫1x +2f (x )=1x.联立方程组⎩⎪⎨⎪⎧f x +2f ⎝ ⎛⎭⎪⎫1x =x ,f ⎝ ⎛⎭⎪⎫1x +2f x =1x ,解得f (x )=23x -x3(x ≠0).[规律方法] 求函数解析式的常用方法(1)待定系数法:若已知函数的类型,可用待定系数法;(2)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围; (3)构造法:已知关于f (x )与f ⎝ ⎛⎭⎪⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式,通过解方程组求出f (x );(4)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x替代g (x ),即得f (x )的表达式.[变式训练2] (1)已知f (x +1)=x +2x ,则f (x )=________. 【导学号:00090013】 (2)已知f (x )是一次函数,且2f (x -1)+f (x +1)=6x ,则f (x )=________. (3)已知函数f (x )满足f (-x )+2f (x )=2x,则f (x )=________. (1)x 2-1(x ≥1) (2)2x +23(3)2x +1-2-x3[(1)(换元法)设x +1=t (t ≥1),则x =t -1,所以f (t )=(t -1)2+2(t -1)=t 2-1(t ≥1),所以f (x )=x 2-1(x ≥1). (配凑法)f (x +1)=x +2x =(x +1)2-1, 又x +1≥1,∴f (x )=x 2-1(x ≥1). (2)∵f (x )是一次函数, ∴设f (x )=kx +b (k ≠0), 由2f (x -1)+f (x +1)=6x ,得2[k (x -1)+b ]+k (x +1)+b =6x ,即3kx -k +3b =6x ,∴⎩⎪⎨⎪⎧3k =-k +3b =0,∴k =2,b =23,即f (x )=2x +23.(3)由f (-x )+2f (x )=2x①, 得f (x )+2f (-x )=2-x②, ①×2-②,得3f (x )=2x +1-2-x.即f (x )=2x +1-2-x3. ∴f (x )的解析式为f (x )=2x +1-2-x3.]角度1(1)(2017·湖南衡阳八中一模)若f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫13x ,x ≤0,log 3x ,x >0,则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫19=( ) A .-2 B .-3 C .9D .-9(2)(2017·东北三省四市一联)已知函数f (x )的定义域为(-∞,+∞),如果f (x +2 016)=⎩⎨⎧2sin x ,x ≥0,-x ,x <0,那么f 2 016+π4·f (-7 984)=( )A .2 016B .14C .4D .12 016(1)C (2)C [(1)∵f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫13x ,x ≤0,log 3x ,x >0,∴f ⎝ ⎛⎭⎪⎫19=log 319=-2,∴f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫19=f (-2)=⎝ ⎛⎭⎪⎫13-2=9.故选C .(2)当x ≥0时,有f (x +2 016)=2sin x ,∴f ⎝⎛⎭⎪⎫2 016+π4=2sin π4=1;当x <0时,f (x +2 016)=lg(-x ),∴f (-7 984)=f (-10 000+2 016)=lg 10 000=4,∴f ⎝⎛⎭⎪⎫2 016+π4·f (-7 984)=1×4=4,故选C .]角度2 已知分段函数的函数值求参数(1)(2017·成都二诊)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x ≥1,x 2+m 2,x <1,若f (f (-1))=2,则实数m 的值为( ) A .1 B .1或-1 C . 3 D .3或- 3(2)设函数f (x )=⎩⎪⎨⎪⎧3x -b ,x <1,2x,x ≥1.若f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫56=4,则b =( )A .1B .78C .34D .12(1)D (2)D [(1)f (f (-1))=f (1+m 2)=log 2(1+m 2)=2,m 2=3,解得m =±3,故选D .(2)f ⎝ ⎛⎭⎪⎫56=3×56-b =52-b ,若52-b <1,即b >32,则3×⎝ ⎛⎭⎪⎫52-b -b =152-4b =4,解得b =78,不符合题意,舍去;若52-b ≥1,即b ≤32,则252-b =4,解得b =12.]角度3 解与分段函数有关的方程或不等式(1)(2017·石家庄一模)已知函数f (x )=⎩⎪⎨⎪⎧sin πx 2,-1<x ≤0,log 2x +,0<x <1,且f (x )=-12,则x 的值为________. 【导学号:00090014】(2)(2014·全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧e x -1,x <1,x 13,x ≥1,则使得f (x )≤2成立的x 的取值范围是________.(1)-13 (2)(-∞,8] [(1)当-1<x ≤0时,f (x )=sin πx 2=-12,解得x =-13;当0<x <1时,f (x )=log 2(x +1)∈(0,1),此时f (x )=-12无解,故x 的值为-13.(2)当x <1时,x -1<0,ex -1<e 0=1≤2,∴当x <1时满足f (x )≤2.当x ≥1时,x 13≤2,x ≤23=8,∴1≤x ≤8.综上可知x ∈(-∞,8].][规律方法] 1.求分段函数的函数值,要先确定要求值的自变量属于定义域的哪一个子集,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值. 2.已知函数值或函数值范围求自变量的值或范围时,应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围.易错警示:当分段函数自变量的范围不确定时,应分类讨论.。
第一节 绝对值不等式[考纲传真] 1.理解绝对值的几何意义,并了解下列不等式成立的几何意义及取等号的条件:|a+b|≤|a|+|b|(a,b∈R),|a-c|≤|a-b|+|b-c|(a,b,c∈R).2.会利用绝对值的几何意义求解以下类型的不等式:|ax+b|≤c;|ax+b|≥c;|x-a|+|x-b|≥C.(对应学生用书第164页)[基础知识填充]1.绝对值三角不等式定理1:如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.定理2:如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.2.绝对值不等式的解法(1)含绝对值的不等式|x|<a与|x|>a的解法:不等式a>0a=0a<0|x|<a{x|-a<x<a}∅∅|x|>a{x|x>a或x<-a}{x∈R|x≠0}R(2)|ax+b|≤c,|ax+b|≥c(c>0)型不等式的解法:①|ax+b|≤c⇔-c≤ax+b≤c;②|ax+b|≥c⇔ax+b≥c或ax+b≤-C.(3)|x-a|+|x-b|≥c,|x-a|+|x-b|≤c(c>0)型不等式的解法①利用绝对值不等式的几何意义求解;②利用零点分段法求解;③构造函数,利用函数的图像求解.