文科 高等数学微积分知识点总结
- 格式:docx
- 大小:63.81 KB
- 文档页数:6
微积分知识点总结
微积分知识点总结如下:
1.极限:极限是微积分的基础,描述函数在某个点附近的趋势。
极限有多种计算方法,包括直接代入法、因式分解法、有理化法、夹逼定理等。
2.导数:导数表示函数在某一点处的变化率或斜率。
导数的计算方法有定义法、四则运算法则、链式法则、乘积法则、商法则等。
3.积分:积分表示函数在某个区间上的累积量或面积。
定积分等于被积函数在该区间上与x轴围成的面积。
积分的计算方法有反导数法、换元法、分部法、定积分性质等。
4.无穷级数:无穷级数表示无穷多项相加的表达式。
它可以分为收敛和发散两种类型,收敛级数有有限或无限的和,而发散级数的和是无穷大。
5.微分学:微分学是微积分的重要组成部分,包括函数的微分、微分法则、微分的应用等。
6.积分学:积分学是微积分的另一个重要部分,包括定积分、不定积分、积分的应用等。
7.多元函数微积分:多元函数微积分包括多元函数的极限、连续性、偏导数、全微分、方向导数等,以及多元函数的积分和重积分等。
8.微分方程:微分方程是描述变量之间依赖关系的数学模型,包括一阶微分方程、高阶微分方程、线性微分方程和非线性微分方程等。
9.泰勒公式与麦克劳林公式:泰勒公式是一个将一个函数展开成无穷级数的公式,而麦克劳林公式则是泰勒公式的特殊形式。
10.幂级数与傅里叶级数:幂级数是一种无穷级数,可以用来展开函数;傅里叶
级数则是将一个函数展开成正弦和余弦函数的无穷级数。
导数微分学微分微积分不定积分积分学定积分无穷级数第一章函数及其特性1.1 集合一、定义:由具有共同特性的个体(元素)组成。
二、表达方式:集合A,B,C……(大写字母)元素a,b,c……(小写字母)A={a,b,c}元素的罗列无重复,无顺序。
a属于A记作a∈A,1不属于A记作1∉A或1∈A三、分类有限集无限集空集Ф四、集合的运算1、子集:存在A、B两个集合,如果A中所有元素都在B中,则A叫做B的子集,A⊆B或B⊇A(空集是任何集合的子集)。
2、交集:存在A、B两个集合,由既在A中又在B中的元素组成的集合。
A B,A B⊆A,A B⊆B,Ф B=Ф(空集与任何集合的交集是Ф)。
3、并集:存在A、B两个集合,由所有在A、B中的元素组成的集合。
A B,A B⊇A,A B⊇B,Ф B=B。
4、补集:存在A、B两个集合,且A⊆B,由在B当中但不在A中的元素组成的集合,叫A的补集,B叫全集。
记作AB或A CB, ABA=Ф,ABA=B五、数、数轴、区间、邻域1、数实数虚数: 规定i2= -1,i叫虚数单位,ii3332==-2、数轴:规定了原点、正方向和单位长度的直线。
3、区间知识归纳整理(1)闭区间a ≤x ≤b,x ∈[a, b] (2)开区间a< x< b, x ∈(a, b) (3)半开区间a ≤x< b, x ∈[a, b)a< x ≤b, x ∈(a, b](4)无限区间 x ≤a, x ∈(-∞, a]x ≥b, x ∈[ b, +∞) x ∈R, x ∈(-∞, +∞)4、邻域:以x = x 0为圆心,以δ> 0(δ为非常小的正数)为半径作圆,与数轴相交于A 、B 两点,x 0 -δ< x 0 < x 0 +δ叫x 0的δ邻域。
例1 已知A={x ∈ -2≤x< 3},B={x ∈ -1< x ≤5},求A B , A B 解:A 、B 集合中x 的取值范围在数轴表示如下所以A B={x ∈ -1< x< 3}, A B={x ∈ -2≤x ≤5} 例2 已知A 、B 为两非空集合,则A B=A 是A=B 的[ (2) ] (1)充分条件 (2)充分必要条件 (3)必要条件 (4)无关条件注:如果A 成立,这么B 成立,即“A ⇒B ”,这么条件A 是B 成立的充分条件;如要使B 成立,必须有条件A ,但惟独A 不一定能使B 成立,则称A 是B 成立的必要条件;如果“A ⇒B ”,又有“B ⇒A ”,则称条件A 是B 成立的充分必要条件。
高考微积分专题总结(全是精华)本文旨在对高考微积分专题进行总结,为考生提供精华内容,帮助他们更好地备考。
1. 导数与微分- 导数的定义:导数可以理解为函数某一点的瞬时变化率,是函数在该点的切线斜率。
