初中数学定理、公式汇编
- 格式:doc
- 大小:406.00 KB
- 文档页数:12
初中数学实用拓展公式定理汇总一、解析几何直线斜率公式已知11(,)A x y 、22(,)B x y 是直线l 上两点,α是直线l 的倾斜角,k 是它的斜率,则 1212tan y y k x x α-==-. 两点之间的距离公式已知11(,)A x y 、22(,)B x y ,则AB =点到直线的距离公式已知直线:l y kx b =+,00(,)A x y ,l 到点A 的距离是d ,则d =平行直线的距离公式已知直线11:l y kx b =+、22:l y kx b =+,l 1到l 2的距离是d ,则d =两直线位置关系的判定已知直线l 1、l 2的斜率是k 1、k 2,则1212l l k k ⇔=∥;1212=1l l k k ⊥⇔-.二、三角函数已知α、β是任意角,则下列公式成立:和差角正弦公式 sin()sin cos cos sin αβαβαβ±=±;和差角余弦公式 cos()cos cos sin sin αβαβαβ±=; 和差角正切公式 tan tan tan()1tan tan αβαβαβ±±=; 倍角正弦公式 sin 22sin cos ααβ=;倍角余弦公式 2cos 22cos 1αα=-;倍角正切公式 22tan tan 21tan ααα=-. 当0180α︒<<︒时,则下列公式成立:半角正弦公式 1cos sin 22αα-=; 半角余弦公式 1cos cos 22αα+=; 半角正切公式 1cos tan 21cos ααα-=+. 三、几何定理正弦定理 在任意△ABC 中,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,则 sin sin sin a b c A B C==. 这一定理适合解已知两角及一边(AAS 或ASA )的三角形.余弦定理 在任意△ABC 中,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,则 2222cos a b c bc A =+-;2222cos b a c ac B =+-;2222cos c a b ab C =+-.这一定理适合解已知两边及一角或三条边(SAS 或SSS )的三角形.梅涅劳斯定理 如图,一条直线与△ABC 相交,与AB 、BC 延长线、AC 分别交于D 、E 、F 三点,则1AD BE CF DB EC FA⋅⋅=.塞瓦定理 如图,在△ABC 中任取一点O ,延长AO 、BO 、CO 交BC 、AC 、AB 于D 、E 、F 三点,则1AF BD CE FB DC EA⋅⋅=.相交弦定理如图,圆的两条弦AB、CD相交于一点P,则⋅=⋅.AP BP CP DP切割线定理如图,过圆外一点P作圆的切线AT与圆相切与点T,作圆的割线P A交圆于点A、B,则2=⋅.PT PA PB割线定理如图,过圆外一点P作圆的两条割线P A、PB与圆相交于点A、B、C、D ,作圆的割线P A交圆于点A、B,则⋅=⋅.PA PC PB PD相交弦定理、切割线定理、割线定理统称圆幂定理.托勒密定理圆内接四边形两组对边乘积之和等于对角线乘积.四点共圆判定一对角互补的四边形一定有外接圆.判定二外角等于内对角的四边形有外接圆.判定三若C、D在线段AB的同侧,且∠ACD=∠ADB,则A、B、C、D四点共圆.⋅=⋅,则A、B、C、D四点共圆.判定四若线段AB、CD交于点P,且AP BP CP DP⋅=⋅,则A、B、C、D四判定五若线段AB、CD的延长线交于点P,且AP BP CP DP点共圆.。
初中数学定理、公式汇编一、数与代数1. 数与式(1) 实数 实数的性质:①实数a 的相反数是—a ,实数a 的倒数是a1(a ≠0); ②实数a 的绝对值:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a③正数大于0,负数小于0,两个负实数,绝对值大的反而小。
二次根式:①积与商的方根的运算性质:b a ab ⋅=(a ≥0,b ≥0);ba ba =(a ≥0,b >0);②二次根式的性质:⎩⎨⎧<-≥==)0()0(2a a a a a a (2)整式与分式①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即nm n m a a a +=⋅(m 、n 为正整数);②同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即nm n m a a a -=÷(a ≠0,m 、n 为正整数,m>n );③幂的乘方法则:幂的乘方,底数不变,指数相乘,即nnnb a ab =)((n 为正整数);④零指数:10=a (a ≠0);⑤负整数指数:n naa1=-(a ≠0,n 为正整数); ⑥平方差公式:两个数的和与这两个数的差的积等于这两个数的平方,即22))((b a b a b a -=-+;⑦完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,即2222)(b ab a b a +±=±;分式①分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变,即m b m a b a ⨯⨯=;m b ma b a ÷÷=,其中m 是不等于零的代数式; ②分式的乘法法则:bdacd c b a =⋅;③分式的除法法则:)0(≠=⋅=÷c bc adc d b a d c b a ;④分式的乘方法则:n nn ba b a =)((n 为正整数);⑤同分母分式加减法则:c ba cbc a ±=±; ⑥异分母分式加减法则:bccdab b d c a ±=±;2. 方程与不等式①一元二次方程02=++c bx ax (a ≠0)的求根公式:)04(2422≥--+-=ac b aac b b x②一元二次方程根的判别式:ac b 42-=∆叫做一元二次方程02=++c bx ax (a ≠0)的根的判别式:⇔>∆0方程有两个不相等的实数根; ⇔=∆0方程有两个相等的实数根; ⇔<∆0方程没有实数根;③一元二次方程根与系数的关系:设1x 、2x 是方程02=++c bx ax (a ≠0)的两个根,那么1x +2x =a b -,1x 2x =ac ; 不等式的基本性质:①不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变; ②不等式两边都乘以(或除以)同一个正数,不等号的方向不变; ③不等式两边都乘以(或除以)同一个负数,不等号的方向改变;3. 函数一次函数的图象:函数y=kx+b(k 、b 是常数,k ≠0)的图象是过点(0,b )且与直线y=kx 平行的一条直线;一次函数的性质:设y=kx+b (k ≠0),则当k>0时,y 随x 的增大而增大;当k<0, y 随x 的增大而减小;正比例函数的图象:函数kx y =的图象是过原点及点(1,k )的一条直线。