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)|x-a|+|x-b|的几何意义是表示数轴上的点x到点a,b的距离之和.( )(2)不等式|a|-|b|≤|a+b|等号成立的条件是ab≤0.( )(3)不等式|a-b|≤|a|+|b|等号成立的条件是ab≤0.( )(4)当ab≥0时,|a+b|=|a|+|b|成立.( )[答案] (1)√ (2)× (3)√ (4)√2.(教材改编)若关于x的不等式|ax-2|<3的解集为Error!,则实数a=________.-3 [依题意,知a≠0.又|ax-2|<3⇔-3<ax-2<3,∴-1<ax <5.由于|ax -2|<3的解集为Error!,∴a <0,=-且-=,则a =-3.]5a 531a 133.(教材改编)若关于x 的不等式|a |≥|x +1|+|x -2|存在实数解,则实数a 的取值范围是________.(-∞,-3]∪[3,+∞) [由于|x +1|+|x -2|≥|(x +1)-(x -2)|=3,∴|x +1|+|x -2|的最小值为3,要使|a |≥|x +1|+|x -2|有解,只需|a |≥3,∴a ≥3或a ≤-3.]4.解不等式x +|2x +3|≥2.[解] 当x ≥-时,原不等式化为3x +3≥2,3分32解得x ≥-.6分13当x <-时,原不等式化为-x -3≥2,32解得x ≤-5.8分综上,原不等式的解集是Error!.10分5.(2016·江苏高考)设a >0,|x -1|<,|y -2|<,求证:|2x +y -4|<A .a 3a3【导学号:00090376】[证明] 因为|x -1|<,|y -2|<,a 3a3所以|2x +y -4|=|2(x -1)+(y -2)|≤2|x -1|+|y -2|<+=A .2a 3a3故原不等式得证.(对应学生用书第165页)绝对值不等式的解法 (2016·全国卷Ⅰ)已知函数f (x )=|x +1|-|2x -3|.(1)画出y =f (x )的图像;(2)求不等式|f (x )|>1的解集.【导学号:00090377】图1[解] (1)由题意得f (x )=Error!3分故y =f (x )的图像如图所示.6分(2)由f (x )的函数表达式及图像可知,当f (x )=1时,可得x =1或x =3;当f (x )=-1时,可得x =或x =5.8分13故f (x )>1的解集为{x |1<x <3},f (x )<-1的解集为Error!.所以|f (x )|>1的解集为Error!.10分[规律方法] 1.本题用零点分段法画出分段函数的图像,结合图像的直观性求出不等式的解集,体现数形结合思想的应用.2.解绝对值不等式的关键是去绝对值符号,零点分段法操作程序是:找零点,分区间,分段讨论.此外还常利用绝对值的几何意义求解.[变式训练1] (2017·全国卷Ⅰ)已知函数f (x )=-x 2+ax +4,g (x )=|x +1|+|x -1|.(1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[-1,1],求a 的取值范围.[解] (1)当a =1时,不等式f (x )≥g (x )等价于x 2-x +|x +1|+|x -1|-4≤0.①当x <-1时,①式化为x 2-3x -4≤0,无解;当-1≤x ≤1时,①式化为x 2-x -2≤0,从而-1≤x ≤1;当x >1时,①式化为x 2+x -4≤0,从而1<x ≤.-1+172所以f (x )≥g (x )的解集为Error!.(2)当x ∈[-1,1]时,g (x )=2,所以f (x )≥g (x )的解集包含[-1,1],等价于当x ∈[-1,1]时,f (x )≥2.又f (x )在[-1,1]的最小值必为f (-1)与f (1)之一,所以f (-1)≥2且f (1)≥2,得-1≤a ≤1.所以a 的取值范围为[-1,1].含绝对值的不等式的应用 对于任意的实数a (a ≠0)和b ,不等式|a +b |+|a -b |≥M ·|a |恒成立,记实数M 的最大值是m .(1)求m 的值;(2)解不等式|x -1|+|x -2|≤m .[解] (1)不等式|a +b |+|a -b |≥M ·|a |恒成立,即M ≤对于任意的实数a (a ≠0)和b 恒成立,只要左边恒小于或等于右边|a +b |+|a -b ||a |的最小值.2分因为|a +b |+|a -b |≥|(a +b )+(a -b )|=2|a |,当且仅当(a -b )(a +b )≥0时等号成立,|a |≥|b |时,≥2成立,|a +b |+|a -b ||a |也就是的最小值是2,|a +b |+|a -b ||a |即m =2.5分(2)|x -1|+|x -2|≤2.法一:利用绝对值的意义得:≤x ≤.10分1252法二:①当x <1时,不等式为-(x -1)-(x -2)≤2,解得x ≥,所以x 的取值范围是≤x <1.1212②当1≤x ≤2时,不等式为(x -1)-(x -2)≤2,得x 的取值范围是1≤x ≤2.8分③当x >2时,原不等式为(x -1)+(x -2)≤2,2<x ≤.52综上可知,不等式的解集是Error!.10分[规律方法] 1.(1)利用绝对值不等式性质定理要注意等号成立的条件:当ab ≥0时,|a +b |=|a |+|b |;当ab ≤0时,|a -b |=|a |+|b |;当(a -b )(b -c )≥0时,|a -c |=|a -b |+|b -c |.(2)对于求y =|x -a |+|x -b |或y =|x +a |-|x -b |型的最值问题利用含绝对值不等式更方便.2.第(2)问易出现解集不全或错误.对于含绝对值的不等式,不论是分段去绝对值符号还是利用几何意义,都要不重不漏.[变式训练2] 对于任意实数a ,b ,已知|a -b |≤1,|2a -1|≤1,且恒有|4a -3b +2|≤m ,求实数m 的取值范围.[解] 因为|a -b |≤1,|2a -1|≤1,所以|3a -3b |≤3,≤,4分|a -12|12所以|4a -3b +2|=| 3a -3b +(a -12)+52|≤|3a -3b |++≤3++=6,8分|a -12|521252则|4a -3b +2|的最大值为6,所以m ≥|4a -3b +2|max =6,m 的取值范围是[6,+∞).10分绝对值不等式的综合应用 (2018·哈尔滨模拟)已知函数f (x )=|x +1|-2|x -a |,a >0.(1)当a =1时,求不等式f (x )>1的解集;(2)若f (x )的图像与x 轴围成的三角形面积大于6,求a 的取值范围.【导学号:00090378】[解] (1)当a =1时,f (x )>1化为|x +1|-2|x -1|-1>0.当x ≤-1时,不等式化为x -4>0,无解;当-1<x <1时,不等式化为3x -2>0,解得<x <1;23当x ≥1时,不等式化为-x +2>0,解得1≤x <2.所以f (x )>1的解集为Error!.4分(2)由题设可得f (x )=Error!所以函数f (x )的图像与x 轴围成的三角形的三个顶点分别为A ,B (2a +1,0),(2a -13,0)C (a ,a +1).因此△ABC 的面积S =|AB |·(a +1)=(a +1)2.8分1223由题设得(a +1)2>6,故a >2.23所以a 的取值范围为(2,+∞).10分[规律方法] 1.研究含有绝对值的函数问题时,根据绝对值的定义,分类讨论去掉绝对值符号,转化为分段函数,然后数形结合解决是常用的思维方法.2.第(2)问求解要抓住三点:(1)分段讨论,去绝对值符号,化f (x )为分段函数;(2)数形结合求△ABC 的三个顶点坐标,进而得出△ABC 的面积;(3)解不等式求a 的取值范围.[变式训练3] (2016·全国卷Ⅲ)已知函数f (x )=|2x -a |+A .(1)当a =2时,求不等式f (x )≤6的解集;(2)设函数g (x )=|2x -1|.当x ∈R 时,恒有f (x )+g (x )≥3,求实数a 的取值范围.[解] (1)当a =2时,f (x )=|2x -2|+2.解不等式|2x -2|+2≤6得-1≤x ≤3.因此f (x )≤6的解集为{x |-1≤x ≤3}.4分(2)当x ∈R 时,f (x )+g (x )=|2x -a |+a +|1-2x |≥|(2x -a )+(1-2x )|+a =|1-a |+a ,6分当x =时等号成立,所以当x ∈R 时,f (x )+g (x )≥3等价于|1-a |+a ≥3. ①128分当a ≤1时,①等价于1-a +a ≥3,无解.当a >1时,①等价于a -1+a ≥3,解得a ≥2.所以a 的取值范围是[2,+∞).10分。
