微积分I__第一、二章知识框图
- 格式:ppt
- 大小:102.50 KB
- 文档页数:2
《微积分》讲义第一章极限一、函数极限的概念:f=A要点:⑴x 为变量;⑵A 为一常量。
二、函数极限存在的充分必要条件:f=A f=A,f=A 例:判定是否存在?三、极限的四则运算法则⑴=f±g⑵=f·g⑶=……g≠0⑷k·f=k·f四、例:⑴⑵⑶⑷五、两个重要极限⑴=1 =1⑵=e =e ………型理论依据:⑴两边夹法则:若f≤g≤h,且limf=limh=A,则:limg=A⑵单调有界数列必有极限。
例题:⑴=⑵=⑶=⑷=⑸=六、无穷小量及其比较1、无穷小量定义:在某个变化过程中趋向于零的变量。
2、无穷大量定义:在某个变化过程中绝对值无限增大的变量。
3、高阶无穷小,低阶无穷小,同阶无穷小,等价无穷小。
4、定理:f=A f=A+a (a=0)七、函数的连续性1、定义:函数y=f在点处连续……在点处给自变量x一改变量x:⑴x0时,y0。
即:y=0⑵f=f⑶左连续:f=f右连续:f=f2、函数y=f在区间上连续。
3、连续函数的性质:⑴若函数f和g都有在点处连续,则:f±g、f·g、(g()≠0)在点处连续。
⑵若函数u=j在点处连续,而函数y=f在点=j()处连续,则复合函数f(j(x)) 在点处连续。
例:===4、函数的间断点:⑴可去间断点:f=A,但f不存在。
⑵跳跃间断点:f=A ,f=B,但A≠B。
⑶无穷间断点:函数在此区间上没有定义。
5、闭区间上连续函数的性质:若函数f在闭区间上连续,则:⑴f在闭区间上必有最大值和最小值。
⑵若f与f异号,则方程f=0 在内至少有一根。
例:证明方程式-4+1=0在区间内至少有一个根。
第二章一元函数微分学一、导数1、函数y=f在点处导数的定义:x y=f-f=A f'=A ……y',,。
2、函数y=f在区间上可导的定义:f',y',,。
3、基本初等函数的导数公式:⑴=0⑵=n·⑶=,=⑷=·lnɑ,=⑸=cosx,=-sinx=x,=-=secx·tanx,=-cscx·cotx⑹=-=-4、导数的运算:⑴、四则运算法则:=±=·g(x)+f(x)·=例:求下列函数的导数y=2-5+3x-7f(x)=+4cosx-siny=⑵、复合函数的求导法则:y u,u v,v w,w x y x'=''''例:y=lntanxy=lny=arcsin⑶、隐函数的求导法则:把y看成是x的复合函数,即遇到含有y 的式子,先对y求导,然后y再对x求导。
大一高数知识点框架图高等数学是大一学生必修的一门重要课程,它是数学学科的一门基础课程,对于学习后续专业课程和培养科学思维具有重要意义。
在学习高等数学时,了解清晰的知识点框架图可以帮助学生更好地整理和掌握知识。
下面是大一高数知识点的一个简要框架图,供参考:1.函数与极限1.1 函数的概念与性质1.2 一元函数的极限1.3 极限的运算1.4 无穷小与无穷大1.5 函数的连续性2.微分与导数2.1 导数的概念与性质2.2 基本导数公式2.3 高阶导数与高阶导数公式2.4 隐函数与参数方程的导数 2.5 微分中值定理与导数的应用3.微分学的应用3.1 函数的单调性与极值3.2 函数的凹凸性与拐点3.3 曲线的渐近线与渐近曲线 3.4 已知导数求函数3.5 微分方程的基本概念4.不定积分4.1 原函数与不定积分的概念 4.2 基本积分法4.3 分部积分法4.4 有理函数的积分4.5 径向量积分与弧长5.定积分5.1 定积分的概念与性质5.2 定积分的计算方法5.3 反常积分5.4 物理应用:面积、体积、质量与重心6.微分方程6.1 微分方程的基本概念与分类6.2 一阶微分方程的常见类型6.3 二阶线性微分方程6.4 常系数线性微分方程6.5 微分方程的应用:生物、物理、工程等领域通过以上的知识点框架图,我们可以清晰地看到大一高数的主要知识点及其内部的关联关系。
在学习高等数学时,我们应该先打好基础,理解函数与极限的概念,掌握导数的运算法则,然后学习微分与积分的概念及其计算方法。
在学习的过程中,要注重理论联系实际,灵活应用所学知识解决实际问题,提高数学能力和运用能力。
总结起来,大一高数知识点框架图为函数与极限、微分与导数、微分学的应用、不定积分、定积分和微分方程。
这个框架图可以帮助我们清晰地了解高等数学的知识结构和学习路径,为我们的学习提供指导和支持。
在学习过程中,我们要注重理论与实践相结合,灵活运用知识解决问题,提高数学思维的能力和创新的能力。