最新最全初中数学定理公式汇编初中数学是中学阶段的一门重要学科,其中包含了许多定理和公式。
下面是一份最新最全的初中数学定理公式汇编:1.二项式定理:(a+b)^n=C(n,0)a^nb^0+C(n,1)a^(n-1)b^1+...+C(n,r)a^(n-r)b^r+...+C(n,n)a^0b^n2. 一次函数公式:y = kx + b3.二次函数顶点公式:y=a(x-h)^2+k4.平行四边形面积公式:S=底边长度×高5.直角三角形勾股定理:a^2+b^2=c^26.长方形面积公式:S=长×宽7. 直角三角形正弦定理:a/sinA = b/sinB = c/sinC8.圆的面积公式:S=πr^29. 两角和公式:sin(A ± B) = sinAcosB ± cosAsinB10.长方体体积公式:体积=长×宽×高11. 两角差公式:cos(A ± B) = cosAcosB ± sinAsinB12.三角形面积公式:S=1/2×底边长×高13.平行线性质:平行线两对应角相等,内错角相等14.同位角性质:同位角互为补角或同为对顶角15. 合并同类项公式:ax + bx = (a + b)x16. 分式运算公式:a/b + c/d = (ad + bc)/bd17.等腰三角形边长关系:a=c18.等腰三角形内角性质:底角相等,顶角互补19.对称性质:对称位置的线段、角、图形等相等20. 同余定理:如果a ≡ b (mod m) 且c ≡ d (mod m),则 a +c ≡ b +d (mod m) 和ac ≡ bd (mod m)21.等差数列通项公式:a_n=a_1+(n-1)d22.根号运算性质:√(a×b)=√a×√b23.正方形面积公式:S=a^224.正方体体积公式:体积=a^325.等差数列求和公式:S_n=(a_1+a_n)×n/226.圆锥体积公式:体积=1/3×π×r^2×h27.题意引导法则:结合问题的题意和已知条件进行推理、求解这是初中数学定理和公式的一部分,掌握并熟练应用这些定理和公式,对于学习和解题是非常有帮助的。
初中数学公式大全初中数学定理、公式汇编一、数与代数1. 数与式(1) 实数实数的性质:①实数a 的相反数是—a ,实数a 的倒数是a1(a ≠0); ②实数a 的绝对值: ⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a③正数大于0,负数小于0,两个负实数,绝对值大的反而小。
二次根式:①积与商的方根的运算性质:b a ab ⋅=(a ≥0,b ≥0);b a b a =(a ≥0,b >0);②二次根式的性质:⎩⎨⎧<-≥==)0()0(2a a a a a a (2)整式与分式①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即n m n m a a a +=⋅(m 、n 为正整数);②同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即nm n m a a a -=÷(a ≠0,m 、n 为正整数,m>n );③幂的乘方法则:幂的乘方,底数不变,指数相乘,即n n n b a ab =)((n 为正整数);④零指数:10=a (a ≠0);⑤负整数指数:n n aa 1=-(a ≠0,n 为正整数); ⑥平方差公式:两个数的和与这两个数的差的积等于这两个数的平方,即22))((b a b a b a -=-+;⑦完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,即2222)(b ab a b a +±=±;分式①分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变,即m b m a b a ⨯⨯=;mb m a b a ÷÷=,其中m 是不等于零的代数式; ②分式的乘法法则:bdac d c b a =⋅; ③分式的除法法则:)0(≠=⋅=÷c bcad c d b a d c b a ; ④分式的乘方法则:n nn ba b a =)((n 为正整数); ⑤同分母分式加减法则:cb ac b c a ±=±; ⑥异分母分式加减法则:bccd ab b d c a ±=±; 2. 方程与不等式 ①一元二次方程02=++c bx ax (a ≠0)的求根公式:)04(2422≥--+-=ac b aac b b x ②一元二次方程根的判别式:ac b 42-=∆叫做一元二次方程02=++c bx ax (a ≠0)的根的判别式:⇔>∆0方程有两个不相等的实数根;⇔=∆0方程有两个相等的实数根;⇔<∆0方程没有实数根;③一元二次方程根与系数的关系:设1x 、2x 是方程02=++c bx ax (a ≠0)的两个根,那么1x +2x =a b -,1x 2x =ac ; 不等式的基本性质:①不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变; ②不等式两边都乘以(或除以)同一个正数,不等号的方向不变;③不等式两边都乘以(或除以)同一个负数,不等号的方向改变;3. 函数一次函数的图象:函数y=kx+b(k 、b 是常数,k ≠0)的图象是过点(0,b )且与直线y=kx 平行的一条直线;一次函数的性质:设y=kx+b (k ≠0),则当k>0时,y 随x 的增大而增大;当k<0, y 随x 的增大而减小;正比例函数的图象:函数kx y =的图象是过原点及点(1,k )的一条直线。
初中数学定理、公式汇编第一篇数与代数第一节数与式一、实数1.实数的分类:整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如:-3,,0.231,0.737373…,,等;无限不环循小数叫做无理数.如:π,,0.1010010001…(两个1之间依次多1个0)等.有理数和无理数统称为实数.2.数轴:规定了原点、正方向和单位长度的直线叫数轴。
实数和数轴上的点一一对应。
3.绝对值:在数轴上表示数a的点到原点的距离叫数a的绝对值,记作∣a∣。
正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。
如:丨-_丨=;丨3.14-π丨=π-3.14.4.相反数:符号不同、绝对值相等的两个数,叫做互为相反数。
a的相反数是-a,0的相反数是0。