第二节参数方程[考纲传真] .了解参数方程,了解参数的意义.能选择适当的参数写出直线、圆和椭圆曲线的参数方程.(对应学生用书第页)[基础知识填充].曲线的参数方程一般地,在平面直角坐标系中,如果曲线上任意一点的坐标,都是某个变数的函数(\\(=,=))并且对于的每一个允许值,由这个方程组所确定的点(,)都在这条曲线上,那么这个方程组就叫做这条曲线的参数方程,联系变数,的变数叫做参变数,简称参数..参数方程和普通方程的互化()曲线的参数方程和普通方程是曲线方程的不同形式.一般地,可以通过消去参数从参数方程得到普通方程.()如果知道变数,中的一个与参数的关系,例如=(),把它代入普通方程,求出另一个变数与参数的关系=(),那么(\\(=,=))就是曲线的参数方程..常见曲线的参数方程和普通方程是直线上任一点(,)到(,)的距离.[基本能力自测].(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)()参数方程(\\(=,=))中的,都是参数的函数.( )()过(,),倾斜角为α的直线的参数方程为(\\(=+α,=+α))(为参数).参数的几何意义表示:直线上以定点为起点,任一点(,)为终点的有向线段的数量.( ) ()方程(\\(=θ,=+θ))表示以点()为圆心,以为半径的圆.( )()已知椭圆的参数方程(\\(=,= ))(为参数),点在椭圆上,对应参数=,点为原点,则直线的斜率为.( )[答案]()√()√()√()×.(教材改编)曲线(\\(=-+θ,=+θ))(θ为参数)的对称中心( ).在直线=上.在直线=-上.在直线=-上.在直线=+上[由(\\(=-+θ,=+θ,))得(\\( θ=+,θ=-,))所以(+)+(-)=.曲线是以(-)为圆心,为半径的圆,所以对称中心为(-),在直线=-上.].(教材改编)在平面直角坐标系中,曲线:(\\(=+(()),=+(())))(为参数)的普通方程为.--=[由=+,且=+,消去,得-=,即--=.].在平面直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系.曲线的极坐标方程为ρ( θ+θ)=-,曲线的参数方程为(\\(=,=()))(为参数),则与交点的直角坐标为.(,-)[由ρ( θ+θ)=-,得+=-.①由(\\(=,=(),))消去得=.②联立①②得(\\(=,=-,))即交点坐标为(,-).].(·江苏高考)在平面直角坐标系中,已知直线的参数方程为(\\(=+(),=(())))(为参数),椭圆的参数方程为(\\(=θ,=θ))(θ为参数).设直线与椭圆相交于,两点,求线段的长. 【导学号:】[解]椭圆的普通方程为+=分将直线的参数方程(\\(=+(),=(())))代入+=,得+=,即+=,分解得=,=-,所以=-=分(对应学生用书第页)(\\(=θ,=θ))(θ为参数).()求直线和圆的普通方程;。
第六节对数与对数函数[考纲传真] .理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.理解对数函数的概念及其单调性,掌握对数函数图像通过的特殊点,会画底数为,的对数函数的图像.体会对数函数是一类重要的函数模型.了解指数函数=(>,且≠)与对数函数=(>,且≠)互为反函数.(对应学生用书第页)[基础知识填充].对数的概念如果(>,≠)的次幂等于,即=,那么数叫作以为底的对数,记作=,其中叫作对数的底数,叫作真数..对数的性质与运算法则()对数的运算法则如果>且≠,>,>,那么①()=+;②=-;③=(∈);④=(,∈且≠).()对数的性质①=;②=(>,且≠).()对数的重要公式①换底公式:=(,>,,≠,>);②=,推广··=..对数函数的图像与性质.指数函数=(>且≠)与对数函数=(>且≠)互为反函数,它们的图像关于直线=对称.[知识拓展].换底公式的两个重要结论()=;()=.其中>且≠,>且≠,,∈..对数函数的图像与底数大小的比较如图,作直线=,则该直线与四个函数图像交点的横坐标为相应的底数.故<<<<<.由此我们可得到以下规律:在第一象限内从左到右底数逐渐增大.图[基本能力自测].(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)()=.( )()当>时,>.( )()函数=(+)+(-)与=[(+)(-)]的定义域相同.( )()对数函数=(>且≠)的图像过定点(),且过点(),,函数图像不在第二、三象限.( ) [答案]()×()×()×()√.已知=,=,=,则( ).>>.>>.>>.>>[∵<=<=,=<=,=>=,∴>>.].已知函数=(+)(,为常数,其中>,≠)的图像如图,则下列结论成立的是( )。
热点探究课(五) 平面解析几何中的高考热点问题(对应学生用书第128页)[命题解读] 圆锥曲线是平面解析几何的核心内容,每年高考必考一道解答题,常以求圆锥曲线的标准方程、位置关系、定点、定值、最值、范围、探索性问题为主.这些试题的命制有一个共同的特点,就是起点低,但在第(2)问或第(3)问中一般都伴有较为复杂的运算,对考生解决问题的能力要求较高,通常作为压轴题的形式出现.热点1 圆锥曲线的标准方程与性质圆锥曲线的标准方程在高考中占有十分重要的地位.一般地,求圆锥曲线的标准方程是作为解答题中考查“直线与圆锥曲线”的第一小题,最常用的方法是定义法与待定系数法.离心率是高考对圆锥曲线考查的另一重点,涉及a ,b ,c 三者之间的关系.另外抛物线的准线,双曲线的渐近线也是命题的热点.(2018·太原模拟)如图1,椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 2的直线交椭圆于P ,Q 两点,且PQ ⊥PF 1.图1(1)若|PF 1|=2+2,|PF 2|=2-2,求椭圆的标准方程; (2)若|PF 1|=|PQ |,求椭圆的离心率e . [解] (1)由椭圆的定义,2a =|PF 1|+|PF 2|=(2+2)+(2-2)=4,故a =2. 设椭圆的半焦距为c ,由已知PF 1⊥PF 2, 因此2c =|F 1F 2|=|PF 1|2+|PF 2|2=+22+-22=2 3. 3分即c =3,从而b =a 2-c 2=1, 故所求椭圆的标准方程为x 24+y 2=1.5分(2)连接F 1Q ,如图,由椭圆的定义知|PF 1|+|PF 2|=2a ,|QF 1|+|QF 2|=2a ,又|PF 1|=|PQ |=|PF 2|+|QF 2|=(2a -|PF 1|)+(2a -|QF 1|), 可得|QF 1|=4a -2|PF 1|. ① 又因为PF 1⊥PQ 且|PF 1|=|PQ |, 所以|QF 1|=2|PF 1|. ② 8分由①②可得|PF 1|=(4-22)a , 从而|PF 2|=2a -|PF 1|=(22-2)A . 