- 导数的求法:常用的求导法则有常数法则、幂函数法则、和差法则、乘法法则、除法法则以及复合函数法则。
- 微分的定义:微分是函数在某一点附近的近似线性变化,可以通过导数来求得。
2. 极值与最值- 极值:函数在某一区间内的最大值或最小值。
- 极值的求法:可以使用导数的方法求函数的极值。
- 最值:函数在整个定义域内的最大值或最小值,也称为全局极值。
- 最值的求法:需要考虑函数的边界点和无界函数的趋势。
3. 定积分与不定积分- 定积分:定积分是用于计算曲线下面的面积或曲线长度的工具。
- 定积分的计算:可以通过牛顿—莱布尼兹公式、换元法和分部积分法来计算定积分。
- 不定积分:不定积分是通过求导的逆运算来得到的,表示函数的原函数。
- 不定积分的计算:可以通过基本积分公式、换元法和分部积分法来计算不定积分。
4. 微分方程- 微分方程的基本概念:微分方程是含有未知函数及其导数的方程。
- 微分方程的分类:常微分方程和偏微分方程。
- 微分方程的求解:可以使用分离变量法、变参数法和待定系数法等方法来求解微分方程。
5. 泰勒展开- 泰勒展开的基本思想:将一个函数在某一点附近展开成无穷级数的形式,以近似表示该函数。
- 泰勒展开的应用:可以用泰勒展开来计算函数的近似值、导数、积分等。
以上是高考微积分专题的一些精华内容,希望对考生备考有所帮助。
大学微积分期末复习重点对于许多大学生来说,微积分是一门具有挑战性的课程。
期末临近,掌握好复习重点能够帮助我们更有效地进行复习,提高考试成绩。
以下是大学微积分期末复习的重点内容。
一、函数与极限1、函数的概念和性质理解函数的定义,包括定义域、值域和对应关系。
熟悉常见函数的图像和性质,如幂函数、指数函数、对数函数、三角函数等。
掌握函数的四则运算和复合函数的求法。
2、极限的概念和计算理解数列极限和函数极限的定义。
掌握极限的四则运算法则和存在准则。
熟练运用各种方法求极限,如代入法、等价无穷小替换、洛必达法则等。
3、无穷小与无穷大理解无穷小和无穷大的概念及其关系。
掌握无穷小的比较和运算。
二、导数与微分1、导数的概念理解导数的定义和几何意义。
掌握导数的物理意义和经济意义。
2、导数的计算熟练掌握基本初等函数的导数公式。
掌握导数的四则运算法则和复合函数求导法则。
会求隐函数和参数方程所确定的函数的导数。
3、微分的概念和计算理解微分的定义和几何意义。
掌握微分的计算方法和应用。
三、中值定理与导数的应用1、中值定理掌握罗尔定理、拉格朗日中值定理和柯西中值定理的内容和应用。
2、函数的单调性和极值利用导数判断函数的单调性。
求函数的极值和最值。
3、函数的凹凸性和拐点理解函数凹凸性的定义和判别方法。
求函数的拐点。
4、函数图形的描绘能够根据函数的导数和二阶导数的信息描绘函数的图形。
四、不定积分1、不定积分的概念和性质理解不定积分的定义和原函数的概念。
掌握不定积分的基本性质。
2、不定积分的计算熟练掌握基本积分公式。
掌握换元积分法和分部积分法。
五、定积分1、定积分的概念和性质理解定积分的定义和几何意义。
掌握定积分的基本性质。
2、定积分的计算掌握牛顿莱布尼茨公式。
会用换元积分法和分部积分法计算定积分。
3、定积分的应用会用定积分求平面图形的面积、旋转体的体积、曲线的弧长等。
六、反常积分1、无穷限反常积分理解无穷限反常积分的概念和收敛性的判别方法。
高等数学(一)微积分一元函数微分学( 第三章、第四章)一元函数积分学(第五章)第一章函数及其图形第二章极限和连续多元函数微积分(第六章)高数一串讲教材所讲主要内容如下:全书内容可粗分为以下三大部分:第一部分 函数极限与连续(包括级数) 第二部分 导数及其应用(包括多元函数)第三部分 积分计算及其应用 (包括二重积分和方程)第一部分 函数极限与连续一、关于函数概念及特性的常见考试题型: 1、求函数的自然定义域。
2、判断函数的有界性、周期性、单调性、奇偶性。
3、求反函数。
4、求复合函数的表达式。
二、 极限与连续 常见考试题型:1、求函数或数列的极限。
2、考察分段函数在分段点处极限是否存在, 函数是否连续。
3、函数的连续与间断。
4、求函数的渐进线。
5、级数的性质及等比级数。
6、零点定理。
每年必有的考点第三部分导数微分及其应用常见考试题型:1、导数的几何意义;2、讨论分段函数分段点的连续性与可导性。