5.有效数字:一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.如:0.05972精确到0.001得0.060,结果有两个有效数字6,0.6.科学记数法:把一个数写成a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法.如:407000=4.07×105,0.000043=4.3×10-5.7.大小比较:正数大于0,负数小于0,两个负数,绝对值大的反而小。
8.数的乘方:求相同因数的积的运算叫乘方,乘方运算的结果叫幂。
9.平方根:一般地,如果一个数x的平方等于a,即x2=a那么这个数a就叫做x的平方根(也叫做二次方根式)。
一个正数有两个平方根,它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根.10.开平方:求一个数a的平方根的运算,叫做开平方.11.算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根,0的算术平方根是0.12.立方根:一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根(也叫做三次方根),正数的立方根是正数;负数的立方根是负数;0的立方根是0.13.开立方:求一个数a的立方根的运算叫做开立方.14.平方根易错点:(1)平方根与算术平方根不分,如64的平方根为士8,易丢掉-8,而求为64的算术平方根;15.二次根式:(1)定义:式子叫做二次根式.16.二次根式的化简:17.最简二次根式应满足的条件:(1)被开方数的因式是整式或整数;(2)被开方数中不含有能开得尽的因数或因式.18.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式.19.二次根式的乘法、除法公式20..二次根式运算注意事项:(1)二次根式相加减,先把各根式化为最简二次根式,再合并同类二次根式,防止:①该化简的没化简;②不该合并的合并;③化简不正确;④合并出错.(2)二次根式的乘法除法常用乘法公式或除法公式来简化计算,运算结果一定写成最简二次根式或整式.21.有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数.22.有理数减法法则:减去一个数,等于加上这个数的相反数.23.有理数乘法法则:两个有理数相乘,同号得正,异号得负,再把绝对值相乘;任何数与0相乘,积仍为0.24.有理数除法法则:两个有理数相除,同号得正,异号得负,并把绝对值相除;0除以任何非0的数都得0;除以一个数等于乘以这个数的倒数.25.有理数的混合运算法则:先算乘方,再算乘除,最后算加减;如果有括号,先算括号里面的.二.代数式:(1)用运算符号把数和表示数的字母连接而成的式子叫做代数式。
初中三年数学常⽤公式定理⼤全初中数学定理、公式汇编第⼀篇数与代数第⼀节数与式⼀、实数1.实数的分类:整数(包括:正整数、0、负整数)和分数(包括:有限⼩数和⽆限环循⼩数)都是有理数.如:-3,,0.231,0.737373…,,等;⽆限不环循⼩数叫做⽆理数. 如:π,,0.1010010001…(两个1之间依次多1个0)等.有理数和⽆理数统称为实数.2.数轴:规定了原点、正⽅向和单位长度的直线叫数轴。
实数和数轴上的点⼀⼀对应。
3.绝对值:在数轴上表⽰数a的点到原点的距离叫数a的绝对值,记作∣a∣。
正数的绝对值是它本⾝;负数的绝对值是它的相反数;0的绝对值是0。
如:⼁-_⼁=;⼁3.14-π⼁=π-3.14.4.相反数:符号不同、绝对值相等的两个数,叫做互为相反数。
a的相反数是-a,0的相反数是0。
5.有效数字:⼀个近似数,从左边笫⼀个不是0的数字起,到最末⼀个数字⽌,所有的数字,都叫做这个近似数的有效数字.如:0.05972精确到0.001得0.060,结果有两个有效数字6,0.6.科学记数法:把⼀个数写成a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法. 如:407000=4.07×105,0.000043=4.3×10-5.7.⼤⼩⽐较:正数⼤于0,负数⼩于0,两个负数,绝对值⼤的反⽽⼩。
8.数的乘⽅:求相同因数的积的运算叫乘⽅,乘⽅运算的结果叫幂。
9.平⽅根:⼀般地,如果⼀个数x的平⽅等于a,即x2=a那么这个数a就叫做x的平⽅根(也叫做⼆次⽅根式)。
⼀个正数有两个平⽅根,它们互为相反数;0只有⼀个平⽅根,它是0本⾝;负数没有平⽅根.10.开平⽅:求⼀个数a的平⽅根的运算,叫做开平⽅.11.算术平⽅根:⼀般地,如果⼀个正数x的平⽅等于a,即x2=a,那么这个正数x就叫做a的算术平⽅根,0的算术平⽅根是0.12.⽴⽅根:⼀般地,如果⼀个数x的⽴⽅等于a,即x3=a,那么这个数x就叫做a的⽴⽅根(也叫做三次⽅根),正数的⽴⽅根是正数;负数的⽴⽅根是负数;0的⽴⽅根是0.13.开⽴⽅:求⼀个数a的⽴⽅根的运算叫做开⽴⽅.14.平⽅根易错点:(1)平⽅根与算术平⽅根不分,如 64的平⽅根为⼠8,易丢掉-8,⽽求为64的算术平⽅根;(2)4的平⽅根是⼠2,误认为4平⽅根为⼠ 2,知道4=2.15.⼆次根式:(1)定义:形如a(a≥0)的式⼦叫做⼆次根式.16.⼆次根式的化简:17.最简⼆次根式应满⾜的条件:(1)被开⽅数的因式是整式或整数;(2)被开⽅数中不含有能开得尽的因数或因式.18.同类⼆次根式:⼏个⼆次根式化成最简⼆次根式以后,如果被开⽅数相同,这⼏个⼆次根式就叫做同类⼆次根式.19.⼆次根式的乘法、除法公式20..⼆次根式运算注意事项:(1)⼆次根式相加减,先把各根式化为最简⼆次根式,再合并同类⼆次根式,防⽌:①该化简的没化简;②不该合并的合并;③化简不正确;④合并出错.(2)⼆次根式的乘法除法常⽤乘法公式或除法公式来简化计算,运算结果⼀定写成最简⼆次根式或整式.21.有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较⼤的数的符号,并⽤较⼤的绝对值减去较⼩的绝对值;⼀个数同0相加,仍得这个数.22.有理数减法法则:减去⼀个数,等于加上这个数的相反数.23.有理数乘法法则:两个有理数相乘,同号得正,异号得负,再把绝对值相乘;任何数与0相乘,积仍为0.24.有理数除法法则:两个有理数相除,同号得正,异号得负,并把绝对值相除;0除以任何⾮0的数都得0;除以⼀个数等于乘以这个数的倒数.25.有理数的混合运算法则:先算乘⽅,再算乘除,最后算加减;如果有括号,先算括号⾥⾯的.26.有理数的运算律:加法交换律:a+b=b+a(a b、为任意有理数)加法结合律:(a+ b)+c=a+(b+c)(a, b,c为任意有理数)⼆.代数式:(1)⽤运算符号把数和表⽰数的字母连接⽽成的式⼦叫做代数式。