由PF 1⊥PF 2,知|PF 1|2+|PF 2|2=|F 1F 2|2, 即(4-22)2a 2+(22-2)2a 2=4c 2,10分可得(9-62)a 2=c 2,即c 2a2=9-62,因此e =c a=9-62=6- 3.12分[规律方法] 1.用定义法求圆锥曲线的标准方程是常用的方法,同时应注意数形结合思想的应用.2.圆锥曲线的离心率刻画曲线的扁平程度,只需明确a ,b ,c 中任意两量的关系都可求出离心率,但一定注意不同曲线离心率取值范围的限制. [对点训练1] 已知椭圆中心在坐标原点,焦点在x 轴上,离心率为22,它的一个顶点为抛物线x 2=4y 的焦点. (1)求椭圆的标准方程;(2)若直线y =x -1与抛物线相切于点A ,求以A 为圆心且与抛物线的准线相切的圆的方程.【导学号:00090306】[解] (1)椭圆中心在原点,焦点在x 轴上.设椭圆的方程为x 2a 2+y 2b2=1(a >b >0),因为抛物线x 2=4y 的焦点为(0,1), 所以b =1.2分由离心率e =c a =22,a 2=b 2+c 2=1+c 2,从而得a =2,所以椭圆的标准方程为x 22+y 2=1.5分(2)由⎩⎪⎨⎪⎧x 2=4y ,y =x -1,解得⎩⎪⎨⎪⎧x =2,y =1,所以点A (2,1). 8分因为抛物线的准线方程为y =-1, 所以圆的半径r =1-(-1)=2, 所以圆的方程为(x -2)2+(y -1)2=4.12分热点2 圆锥曲线中的定点、定值问题定点、定值问题一般涉及曲线过定点、与曲线上的动点有关的定值问题以及与圆锥曲线有关的弦长、面积、横(纵)坐标等的定值问题. 角度1 圆锥曲线的定值问题(2017·全国卷Ⅲ)在直角坐标系xOy 中,曲线y =x 2+mx -2与x 轴交于A ,B 两点,点C 的坐标为(0,1).当m 变化时,解答下列问题: (1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值. 【导学号:00090307】 [解] (1)不能出现AC ⊥BC 的情况.理由如下: 设A (x 1,0),B (x 2,0),则x 1,x 2满足x 2+mx -2=0, 所以x 1x 2=-2.2分又点C 的坐标为(0,1),故AC 的斜率与BC 的斜率之积为-1x 1·-1x 2=-12,所以不能出现AC ⊥BC 的情况.4分(2)证明:BC 的中点坐标为⎝ ⎛⎭⎪⎫x 22,12,可得BC 的中垂线方程为y -12=x 2⎝ ⎛⎭⎪⎫x -x 22.5分由(1)可得x 1+x 2=-m , 所以AB 的中垂线方程为x =-m2.6分联立⎩⎪⎨⎪⎧x =-m 2,y -12=x 2⎝ ⎛⎭⎪⎫x -x 22又x 22+mx 2-2=0,可得⎩⎪⎨⎪⎧x =-m 2,y =-12.8分所以过A ,B ,C 三点的圆的圆心坐标为⎝ ⎛⎭⎪⎫-m 2,-12,半径r =m 2+92.10分故圆在y 轴上截得的弦长为2r 2-⎝ ⎛⎭⎪⎫m 22=3,即过A ,B ,C 三点的圆在y 轴上截得的弦长为定值. 12分[规律方法] 1.求定值问题的常用方法:(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.2.定值问题就是在运动变化中寻找不变量的问题,基本思路是使用参数表示要解决的问题,证明要解决的问题与参数无关.在这类问题中选择消元的方向是非常关键的. 角度2 圆锥曲线中的定点问题设椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为e =22,且过点⎝⎛⎭⎪⎫-1,-62.(1)求椭圆E 的方程;(2)设椭圆E 的左顶点是A ,若直线l :x -my -t =0与椭圆E 相交于不同的两点M ,N (M ,N 与A 均不重合),若以MN 为直径的圆过点A ,试判定直线l 是否过定点,若过定点,求出该定点的坐标.[解] (1)由e 2=c 2a 2=a 2-b 2a 2=12,可得a 2=2b 2,2分椭圆方程为x 22b 2+y 2b2=1,代入点⎝ ⎛⎭⎪⎫-1,-62可得b 2=2,a 2=4, 故椭圆E 的方程为x 24+y 22=1.5分(2)由x -my -t =0得x =my +t ,把它代入E 的方程得(m 2+2)y 2+2mty +t 2-4=0, 设M (x 1,y 1),N (x 2,y 2),则 y 1+y 2=-2mt m 2+2,y 1y 2=t 2-4m 2+2,x 1+x 2=m (y 1+y 2)+2t =4tm 2+2,x 1x 2=(my 1+t )(my 2+t )=m 2y 1y 2+tm (y 1+y 2)+t 2=2t 2-4m2m 2+2.8分因为以MN 为直径的圆过点A ,所以AM ⊥AN ,所以AM →·AN →=(x 1+2,y 1)·(x 2+2,y 2) =x 1x 2+2(x 1+x 2)+4+y 1y 2 =2t 2-4m 2m 2+2+2×4t m 2+2+4+t 2-4m 2+2=3t 2+8t +4m 2+2=t +t +m 2+2=0. 10分因为M ,N 与A 均不重合,所以t ≠-2,所以t =-23,直线l 的方程是x =my -23,直线l 过定点T ⎝ ⎛⎭⎪⎫-23,0,由于点T 在椭圆内部,故满足判别式大于0,所以直线l 过定点T ⎝ ⎛⎭⎪⎫-23,0.12分[规律方法] 1.假设定点坐标,根据题意选择参数,建立一个直线系或曲线系方程,而该方程与参数无关,故得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即所求定点.2.从特殊位置入手,找出定点,再证明该点适合题意.热点3 圆锥曲线中的最值、范围问题圆锥曲线中的最值问题大致可分为两类:一是涉及距离、面积的最值以及与之相关的一些问题;二是求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时求解与之有关的一些问题.已知椭圆x 22+y 2=1上两个不同的点A ,B 关于直线y =mx +12对称.图2(1)求实数m 的取值范围;(2)求△AOB 面积的最大值(O 为坐标原点). [解] (1)由题意知m ≠0, 可设直线AB 的方程为y =-1mx +B .由⎩⎪⎨⎪⎧x 22+y 2=1,y =-1m x +b ,消去y ,得⎝ ⎛⎭⎪⎫12+1m 2x 2-2b m x +b 2-1=0.2分因为直线y =-1m x +b 与椭圆x 22+y 2=1有两个不同的交点,所以Δ=-2b 2+2+4m2>0.将线段AB 中点M ⎝ ⎛⎭⎪⎫2mbm 2+2,m 2b m 2+2代入直线方程y =mx +12,解得b =-m 2+22m 2.②由①②得m <-63或m >63. 故m 的取值范围是⎝ ⎛⎭⎪⎫-∞,-63∪⎝ ⎛⎭⎪⎫63,+∞. 5分(2)令t =1m ∈⎝ ⎛⎭⎪⎫-62,0∪⎝⎛⎭⎪⎫0,62,则|AB |=t 2+1·-2t 4+2t 2+32t 2+12,且O 到直线AB 的距离为d =t 2+12t 2+1. 7分设△AOB 的面积为S (t ), 所以S (t )=12|AB |·d =12-2⎝⎛⎭⎪⎫t 2-122+2≤22, 当且仅当t 2=12,即m =±2时,等号成立. 故△AOB 面积的最大值为22. 12分[规律方法] 范围(最值)问题的主要求解方法:(1)几何法,若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决.(2)代数法,若题目的条件和结论能体现一种明确的函数关系,则可先建立起目标函数或等量关系,利用判别式、基本不等式、函数的性质、导数法进行求解.[对点训练2] 已知椭圆C :y 2a 2+x 2b2=1(a >b >0)的焦距为4,且过点(2,-2).(1)求椭圆C 的方程;(2)过椭圆焦点的直线l 与椭圆C 分别交于点E ,F ,求OE →·OF →的取值范围.