3、求函数的导数:复合函数求导,隐含数求导,参数方程求导;4、讨论函数的单调性和凹凸性,求曲线的拐点;5、求闭区间上连续函数的最值;6、实际问题求最值。
每年必有的考点第四部分积分计算及应用考试常见题型1、不定积分的概念与计算;2、定积分的计算;3、定积分计算平面图形的面积;4、定积分计算旋转体的体积;5、无穷限反常积分6、二重积分7、微分方程最近几年考题中,积分计算的题目较多,而且也有一定的难度。
第一部分函数极限与连续一、关于函数概念及特性的常见考试题型:1、求函数的自然定义域。
2、判断函数的有界性、周期性、单调性、奇偶性。
3、求反函数。
4、求复合函数的表达式。
log log x的定义域是___________. 2007.7例1..函数y=23知识点:定义域约定函数的定义域是使函数的解析表达式有意义的一切实数所构成的数集。
解 要使根式函数有意义必须满足23log log 0x ≥,要使23log log 0x ≥成立, 只有3log 1x ≥,即3x ≥.注:我们所求定义域的函数一般都是初等函数,而初等函数:由基本初等函数,经过有限次的+-×÷运算及有限次的复合得到的函数称为初等函数。
必修4-微积分知识点总结
1. 导数与微分
- 导数的定义及其计算方法
- 微分的概念和应用
2. 导数的基本性质
- 导数的四则运算法则和链式法则
- 隐函数的导数和高阶导数
3. 极限与连续
- 极限的概念和性质
- 无穷小量与无穷大量的定义
- 连续函数的定义和性质
4. 幂指函数与对数函数的导数
- 幂函数和指数函数的导数公式
- 对数函数的导数公式和性质
5. 反函数与参数方程的求导
- 反函数的导数计算
- 参数方程的求导方法
6. 高阶导数与泰勒公式
- 高阶导数的定义和计算方法
- 泰勒公式及其应用
7. 常微分方程
- 常微分方程的概念
- 一阶线性常微分方程的求解方法
8. 微分方程的应用
- 生活中微分方程的应用案例
9. 偏导数与多元函数的微分
- 偏导数的定义和计算方法
- 多元函数的全微分和微分近似
10. 隐函数的偏导数和方向导数- 隐函数的偏导数计算
- 方向导数的概念和计算方法
11. 极值与最值
- 极值的定义和判断条件
- 最值的概念和计算方法
以上是必修4微积分课程的知识点总结。
希望对您的学习有帮助!。
高中数学微积分知识点一、导数的概念与运算。
1. 导数的定义。
- 函数y = f(x)在x = x_0处的导数f^′(x_0)定义为f^′(x_0)=limlimits_Δ x→0(Δ y)/(Δ x)=limlimits_Δ x→0frac{f(x_0+Δ x)-f(x_0)}{Δ x}。
- 函数y = f(x)的导数f^′(x),y^′或(dy)/(dx),f^′(x)=limlimits_Δ x→0(f(x + Δ x)-f(x))/(Δ x)。
2. 导数的几何意义。
- 函数y = f(x)在点x_0处的导数f^′(x_0)的几何意义是曲线y = f(x)在点(x_0,f(x_0))处的切线斜率。
- 曲线y = f(x)在点(x_0,f(x_0))处的切线方程为y - f(x_0)=f^′(x_0)(x - x_0)。
3. 基本初等函数的导数公式。
- C^′=0(C为常数)- (x^n)^′=nx^n - 1(n∈ Q)- (sin x)^′=cos x- (cos x)^′=-sin x- (a^x)^′=a^xln a(a>0,a≠1)- (e^x)^′=e^x- (log_ax)^′=(1)/(xln a)(a>0,a≠1,x>0)- (ln x)^′=(1)/(x)(x>0)4. 导数的运算法则。
- (u± v)^′=u^′± v^′- (uv)^′=u^′v + uv^′- ((u)/(v))^′=frac{u^′v - uv^′}{v^2}(v≠0)二、导数的应用。
1. 函数的单调性。
- 设函数y = f(x)在某个区间内可导,如果f^′(x)>0,则y = f(x)在这个区间内单调递增;如果f^′(x)<0,则y = f(x)在这个区间内单调递减。
2. 函数的极值。
- 设函数y = f(x)在点x_0处可导,且在x_0处取得极值,那么f^′(x_0) = 0。