初中数学公式大全a b a b= ⎩⎨- a (a < 0)初中数学定理、公式汇编一、数与代数1. 数与式(1) 实数 实数的性质:1 ①实数 a 的相反数是—a ,实数 a 的倒数是 (a≠0);a②实数 a 的绝对值:⎧a (a > 0)⎪a ⎨0(a = 0)⎪- a (a < 0) ③正数大于 0,负数小于 0,两个负实数,绝对值大的反而小。
二次根式:①积与商的方根的运算性质:= ⋅ (a≥0,b≥0);= (a≥0,b >0);②二次根式的性质:= a = ⎧a (a ≥ 0) ⎩ (2)整式与分式①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即a m ⋅ a n = a m +n (m 、n 为正整数);②同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即a m ÷ a n = a m -n (a≠0,m 、n 为正整数,m>n );③幂的乘方法则:幂的乘方,底数不变,指数相乘,即(ab )n = a n b n (n 为正整数);④零指数: a 0 = 1 (a≠0);ab a b a 2- b + b 2- 4ac ± ⑤负整数指数: a -n = 1a n(a≠0,n 为正整数);⑥平方差公式:两个数的和与这两个数的差的积等于这两个数的平方,即(a + b )(a - b ) = a 2 - b 2 ;⑦完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去) 它们的积的 2 倍,即(a ± b )2 = a 2 ± 2ab + b 2 ;分式①分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整a 式,分式的值不变,即b = a ⨯ m ; a b ⨯ m b ac ac= a ÷ m b ÷ m,其中 m 是不等于零的代数式;②分式的乘法法则: ⋅ = ;b d bda c a d ad③分式的除法法则: ÷b d = ⋅ = bc (c ≠ 0) ; bc ④分式的乘方法则: ( a b )n = a b na b(n 为正整数);a ± b⑤同分母分式加减法则: ± = ;c c ca d ⑥异分母分式加减法则: cb 2. 方程与不等式= ab ± cd ;bc①一元二次方程 ax 2 + bx + c = 0 (a≠0)的求根公式:x = (b 2 2a - 4ac ≥ 0)②一元二次方程根的判别式: ∆ = b 2 - 4ac 叫做一元二次方程ax 2 + bx + c = 0 (a≠0)的根的判别式: ∆ > 0 ⇔ 方程有两个不相等的实数根; ∆ = 0 ⇔ 方程有两个相等的实数根; ∆ < 0 ⇔ 方程没有实数根;③一元二次方程根与系数的关系:设 x 1 、 x 2是方程 ax 2 + bx + c = 0nb c (a≠0)的两个根,那么 x 1 + x 2 = - a, x 1 x 2 = a;不等式的基本性质:①不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变; ②不等式两边都乘以(或除以)同一个正数,不等号的方向不变; ③不等式两边都乘以(或除以)同一个负数,不等号的方向改变;3. 函数一次函数的图象:函数 y=kx+b(k 、b 是常数,k≠0)的图象是过点(0,b )且 与直线 y=kx 平行的一条直线;一次函数的性质:设 y=kx+b (k≠0),则当 k>0 时,y 随 x 的增大而增大;当 k<0, y 随 x 的增大而减小;正比例函数的图象:函数 y = kx 的图象是过原点及点(1,k )的一条直线。
初中数学公式大全初中数学定理、公式汇编一、数与代数1. 数与式(1) 实数实数的性质:①实数a 的相反数是—a ,实数a 的倒数是a1(a ≠0); ②实数a 的绝对值: ⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a③正数大于0,负数小于0,两个负实数,绝对值大的反而小。
二次根式:①积与商的方根的运算性质:b a ab ⋅=(a ≥0,b ≥0);b a b a =(a ≥0,b >0);②二次根式的性质:⎩⎨⎧<-≥==)0()0(2a a a a a a (2)整式与分式①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即n m n m a a a +=⋅(m 、n 为正整数);②同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即nm n m a a a -=÷(a ≠0,m 、n 为正整数,m>n );③幂的乘方法则:幂的乘方,底数不变,指数相乘,即n n n b a ab =)((n 为正整数);④零指数:10=a (a ≠0);⑤负整数指数:n n aa 1=-(a ≠0,n 为正整数); ⑥平方差公式:两个数的和与这两个数的差的积等于这两个数的平方,即22))((b a b a b a -=-+;⑦完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,即2222)(b ab a b a +±=±;分式①分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变,即m b m a b a ⨯⨯=;mb m a b a ÷÷=,其中m 是不等于零的代数式; ②分式的乘法法则:bdac d c b a =⋅; ③分式的除法法则:)0(≠=⋅=÷c bcad c d b a d c b a ; ④分式的乘方法则:n nn ba b a =)((n 为正整数); ⑤同分母分式加减法则:cb ac b c a ±=±; ⑥异分母分式加减法则:bccd ab b d c a ±=±; 2. 方程与不等式 ①一元二次方程02=++c bx ax (a ≠0)的求根公式:)04(2422≥--+-=ac b aac b b x ②一元二次方程根的判别式:ac b 42-=∆叫做一元二次方程02=++c bx ax (a ≠0)的根的判别式:⇔>∆0方程有两个不相等的实数根;⇔=∆0方程有两个相等的实数根;⇔<∆0方程没有实数根;③一元二次方程根与系数的关系:设1x 、2x 是方程02=++c bx ax (a ≠0)的两个根,那么1x +2x =a b -,1x 2x =ac ; 不等式的基本性质:①不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变; ②不等式两边都乘以(或除以)同一个正数,不等号的方向不变;③不等式两边都乘以(或除以)同一个负数,不等号的方向改变;3. 函数一次函数的图象:函数y=kx+b(k 、b 是常数,k ≠0)的图象是过点(0,b )且与直线y=kx 平行的一条直线;一次函数的性质:设y=kx+b (k ≠0),则当k>0时,y 随x 的增大而增大;当k<0, y 随x 的增大而减小;正比例函数的图象:函数kx y =的图象是过原点及点(1,k )的一条直线。