[解] (1)由椭圆C :y 2a 2+x 2b2=1(a >b >0)的焦距为4.得曲线C 的焦点F 1(0,-2),F 2(0,2). 2分又点(2,-2)在椭圆C 上, 2a =2+0+2++2=42,所以a =22,b =2, 即椭圆C 的方程是y 28+x 24=1.5分(2)若直线l 垂直于x 轴,①则点E (0,22),F (0,-22),OE →·OF →=-8. ②若直线l 不垂直于x 轴,设l 的方程为y =kx +2,点E (x 1,y 1),F (x 2,y 2),将直线l 的方程代入椭圆C 的方程得到:(2+k 2)x 2+4kx -4=0, 则x 1+x 2=-4k 2+k 2,x 1x 2=-42+k 2,8分所以OE →·OF →=x 1x 2+y 1y 2 =(1+k 2)x 1x 2+2k (x 1+x 2)+4 =-4-4k 22+k 2+-8k 22+k 2+4=202+k 2-8.10分因为0<202+k 2≤10,所以-8<OE →·OF →≤2.综上可知,OE →·OF →的取值范围是(-8,2]. 12分热点4 圆锥曲线中的探索性问题(答题模板)圆锥曲线中的探索性问题主要体现在以下几个方面:(1)探索点是否存在;(2)探索曲线是否存在;(3)探索命题是否成立.涉及这类命题的求解主要是研究直线与圆锥曲线的位置关系问题.(本小题满分12分)(2015·全国卷Ⅰ)在直角坐标系xOy 中,曲线C :y =x 24与直线l :y =kx +a (a >0)交于M ,N 两点.(1)当k =0时,分别求C 在点M 和N 处的切线方程;(2)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.【导学号:00090308】[规范解答] (1)由题设可得M (2a ,a ),N (-2a ,a ),或M (-2a ,a ),N (2a ,a ).1分又y ′=x 2,故y =x 24在x =2a 处的导数值为a ,C 在点(2a ,a )处的切线方程为y -a=a (x -2a ), 即ax -y -a =0.3分y =x 24在x =-2a 处的导数值为-a ,C 在点(-2a ,a )处的切线方程为y -a =-a (x+2a ), 即ax +y +a =0.5分 故所求切线方程为ax -y -a =0或ax +y +a =0. 6分(2)存在符合题意的点.证明如下:设P (0,b )为符合题意的点,M (x 1,y 1),N (x 2,y 2),直线PM ,PN 的斜率分别为k 1,k 2. 将y =kx +a 代入C 的方程,得x 2-4kx -4a =0. 故x 1+x 2=4k ,x 1x 2=-4A . 8分从而k 1+k 2=y 1-b x 1+y 2-bx 2=2kx 1x 2+a -b x 1+x 2x 1x 2=k a +ba.10分当b =-a 时,有k 1+k 2=0,则直线PM 的倾斜角与直线PN 的倾斜角互补, 故∠OPM =∠OPN ,所以点P (0,-a )符合题意.12分[答题模板] 第一步:分别求出曲线y =x 24在M 点,N 点处的导数.第二步:利用点斜式分别写出在M 点、N 点的切线方程.第三步:联立直线y =kx +a 与抛物线y =x 24,并写出根与系数的关系式.第四步:由k PM +k PN =0,结合根与系数的关系式,探索点P 的坐标. 第五步:检验反思,查关键点,规范步骤.[温馨提示] 1.(1)在第(2)问中,不能把条件∠OPM =∠OPN 适当转化为k 1+k 2=0,找不到解题的思路和方法,而不能得分.(2)运算能力差或运算不细心,导致运算结果错误而扣分或者不得分.2.数学阅卷时,主要看关键步骤、关键点,有则得分,无则扣分,所以解题时要写全关键步骤.(1)本题的关键点一是利用导数的几何意义求切线方程,二是把条件中转化为只需直线PM ,PN 的斜率之和为0.(2)解析几何对运算能力要求较高,解题时一定要细心准确,否则可能是思路正确,但是运算结果错误,而不得分.[对点训练3] 如图3,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率是22,点P (0,1)在短轴CD 上,且PC →·PD →=-1.图3(1)求椭圆E 的方程;(2)设O 为坐标原点,过点P 的动直线与椭圆交于A ,B 两点.是否存在常数λ,使得OA →·OB →+λPA →·PB →为定值?若存在,求λ的值;若不存在,请说明理由. [解] (1)由已知,点C ,D 的坐标分别为(0,-b ),(0,b ). 又点P 的坐标为(0,1),且PC →·PD →=-1,于是⎩⎪⎨⎪⎧1-b 2=-1,c a =22,a 2-b 2=c 2,解得a =2,b = 2.4分 所以椭圆E 的方程为x 24+y 22=1.5分(2)当直线AB 的斜率存在时,设直线AB 的方程为y =kx +1,A ,B 的坐标分别为(x 1,y 1),(x 2,y 2).联立⎩⎪⎨⎪⎧x 24+y 22=1,y =kx +1,得(2k 2+1)x 2+4kx -2=0.8分其判别式Δ=(4k )2+8(2k 2+1)>0,所以x 1+x 2=-4k 2k 2+1,x 1x 2=-22k 2+1.从而,OA →·OB →+λPA →·PB →=x 1x 2+y 1y 2+λ[x 1x 2+(y 1-1)(y 2-1)] =(1+λ)(1+k 2)x 1x 2+k (x 1+x 2)+1 =-2λ-k 2+-2λ-2k 2+1=-λ-12k 2+1-λ-2.所以,当λ=1时,-λ-12k 2+1-λ-2=-3. 10分此时,OA →·OB →+λPA →·PB →=-3为定值. 当直线AB 斜率不存在时,直线AB 即为直线CD .此时,OA →·OB →+λPA →·PB →=OC →·OD →+PC →·PD →=-2-1=-3. 故存在常数λ=1,使得OA →·OB →+λPA →·PB →为定值-3.12分。
第九节 实际问题的函数建模[考纲传真] 1.了解指数函数、对数函数、幂函数的增长特征,结合具体实例体会直线上升、指数增长、对数增长等不同函数类型增长的含义.2.了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.(对应学生用书第27页) [基础知识填充]1.常见的几种函数模型(1)一次函数模型:y =kx +b (k ≠0).(2)反比例函数模型:y =k x+b (k ,b 为常数且k ≠0). (3)二次函数模型:y =ax 2+bx +c (a ,b ,c 为常数,a ≠0).(4)指数函数模型:y =a ·b x +c (a ,b ,c 为常数,b >0,b ≠1,a ≠0). (5)对数函数模型:y =m log a x +n (m ,n ,a 为常数,a >0,a ≠1,m ≠0). (6)幂函数模型:y =a ·x n+b (a ≠0). 2.三种函数模型之间增长速度的比较3. (1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;(3)解模:求解数学模型,得出数学结论; (4)还原:将数学问题还原为实际问题. 以上过程用框图表示如下:[知识拓展] “对勾”函数形如f (x )=x +ax(a >0)的函数模型称为“对勾”函数模型:(1)该函数在(-∞,-a ]和[a ,+∞)上单调递增,在[-a ,0)和(0,a ]上单调递减.(2)当x >0时,x =a 时取最小值2a , 当x <0时,x =-a 时取最大值-2a .[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)函数y =2x 的函数值比y =x 2的函数值大.( ) (2)幂函数增长比直线增长更快.( ) (3)不存在x 0,使ax 0<x n0<log a x 0.( )(4)f (x )=x 2,g (x )=2x,h (x )=log 2x ,当x ∈(4,+∞)时,恒有h (x )<f (x )<g (x ).( ) [答案] (1)× (2)× (3)× (4)√2.已知某种动物繁殖量y (只)与时间x (年)的关系为y =a log 3(x +1),设这种动物第2年有100只,到第8年它们发展到( ) A .100只 B .200只 C .300只D .400只B [由题意知100=a log 3(2+1),∴a =100,∴y =100log 3(x +1),当x =8时,y =100log 3 9=200.]3.(教材改编)在某种新型材料的研制中,试验人员获得了下列一组试验数据.现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是( )A 2 C .y =12(x 2-1)D .y =2.61cos xB [由表格知当x =3时,y =1.59,而A 中y =23=8,不合要求,B 中y =log 23∈(1,2),C 中y =12(32-1)=4,不合要求,D 中y =2.61cos 3<0,不合要求,故选B .]4.一根蜡烛长20 cm ,点燃后每小时燃烧5 cm ,燃烧时剩下的高度h (cm)与燃烧时间t (h)的函数关系用图像表示为( )B [由题意h =20-5t,0≤t ≤4.结合图像知应选B .]5.某市生产总值连续两年持续增加.第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为________. 【导学号:00090054】+p +q-1 [设年平均增长率为x ,则(1+x )2=(1+p )·(1+q ),∴x =+p+q -1.](对应学生用书第28页)(1)3年年产量保持不变,则该厂6年来这种产品的总产量C 与时间t (年)的函数关系图像正确的是( )A B C D(2)已知正方形ABCD 的边长为4,动点P 从B 点开始沿折线BCDA 向A 点运动.设点P 运动的路程为x ,△ABP 的面积为S ,则函数S =f (x )的图像是( )A B C D(1)A (2)D [(1)前3年年产量的增长速度越来越快,说明呈高速增长,只有A 、C 图像符合要求,而后3年年产量保持不变,产品的总产量应呈直线上升,故选A .(2)依题意知当0≤x ≤4时,f (x )=2x ;当4<x ≤8时,f (x )=8;当8<x ≤12时,f (x )=24-2x ,观察四个选项知,选D .][规律方法] 判断函数图像与实际问题中两变量变化过程相吻合的两种方法:(1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选图像.(2)验证法:当根据题意不易建立函数模型时,则根据实际问题中两变量的变化特点,结合图像的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择出符合实际情况的答案.[变式训练1] 设甲、乙两地的距离为a(a>0),小王骑自行车以匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又以匀速从乙地返回到甲地用了30分钟,则小王从出发到返回原地所经过的路程y和其所用的时间x的函数图像为( )D[y为“小王从出发到返回原地所经过的路程”而不是位移,故排除A,C.又因为小王在乙地休息10分钟,故排除B,故选D.]关系如图291①;B产品的利润与投资的算术平方根成正比,其关系如图291②.(注:利润和投资单位:万元)①②图291(1)分别将A,B两种产品的利润表示为投资的函数关系式;(2)已知该企业已筹集到18万元资金,并将全部投入A,B两种产品的生产.①若平均投入生产两种产品,可获得多少利润?②问:如果你是厂长,怎样分配这18万元投资,才能使该企业获得最大利润?其最大利润约为多少万元?【导学号:00090055】[解](1)f(x)=0.25x(x≥0),g(x)=2x(x≥0).3分(2)①由(1)得f(9)=2.25,g(9)=29=6,所以总利润y=8.25万元. 5分②设B产品投入x万元,A产品投入(18-x)万元,该企业可获总利润为y万元.则y =14(18-x )+2x ,0≤x ≤18.7分令x =t ,t ∈[0,32],则y =14(-t 2+8t +18)=-14(t -4)2+172.所以当t =4时,y max =172=8.5,9分此时x =16,18-x =2.所以当A ,B 两种产品分别投入2万元、16万元时,可使该企业获得最大利润,约为8.5万元.12分[规律方法] 求解所给函数模型解决实际问题的关注点: (1)认清所给函数模型,弄清哪些量为待定系数. (2)根据已知利用待定系数法,确定模型中的待定系数. (3)利用该模型求解实际问题.易错警示:解决实际问题时要注意自变量的取值范围.[变式训练2] (2018·德州模拟)某实验员在培养皿中滴入了含有10个某种真菌的实验液,约1小时后培养真菌数目繁殖为原来的2倍.经测量知该真菌的繁殖规律为y =10e λt,其中λ为常数,t 表示时间(单位:小时),y 表示真菌个数.经过8小时培养,真菌能达到的个数为( ) A .640 B .1 280 C .2 560D .5 120C [原来的细菌数为10,由题意可得,在函数y =10e λt中,当t =1时,y =20, ∴20=10e λ,即e λ=2,y =10e λt =10·2t.若t =8,则可得此时的细菌数为y =10×28=2 560,故选C .]2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)( ) A .2018年 B .2019年 C .2020年D .2021年(2)某市出租车收费标准如下:起步价为8元,起步里程为3 km(不超过3 km 按起步价收费);超过3 km 但不超过8 km 时,超过部分按每千米2.15元收费;超过8 km 时,超过部分按每千米2.85元收费,另外每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶了________km.(1)B (2)9 [(1)设2015年后的第n 年该公司投入的研发资金开始超过200万元.由130(1+12%)n >200,得1.12n >2013,两边取常用对数,得n >lg 2-lg 1.3lg 1.12≈0.30-0.110.05=195,∴n ≥4,∴从2019年开始,该公司投入的研发资金开始超过200万元. (2)设出租车行驶了x km ,付费y 元, 由题意得y =⎩⎪⎨⎪⎧9,0<x ≤3,8+x -+1,3<x ≤8,8+2.15×5+x -+1,x >8.当x =8时,y =19.75<22.6,因此由8+2.15×5+2.85×(x -8)+1=22.6, 得x =9.][规律方法] 构建函数模型解决实际问题的常见类型与求解方法: (1)构建二次函数模型,常用配方法、数形结合、分类讨论思想求解. (2)构建分段函数模型,应用分段函数分段求解的方法.(3)构建f (x )=x +ax(a >0)模型,常用基本不等式、导数等知识求解. 易错警示:求解过程中不要忽视实际问题是对自变量的限制.[变式训练3] (2016·宁波模拟)某工厂生产某种产品固定成本为2 000万元,并且每生产一单位产品,成本增加10万元.又知总收入K 是单位产品数Q 的函数,K (Q )=40Q -120Q 2,则总利润L (Q )的最大值是________万元 2 500 [L (Q )=40Q -120Q 2-10Q -2 000=-120Q 2+30Q -2 000=-120(Q -300)2+2 500.当Q =300时,L (Q )的最大值为2 500万元.]。