初中数学公式大全初中数学定理、公式汇编一、数与代数1. 数与式(1) 实数实数的性质:①实数a 的相反数是—a ,实数a 的倒数是a1(a ≠0); ②实数a 的绝对值: ⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a③正数大于0,负数小于0,两个负实数,绝对值大的反而小。
二次根式:①积与商的方根的运算性质:b a ab ⋅=(a ≥0,b ≥0);b a b a =(a ≥0,b >0);②二次根式的性质:⎩⎨⎧<-≥==)0()0(2a a a a a a (2)整式与分式①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即n m n m a a a +=⋅(m 、n 为正整数);②同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即nm n m a a a -=÷(a ≠0,m 、n 为正整数,m>n );③幂的乘方法则:幂的乘方,底数不变,指数相乘,即n n n b a ab =)((n 为正整数);④零指数:10=a (a ≠0);⑤负整数指数:n n aa 1=-(a ≠0,n 为正整数); ⑥平方差公式:两个数的和与这两个数的差的积等于这两个数的平方,即22))((b a b a b a -=-+;⑦完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,即2222)(b ab a b a +±=±;分式①分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变,即m b m a b a ⨯⨯=;mb m a b a ÷÷=,其中m 是不等于零的代数式; ②分式的乘法法则:bdac d c b a =⋅; ③分式的除法法则:)0(≠=⋅=÷c bcad c d b a d c b a ; ④分式的乘方法则:n nn ba b a =)((n 为正整数); ⑤同分母分式加减法则:cb ac b c a ±=±; ⑥异分母分式加减法则:bccd ab b d c a ±=±; 2. 方程与不等式 ①一元二次方程02=++c bx ax (a ≠0)的求根公式:)04(2422≥--+-=ac b aac b b x ②一元二次方程根的判别式:ac b 42-=∆叫做一元二次方程02=++c bx ax (a ≠0)的根的判别式:⇔>∆0方程有两个不相等的实数根;⇔=∆0方程有两个相等的实数根;⇔<∆0方程没有实数根;③一元二次方程根与系数的关系:设1x 、2x 是方程02=++c bx ax (a ≠0)的两个根,那么1x +2x =a b -,1x 2x =ac ; 不等式的基本性质:①不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变; ②不等式两边都乘以(或除以)同一个正数,不等号的方向不变;③不等式两边都乘以(或除以)同一个负数,不等号的方向改变;3. 函数一次函数的图象:函数y=kx+b(k 、b 是常数,k ≠0)的图象是过点(0,b )且与直线y=kx 平行的一条直线;一次函数的性质:设y=kx+b (k ≠0),则当k>0时,y 随x 的增大而增大;当k<0, y 随x 的增大而减小;正比例函数的图象:函数kx y =的图象是过原点及点(1,k )的一条直线。
初中数学公式大全初中数学定理、公式汇编一、数与代数1.数与式(1)实数实数的性质:①实数a 的相反数是—a ,实数a 的倒数是a1(a ≠0);②实数a 的绝对值:)0()0(0)0(aa a a a a③正数大于0,负数小于0,两个负实数,绝对值大的反而小。
二次根式:①积与商的方根的运算性质:b a ab (a ≥0,b ≥0);ba ba (a ≥0,b >0);②二次根式的性质:)0()0(2aa a a aa(2)整式与分式①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即nm nmaaa(m 、n 为正整数);②同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即nm nmaaa (a ≠0,m 、n 为正整数,m>n );③幂的乘方法则:幂的乘方,底数不变,指数相乘,即nn nb a ab)((n 为正整数);④零指数:10a(a ≠0);⑤负整数指数:nnaa1(a ≠0,n 为正整数);⑥平方差公式:两个数的和与这两个数的差的积等于这两个数的平方,即22))((b ab a b a ;⑦完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,即2222)(b ab ab a;分式①分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变,即m b ma ba ;mbm a b a ,其中m 是不等于零的代数式;②分式的乘法法则:bd ac d c b a ;③分式的除法法则:)0(c bcad c db a dc b a ;④分式的乘方法则:nn nba b a )((n 为正整数);⑤同分母分式加减法则:c ba cbc a ;⑥异分母分式加减法则:bccdabbd ca ;2.方程与不等式①一元二次方程02cbx ax (a ≠0)的求根公式:)04(2422ac baacbb x②一元二次方程根的判别式:ac b42叫做一元二次方程02c bx ax(a ≠0)的根的判别式:0方程有两个不相等的实数根;0方程有两个相等的实数根;0方程没有实数根;③一元二次方程根与系数的关系:设1x 、2x 是方程02c bx ax(a ≠0)的两个根,那么1x +2x =ab ,1x 2x =ac ;不等式的基本性质:①不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;②不等式两边都乘以(或除以)同一个正数,不等号的方向不变;③不等式两边都乘以(或除以)同一个负数,不等号的方向改变;3.函数一次函数的图象:函数y=kx+b(k 、b 是常数,k ≠0)的图象是过点(0,b )且与直线y=kx 平行的一条直线;一次函数的性质:设y=kx+b (k ≠0),则当k>0时,y 随x 的增大而增大;当k<0, y 随x 的增大而减小;正比例函数的图象:函数kx y 的图象是过原点及点(1,k )的一条直线。