第一节坐标系[考纲传真] .理解坐标系的作用,了解在平面直角坐标系伸缩变换作用下平面图形的变化情况.了解极坐标的基本概念,会在极坐标系中用极坐标刻画点的位置,能进行极坐标和直角坐标的互化.能在极坐标系中给出简单图形表示的极坐标方程.(对应学生用书第页)[基础知识填充].平面直角坐标系中的坐标伸缩变换设点(,)是平面直角坐标系中的任意一点,在变换φ:(\\(′=λ,λ>,′=μ,μ>))的作用下,点(,)对应到点′(′,′),称φ为平面直角坐标系中的坐标伸缩变换..极坐标系()极坐标与极坐标系的概念在平面内取一个定点,叫作极点,从点引一条射线,叫作极轴,选定一个单位长度和角的正方向(通常取逆时针方向).这样就确定了一个平面极坐标系,简称为极坐标系.对于平面内任意一点,用ρ表示线段的长,θ表示以为始边、为终边的角度,ρ叫作点的极径,θ叫作点的极角,有序实数对(ρ,θ)叫做点的极坐标,记作(ρ,θ).当点在极点时,它的极径ρ=,极角θ可以取任意值.图()极坐标与直角坐标的互化设为平面内的一点,它的直角坐标为(,),极坐标为(ρ,θ).由图可知下面关系式成立:(\\(=ρθ=ρθ))或(\\(ρ=+θ=()))图.常用简单曲线的极坐标方程.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)()平面直角坐标系内的点与坐标能建立一一对应关系,在极坐标系中点与坐标也是一一对应关系.( )()若点的直角坐标为(,-),则点的一个极坐标是.( )()在极坐标系中,曲线的极坐标方程不是唯一的.( )()极坐标方程θ=π(ρ≥)表示的曲线是一条直线.( )[答案]()×()√()√()×.(教材改编)若以直角坐标系的原点为极点,轴的非负半轴为极轴建立极坐标系,则线段=-(≤≤)的极坐标方程为( ).ρ=θ+θ),≤θ≤.ρ=θ+θ),≤θ≤.ρ=θ+θ,≤θ≤.ρ=θ+θ,≤θ≤[∵=-(≤≤),∴ρθ=-ρθ(≤ρθ≤),∴ρ=θ+θ).].(教材改编)在直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系.若曲线的极坐标方程为ρ=θ,则曲线的直角坐标方程为.+-=[由ρ=θ,得ρ=ρθ.所以曲线的直角坐标方程为+-=.].已知直线的极坐标方程为ρ=,点的极坐标为,则点到直线的距离为.。
第二节 两条直线的位置关系[考纲传真] 1.能根据两条直线的斜率判断这两条直线平行或垂直.2.能用解方程组的方法求两条相交直线的交点坐标.3.掌握两点间的距离公式、点到直线的距离公式,会求两平行直线间的距离.(对应学生用书第112页)[基础知识填充]1.两条直线平行与垂直的判定 (1)两条直线平行①对于两条不重合的直线l 1,l 2,若其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2. ②当直线l 1,l 2不重合且斜率都不存在时,l 1∥l 2. (2)两条直线垂直①如果两条直线l 1,l 2的斜率存在,设为k 1,k 2,则有l 1⊥l 2⇔k 1·k 2=-1. ②当其中一条直线的斜率不存在,而另一条直线的斜率为0时,l 1⊥l 2. 2.两条直线的交点的求法直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0(A 1,B 1,C 1,A 2,B 2,C 2为常数),则l 1与l 2的交点坐标就是方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解.若方程组有唯一解,则两直线相交;若方程组无解,则两条直线平行;若方程组有无数个解,则两条直线重合. 3.距离|P 1P 2|=x 2-x 12+y 2-y 121.直线系方程(1)与直线Ax +By +C =0平行的直线系方程是Ax +By +m =0(m ∈R 且m ≠C ). (2)与直线Ax +By +C =0垂直的直线系方程是Bx -Ay +n =0(n ∈R ). 2.两直线平行或重合的充要条件直线l 1:A 1x +B 1y +C 1=0与直线l 2:A 2x +B 2y +C 2=0平行或重合的充要条件是A 1B 2-A 2B 1=0.3.两直线垂直的充要条件直线l 1:A 1x +B 1y +C 1=0与直线l 2:A 2x +B 2y +C 2=0垂直的充要条件是A 1A 2+B 1B 2=0.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)当直线l 1和l 2斜率都存在时,一定有k 1=k 2⇒l 1∥l 2.( ) (2)如果两条直线l 1与l 2垂直,则它们的斜率之积一定等于-1.( ) (3)点P (x 0,y 0)到直线y =kx +b 的距离为|kx 0+b |1+k2.( ) (4)已知直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0(A 1,B 1,C 1,A 2,B 2,C 2为常数),若直线l 1⊥l 2,则A 1A 2+B 1B 2=0.( )(5)若点P ,Q 分别是两条平行线l 1,l 2上的任意一点,则P ,Q 两点的最小距离就是两条平行线的距离.( )[答案] (1)× (2)× (3)× (4)√ (5)√2.(教材改编)已知点(a,2)(a >0)到直线l :x -y +3=0的距离为1,则a 等于( ) A . 2 B .2- 2 C .2-1D .2+1C [由题意得|a -2+3|2=1,即|a +1|=2,又a >0,∴a =2-1.]3.直线l :(a -2)x +(a +1)y +6=0,则直线l 恒过定点________. (2,-2) [直线l 的方程变形为a (x +y )-2x +y +6=0,由⎩⎪⎨⎪⎧x +y =0,-2x +y +6=0,解得x =2,y =-2,所以直线l 恒过定点(2,-2).]4.已知直线l 1:ax +(3-a )y +1=0,l 2:x -2y =0.若l 1⊥l 2,则实数a 的值为________. 【导学号:00090269】2 [由aa -3=-2,得a =2.]5.已知直线3x +4y -3=0与直线6x +my +14=0平行,则它们之间的距离是________. 2 [∵63=m 4≠14-3,∴m =8,直线6x +my +14=0可化为3x +4y +7=0, ∴两平行线之间的距离d =|-3-7|32+42=2.](对应学生用书第113页)(1)设a 12(a +1)y +4=0平行”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(2)(2018·潍坊模拟)过点(-1,3)且垂直于直线x -2y +3=0的直线方程为( ) A .2x +y -1=0 B .2x +y -5=0 C .x +2y -5=0D .x -2y +7=0(1)A (2)A [(1)当a =1时,显然l 1∥l 2,若l 1∥l 2,则a (a +1)-2×1=0,所以a =1或a =-2. 所以a =1是直线l 1与直线l 2平行的充分不必要条件. (2)直线x -2y +3=0的斜率为12,从而所求直线的斜率为-2.又直线过点(-1,3),所以所求直线的方程为y -3=-2(x +1),即2x +y -1=0.][规律方法] 1.判断直线间的位置关系,要注意直线方程中字母参数取值的影响,不仅要考虑到斜率存在的一般情况,还要考虑到斜率不存在的特殊情况,同时还要注意x ,y 的系数不能同时为零这一隐含条件.2.在判断两直线平行、垂直时,也可直接利用直线方程的系数间的关系得出结论,可避免讨论.另外当A 2B 2C 2≠0时,比例式A 1A 2与B 1B 2,C 1C 2的关系容易记住,在解答选择、填空题时,有时比较方便.