初中数学公式大全初中数学定理、公式汇编一、数与代数1.数与式(1)实数实数的性质:①实数 a 的相反数是— a,实数 a 的倒数是1(a≠0);a②实数 a 的绝对值:a( a 0)a 0( a 0)a(a 0)③正数大于0,负数小于0,两个负实数,绝对值大的反而小。
二次根式:①积与商的方根的运算性质:ab a b (a≥0,b≥0);a a( a≥ 0, b> 0);b b②二次根式的性质:a2a( a 0) aa(a 0)( 2)整式与分式①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即 a m a n a m n ( m、n 为正整数);②同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即 a m a n a m n ( a≠ 0, m、 n 为正整数, m>n);③幂的乘方法则:幂的乘方,底数不变,指数相乘,即( ab) n a n b n(n为正整数);④零指数: a 0 1 (a≠0);⑤负整数指数: a n1( a ≠ 0, n 为正整数);a n⑥平方差公式:两个数的和与这两个数的差的积等于这两个数的平方,即( a b)( a b)a 2b 2 ;⑦完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的 2 倍,即 (ab) 2 a 2 2ab b 2 ;分式①分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变,即a a ma a m bb ;b b,其中 m 是不等于零的代数式;m m②分式的乘法法则:a c ac ;b d bd③分式的除法法则:a c a d ad(c 0) ;b db cbc( a ) nn④分式的乘方法则:a n ( n 为正整数);b b⑤同分母分式加减法则:a b a bc c c ;⑥异分母分式加减法则:a d ab cdc b;bc2. 方程与不等式① 一 元 二 次 方 程 ax 2bx c 0 (a ≠ 0 ) 的 求 根 公 式 :xbb 2 4ac (b 2 4ac0)2a② 一 元 二 次 方 程 根 的 判 别 式 :b 24ac 叫 做 一 元 二 次 方 程ax 2bx c 0 ( a ≠0)的根的判别式:0 方程有两个不相等的实数根; 0 方程有两个相等的实数根; 0方程没有实数根;③一元二次方程根与系数的关系:设x 1 、 x 2 是方程 ax 2 bx c0 ( a ≠ 0)的两个根,那么x1 + x2b c ;= a,x1x2=a不等式的基本性质:①不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;②不等式两边都乘以(或除以)同一个正数,不等号的方向不变;③不等式两边都乘以(或除以)同一个负数,不等号的方向改变;3.函数一次函数的图象:函数 y=kx+b(k 、b 是常数, k≠ 0) 的图象是过点( 0,b)且与直线y=kx 平行的一条直线;一次函数的性质:设 y=kx+b ( k≠ 0),则当 k>0 时, y 随 x 的增大而增大;当k<0, y 随 x 的增大而减小;正比例函数的图象:函数y kx 的图象是过原点及点(1,k)的一条直线。
初中数学公式大全初中数学定理、公式汇编一、数与代数1.数与式(1)实数实数的性质:①实数a 的相反数是—a ,实数a 的倒数是(a≠0);a1②实数a 的绝对值:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a ③正数大于0,负数小于0,两个负实数,绝对值大的反而小。
二次根式:①积与商的方根的运算性质:(a≥0,b≥0);b a ab ⋅=(a≥0,b >0);ba ba =②二次根式的性质:⎩⎨⎧<-≥==)0()0(2a a a a a a (2)整式与分式①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即(m 、n 为正整数);n m n m a a a +=⋅②同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即(a≠0,m 、n 为正整数,m>n );n m n m a a a -=÷③幂的乘方法则:幂的乘方,底数不变,指数相乘,即(n 为正nnnb a ab =)(整数);④零指数:(a≠0);10=a⑤负整数指数:(a≠0,n 为正整数);n naa1=-⑥平方差公式:两个数的和与这两个数的差的积等于这两个数的平方,即;22))((b a b a b a -=-+⑦完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,即;2222)(b ab a b a +±=±分式①分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变,即;,其中m 是不等于零的代数式;m b m a b a ⨯⨯=m b m a b a ÷÷=②分式的乘法法则:;bdacd c b a =⋅③分式的除法法则:;)0(≠=⋅=÷c bcadc d b a d c b a ④分式的乘方法则:(n 为正整数);n nn ba b a =)(⑤同分母分式加减法则:;c ba cbc a ±=±⑥异分母分式加减法则:;bccdab b d c a ±=±2.方程与不等式①一元二次方程(a≠0)的求根公式:02=++c bx ax )04(2422≥--+-=ac b aac b b x ②一元二次方程根的判别式:叫做一元二次方程ac b 42-=∆(a≠0)的根的判别式:02=++c bx ax 方程有两个不相等的实数根;⇔>∆0方程有两个相等的实数根;⇔=∆0方程没有实数根;⇔<∆0③一元二次方程根与系数的关系:设、是方程1x 2x 02=++c bx ax(a≠0)的两个根,那么+=,=;1x 2x a b -1x 2x ac 不等式的基本性质:①不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;②不等式两边都乘以(或除以)同一个正数,不等号的方向不变;③不等式两边都乘以(或除以)同一个负数,不等号的方向改变;3.函数一次函数的图象:函数y=kx+b(k 、b 是常数,k≠0)的图象是过点(0,b )且与直线y=kx 平行的一条直线;一次函数的性质:设y=kx+b (k≠0),则当k>0时,y 随x 的增大而增大;当k<0, y 随x 的增大而减小;正比例函数的图象:函数的图象是过原点及点(1,k )的一条直线。
初中数学公式大全1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。
初中数学定理、公式汇编第一篇数与代数第一节数与式一、实数1.实数的分类:整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如:-3,,0.231,0.737373…,,等;无限不环循小数叫做无理数. 如:π,,0.1010010001…(两个1之间依次多1个0)等.有理数和无理数统称为实数.2.数轴:规定了原点、正方向和单位长度的直线叫数轴。
实数和数轴上的点一一对应。
3.绝对值:在数轴上表示数a的点到原点的距离叫数a的绝对值,记作∣a∣。
正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。
如:丨-_丨=;丨3.14-π丨=π-3.14.4.相反数:符号不同、绝对值相等的两个数,叫做互为相反数。
a的相反数是-a,0的相反数是0。
5.有效数字:一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.如:0.05972精确到0.001得0.060,结果有两个有效数字6,0.6.科学记数法:把一个数写成a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法. 如:407000=4.07×105,0.000043=4.3×10-5.7.大小比较:正数大于0,负数小于0,两个负数,绝对值大的反而小。
8.数的乘方:求相同因数的积的运算叫乘方,乘方运算的结果叫幂。
______________________________________________________________________________.9.平方根:一般地,如果一个数x的平方等于a,即x2=a那么这个数a就叫做x的平方根(也叫做二次方根式)。
一个正数有两个平方根,它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根.10.开平方:求一个数a的平方根的运算,叫做开平方.11.算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根,0的算术平方根是0.12.立方根:一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根(也叫做三次方根),正数的立方根是正数;负数的立方根是负数;0的立方根是0.13.开立方:求一个数a的立方根的运算叫做开立方.14.平方根易错点:(1)平方根与算术平方根不分,如64的平方根为士8,易丢掉-8,而求为64的算术平方根;(2)4的平方根是士2,误认为4平方根为士2,应知道4=2.15.二次根式:(1)定义:___________________________________________________叫做二次根式.16.二次根式的化简:17.最简二次根式应满足的条件:(1)被开方数的因式是整式或整数;(2)被开方数中不含有能开得尽的因数或因式.18.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式.19.二次根式的乘法、除法公式20..二次根式运算注意事项:(1)二次根式相加减,先把各根式化为最简二次根式,再合并同类二次根式,防止:①该化简的没化简;②不该合并的合并;③化简不正确;④合并出错.(2)二次根式的乘法除法常用乘法公式或除法公式来简化计算,运算结果一定写成最简二次根式或整式.21.有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数.22.有理数减法法则:减去一个数,等于加上这个数的相反数.23.有理数乘法法则:两个有理数相乘,同号得正,异号得负,再把绝对值相乘;任何数与0相乘,积仍为0.24.有理数除法法则:两个有理数相除,同号得正,异号得负,并把绝对值相除;0除以任何非0的数都得0;除以一个数等于乘以这个数的倒数.25.有理数的混合运算法则:先算乘方,再算乘除,最后算加减;如果有括号,先算括号里面的.26.有理数的运算律:加法交换律:a+b=b+a(a b 、为任意有理数)加法结合律:(a+ b )+c=a+(b+c)(a, b,c 为任意有理数)二.代数式:(1)用运算符号把数和表示数的字母连接而成的式子叫做代数式。
单独一个数或一个字母也是代数式。
(2)同类项:是指所含字母相同,并且相同字母的指数也相同的项。
合并同类项的法则:系数相加作系数,字母和字母的指数不变。
三.整式1.幂的运算性质:①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即n m n m a a a+=⋅(m 、n 为正整数);②同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即n m n m a a a-=÷(a ≠0,m 、n 为正整数,m>n );③幂的乘方法则:幂的乘方,底数不变,指数相乘,即n n n b a ab =)((n 为正整数);④零指数:10=a (a ≠0);⑤负整数指数:n n a a1=-(a ≠0,n 为正整数); 2.整式的乘除法:①几个单项式相乘除,系数与系数相乘除,同底数的幂结合起来相乘除.②单项式乘以多项式,用单项式乘以多项式的每一个项.③多项式乘以多项式,用一个多_项式的每一项分别乘以另一个多项式的每一项.④多项式除以单项式,将多项式的每一项分别除以这个单项式.⑤平方差公式:两个数的和与这两个数的差的积等于这两个数的平方,即22))((b a b a b a -=-+;⑥完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,即2222)(b ab a b a +±=±3.分解因式:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.4.分解因式的方法:⑴提公团式法:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.⑵运用公式法:公式22()()a b a b a b -=+- ; 2222()a ab b a b ±+=±5.分解因式的步骤:分解因式时,首先考虑是否有公因式,如果有公因式,一定先提取公团式,然后再考虑是否能用公式法分解.6.分解因式时常见的思维误区:⑴ 提公因式时,其公团式应找字母指数最低的,而不是以首项为准.⑵ 提取公因式时,若有一项被全部提出,括号内的项“ 1”易漏掉.⑶ 分解不彻底,如保留中括号形式,还能继续分解等四.分式1.