[变式训练1] 已知过点A (-2,m )和点B (m,4)的直线为l 1,直线2x +y -1=0为l 2,直线x +ny +1=0为l 3.若l 1∥l 2,l 2⊥l 3,则实数m +n 的值为( )A .-10B .-2C .0D .8A [∵l 1∥l 2,∴k AB =4-mm +2=-2,解得m =-8.又∵l 2⊥l 3,∴⎝ ⎛⎭⎪⎫-1n ×(-2)=-1,解得n =-2,∴m +n =-10.](1)l 的方程为________.(2)过点P (3,0)作一直线l ,使它被两直线l 1:2x -y -2=0和l 2:x +y +3=0所截的线段AB 以P 为中点,求此直线l 的方程.(1)x +3y -5=0或x =-1 [法一:当直线l 的斜率存在时,设直线l 的方程为y -2=k (x +1),即kx -y +k +2=0.由题意知|2k -3+k +2|k 2+1=|-4k -5+k +2|k 2+1,即|3k -1|=|-3k -3|,∴k =-13,∴直线l 的方程为y -2=-13(x +1),即x +3y -5=0.当直线l 的斜率不存在时,直线l 的方程为x =-1,也符合题意. 法二:当AB ∥l 时,有k =k AB =-13,直线l 的方程为y -2=-13(x +1),即x +3y -5=0.当l 过AB 中点时,AB 的中点为(-1,4), ∴直线l 的方程为x =-1.故所求直线l 的方程为x +3y -5=0或x =-1.](2)设直线l 与l 1的交点为A (x 0,y 0),则直线l 与l 2的交点B (6-x 0,-y 0),2分由题意知⎩⎪⎨⎪⎧2x 0-y 0-2=0,6-x 0-y 0+3=0,解得⎩⎪⎨⎪⎧x 0=113,y 0=163,6分即A ⎝ ⎛⎭⎪⎫113,163,从而直线l 的斜率k =163-0113-3=8, 10分直线l 的方程为y =8(x -3),即8x -y -24=0.12分[规律方法] 1.求过两直线交点的直线方程,先解方程组求出两直线的交点坐标,再结合其他条件写出直线方程;也可利用过交点的直线系方程,再求参数.2.利用距离公式应注意:①点P (x 0,y 0)到直线x =a 的距离d =|x 0-a |,到直线y =b 的距离d =|y 0-b |;②两平行线间的距离公式要把两直线方程中x ,y 的系数化为相等. [变式训练2] (1)已知直线y =kx +2k +1与直线y =-12x +2的交点位于第一象限,则实数k 的取值范围是________. 【导学号:00090270】(2)(2018·石家庄模拟)若直线l 1:x +ay +6=0与l 2:(a -2)x +3y +2a =0平行,则l 1与l 2间的距离为________.(1)⎝ ⎛⎭⎪⎫-16,12 (2)823 [法一:由方程组⎩⎪⎨⎪⎧y =kx +2k +1,y =-12x +2,解得⎩⎪⎨⎪⎧x =2-4k 2k +1,y =6k +12k +1.(若2k +1=0,即k =-12,则两直线平行)∴交点坐标为⎝⎛⎭⎪⎫2-4k 2k +1,6k +12k +1.又∵交点位于第一象限, ∴⎩⎪⎨⎪⎧2-4k 2k +1>0,6k +12k +1>0,解得-16<k <12.法二:如图,已知直线y =-12x +2与x 轴、y 轴分别交于点A (4,0),B (0,2).而直线方程y =kx +2k +1可变形为y -1=k (x +2),表示这是一条过定点P (-2,1),斜率为k 的动直线.∵两直线的交点在第一象限,∴两直线的交点必在线段AB 上(不包括端点), ∴动直线的斜率k 需满足k PA <k <k PB . ∵k PA =-16,k PB =12.∴-16<k <12.(2)由a (a -2)=3得a =3或a =-1,经检验a =3时两直线重合,因此a =-1,此时l 1的方程为x -y +6=0,l 2的方程为x -y +23=0,两条直线间的距离为d =⎪⎪⎪⎪⎪⎪6-232=823.](1)l 方程是________.(2)光线从A (-4,-2)点射出,到直线y =x 上的B 点后被直线y =x 反射到y 轴上的C 点,又被y 轴反射,这时反射光线恰好过点D (-1,6),则BC 所在的直线方程是________. (1)y =2x -3 (2)10x -3y +8=0 [(1)法一:在直线l 上任取一点P ′(x ,y ),其关于点(1,1)的对称点P (2-x,2-y )必在直线y =2x +1上,∴2-y =2(2-x )+1,即2x -y-3=0.因此,直线l 的方程为y =2x -3.法二:由题意,l 与直线y =2x +1平行,设l 的方程为2x -y +c =0(c ≠1),则点(1,1)到两平行线的距离相等, ∴|2-1+c |22+1=|2-1+1|22+1,解得c =-3. 因此所求直线l 的方程为y =2x -3.法三:在直线y =2x +1上任取两个点A (0,1),B (1,3),则点A 关于点(1,1)对称的点M (2,1),点B 关于点(1,1)对称的点N (1,-1).由两点式求出对称直线MN 的方程为y +11+1=x -12-1,即y =2x -3. (2)作出草图,如图所示,设A 关于直线y =x 的对称点为A ′,D 关于y 轴的对称点为D ′,则易得A ′(-2,-4),D ′(1,6).由入射角等于反射角可得A ′D ′所在直线经过点B 与C .故BC 所在的直线方程为y -6-4-6=x -1-2-1,即10x -3y +8=0.][母题探究1] 在题(1)中“将结论”改为“求点A (1,1)关于直线y =2x +1的对称点”,则结果如何?[解] 设点A (1,1)关于直线y =2x +1的对称点为A ′(a ,b ), 2分 则AA ′的中点为⎝⎛⎭⎪⎫1+a 2,1+b 2,4分所以⎩⎪⎨⎪⎧ 1+b 2=2×1+a2+1,b -1a -1×2=-1,解得⎩⎪⎨⎪⎧a =-35,b =95,10分故点A (1,1)关于直线y =2x +1的对称点为⎝ ⎛⎭⎪⎫-35,95.12分[母题探究2] 在题(1)中“关于点(1,1)对称”改为“关于直线x -y =0对称”,则结果如何?[解] 在直线y =2x +1上任取两个点A (0,1),B (1,3),则点A 关于直线x -y =0的对称点为M (1,0),点B 关于直线x -y =0的对称点为N (3,1),6分 根据两点式,得所求直线的方程为y -10-1=x -31-3,即x -2y -1=0.12分[规律方法] 1.第(1)题求解的关键是利用中点坐标公式,将直线关于点的中心对称转化为点关于点的对称.2.解决轴对称问题,一般是转化为求对称点问题,关键是要抓住两点,一是已知点与对称点的连线与对称轴垂直;二是以已知点与对称点为端点的线段的中点在对称轴上. [变式训练3] (1)(2017·广州模拟)直线x -2y +1=0关于直线x +y -2=0对称的直线方程是( )A .x +2y -1=0B .2x -y -1=0C .2x +y -3=0D .x +2y -3=0(2)直线l 1:3x -y +1=0与直线l 2:3x -y +7=0关于直线l 对称,则直线l 的方程为________. 【导学号:00090271】(1)B (2)3x -y +4=0 [(1)由题意得直线x -2y +1=0与直线x +y -2=0的交点坐标为(1,1).在直线x -2y +1=0上取点A (-1,0), 设A 点关于直线x +y -2=0的对称点为B (m ,n ), 则⎩⎪⎨⎪⎧n -0m +1-=-1,m -12+n2-2=0,解得⎩⎪⎨⎪⎧m =2,n =3.故所求直线的方程为y -13-1=x -12-1,即2x -y -1=0.(2)由题意知l 1∥l 2,设直线l 的方程为3x -y +m =0, 则|m -1|10=|m -7|10,即|m -1|=|m -7| 解得m =4,故直线l 的方程为3x -y +4=0]。