分式:整式A 除以整式B ,可以表示成A B 的形式,如果除式B 中含有字母,那么称A B为分式. 注:(1)若B ≠0,则A B 有意义;(2)若B=0,则A B 无意义;(2)若A=0且B ≠0,则A B=0 2.分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.3.约分:把一个分式的分子和分母的公团式约去,这种变形称为分式的约分.4.通分:根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通分.5.分式的加减法法则:(1)同分母的分式相加减,分母不变,把分子相加减;(2)异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法则进行计算.6.分式的乘除法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.7.通分注意事项:(1)通分的关键是确定最简公分母,最简公分母应为各分母系救的最小公倍数与所有相同因式的最高次幂的积;(2)易把通分与去分母混淆,本是通分,却成了去分母,把分式中的分母丢掉.8.分式的混合运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的.9.对于化简求值的题型要注意解题格式,要先化简,第二节 方程与不等式一、一元一次方程1.方程:含有未知数的等式叫方程.2.一元一次方程:只含有一个未知数,并且未知数的指数是1(次)系数不为0,这样的方程叫一元一次方程.一般形式:ax +b=0(a ≠0)3.解一元一次方程的一般步骤及注意事项:二、二元一次方程(组)1.二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程.2.二元一次方程组:含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组.3.二元一次方程组的解:二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解.4.二元一次方程组的解法.(1)代人消元法:解方程组的基本思路是“消元”一把“二元”变为“一元”,主要步骤是,将其中一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代人另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程,这种解方程组的方法称为代人消元法,简称代人法.(2)加减消元法:通过方程两边分别相加(减)消去其中一个未知数,这种解二元一次方程组的方法叫做加减消元法,简称加减法.三、分式方程1.分式方程:分母中含有未知数的方程叫做分式方程.2.解分式方程的步骤:①去分母,化为整式方程;②解整式方程;③验根;④下结论.3.分式方程的增根问题:⑴增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的根l增根;⑵验根:因为解分式方程可能出现增根,所以解分式方程必须验根.四、一元二次方程1.一元二次方程:只含有一个未知数,未知数的最高次数是2,且系数不为0,这样的方程叫一元二次方程.一般形式:ax2+bx+c=0(a≠0)2.一元二次方程的解法:⑴配方法:配方法是一种以配方为手段,以开平方为基础的一种解一元二次方程的方法.用配方法解一元二次方程:ax2+bx+c=0(k≠0)的一般步骤是:①化二次项系数为1,即方程两边同除以二次项系数;②移项,即使方程的左边为二次项和一次项,右边为常数项;③配方,即方程两边都加上一次项系数的绝对值一半的平方;④化原方程为(x+m)2=n的形式;⑤如果n≥0就可以用两边开平方来求出方程的解;如果n=<0,则原方程无解.⑵公式法:公式法是用求根公式求出一元二次方程的解的方法.它是通过配方推导出来的.一元二次方程的求根公式是a acbbx24 2-±-=(b2-4ac≥0)⑶因式分解法:用因式分解的方法求一元二次方程的根的方法叫做因式分解法.它的理论根据是两个因式中至少要有一个等于0,因式分解法的步骤是:①将方程右边化为0;②将方程左边分解为两个一次因式的乘积;③令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.3.一元二次方程的注意事项:⑴在一元二次方程的一般形式中要注意,强调a≠0.因当a=0时,不含有二次项,即不是一元二次方程.如关于x的方程(k2-1)x2+2kx+1=0中,当k=±1时就是一元一次方程了.⑵应用求根公式解一元二次方程时应注意:①化方程为一元二次方程的一般形式;②确定a、b、c的值;③求出b2-4ac的值;④若b2-4ac≥0,则代人求根公式,求出x1 ,x2.若b2-4a<0,则方程无解.⑶方程两边绝不能随便约去含有未知数的代数式.如-2(x+4)2=3(x+4)中,不能随便约去(x+4)⑷注意解一元二次方程时一般不使用配方法(除特别要求外)但又必须熟练掌握,解一元二次方程的一般顺序是:开平方法→因式分解法→公式法.五、一元一次不等式(组)1.不等式:用不等号(“<”“≤”“>”“≥”)表示不等关系的式子.2.不等式的基本性质:()不等式的两边都加上(或减去)同一个整式,不等号的方向不变.(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.3.不等式的解:能使不等式成立的未知数的值,叫做不等式的解.4.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集.5.解不等式:求不等式解集的过程叫做解不等式.6.一元一次不等式:只含有一个未知数,并且未知数的最高次数是1,系数不为零的不等式叫做一元一次不等式.7.解一元一次不等式易错点:(1)不等式两边部乘以(或除以)同一个负数时,不等号的方向要改变,这是同学们经常忽略的地方,一定要注意;(2)在不等式两边不能同时乘以0.8. 解一元一次不等式的步骤:①去分母,②去话号,③移项,④合并同类项,⑤系数化为19.求不等式的正整数解,可负整数解等特解,可先求出这个不等式的所有解,再从中找出所需特解.10.一元一次不等式组:关于同一个未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组.11.一元一次不等式组的解集:一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集.12.解不等式组:求不等式组解集的过程,叫做解不等式组.13.不等式组的分类及解集(a <b ).14.解一元一次不等式组的步骤:(1)分别求出不等式组中各个不等式的解集(2)利用数轴或口诀求出这些解集的公共部分,即这个不等式的解。