微积分上重要知识点总结1、常用无穷小量替换常用等价无穷小: 当r T 0时,sin 兀〜AT , arcsin x 〜x, tan x 〜x, arctan x 〜x, ln(l + x )〜《v,b —l~x, 1 -cosx — -x 2.2、 关于邻域:邻域的立义、表示(区间表示、数轴表示、简单表示);左右邻域、空心邻域、有界集。
3、 初等函数:正割函数sec 就是余弦函数cos 的倒数;余割函数就是正弦函数的倒数;反三角 函数:定义域、值域4、 收敛与发散、常数A 为数列的极限的左义、函数极限的左义及表示方法、函数极限的几 何意义、左右极限、极限为A 的充要条件、极限的证明。
5、 无穷小量与无穷大量:无穷小量的泄义、运算性质、左理(无穷小量与极限的替换)、比较、高阶无穷小与同阶无穷小的表示、等价无穷小、无穷大量于无穷小量的关系。
6、 极限的性质:局部有界性、唯一性、局部保号性、不等式性质(保序性)。
7、 极限的四则运算法则。
8、 夹逼左理(适当放缩)、单调有界迫理(单调有界数列必有极限)。
9、 两个重要极限及其变形 10、 等价无穷小疑替换定理11、 函数的连续性:定义(增量泄义法、极限定义法)、左右连续12、函数的间断点:第一类间断点与第二类间断点,左、右极限都存在的就是第一类间断 点,第一类间断点有跳跃间断点与可去间断点。
左右极限至少有一个不存在的间断点就是 第二类间断点。
13、 连续函数的四则运算14、 反函数、复合函数、初等函数的连续性15、 闭区间上连续函数的性质:最值左理、有界性泄理、零值迫理、介值定理。
16、 导数的定义、左右导数、单侧导数、左右导数的表示、可导则连续。
17、求导法则与求导公式:函数线性组合的求导法则、函数积与商的求导法则、反函数 的求导法则、复合函数求导法则、对数求导法、基本导数公式 1•常数和基木初等函数的导数公式18. 隐函数的导数。
19、高阶导数的求法及表示。
微积分知识点总结ppt一、基本概念1. 导数的定义:导数的定义是函数在一点的导数,是该函数在这一点的切线的斜率。
2. 导数的性质:基本公式,和,积,商法则等。
3. 函数的极值:通过导数求函数的极值点及极值。
4. 函数的单调性:通过导数研究函数的单调性。
5. 函数的凹凸性:通过导数研究函数的凹凸性。
二、微分学1. 微分的概念:微分是函数在某一点处的导函数的表现,是切线的截距。
2. 微分的计算:通过导函数求微分。
3. 微分的应用:微分在函数的近似计算,误差估计及优化问题中的应用。
三、积分学1. 不定积分:通过求导数的逆运算求不定积分。
2. 定积分:通过Riemann和定积分求解面积及曲线弧长等问题。
3. 定积分的性质:定积分的基本性质及计算公式。
4. 定积分的应用:定积分在物理,力学,生物等领域的应用。
四、微积分基本定理1. 微积分基本定理的概念:微分与积分之间的关系。
2. 牛顿—莱布尼兹公式:微积分基本定理的应用。
3. 微积分基本定理的证明:微积分基本定理的几何和代数证明。
4. 微积分基本定理的应用:微积分基本定理在实际问题中的应用。
五、一元函数微积分1. 一元函数极限:一元函数极限的概念及计算方法。
2. 一元函数连续性:一元函数连续性的概念及计算方法。
3. 一元函数导数:一元函数导数的概念及计算方法。
4. 一元函数积分:一元函数积分的概念及计算方法。
六、多元函数微积分1. 多元函数极限:多元函数极限的概念及计算方法。
2. 多元函数连续性:多元函数连续性的概念及计算方法。
3. 多元函数偏导数:多元函数偏导数的概念及计算方法。
4. 多元函数积分:多元函数积分的概念及计算方法。
七、微分方程1. 微分方程的基本概念:微分方程的定义及分类。
2. 微分方程的解法:微分方程的解法及技巧。
3. 微分方程的应用:微分方程在物理,工程等领域的应用。
八、泰勒级数与麦克劳林级数1. 泰勒级数:泰勒级数的定义及计算方法。
第一章函数与极限一、内容提要1.函数是微积分研究的对象,定义域、对应法则构成其两要素。
2.极限分成数列极限与函数极限,是微积分学的基础,以后的内容绝大多数与此紧密相关。
3.无穷小与无穷大是两个特殊的变量,为了更精细的研究它们之间的关系,必须讨论它们之间比较时产生的阶的关系。
4.求极限的方法有多种,本章主要有利用极限运算法则及两个极限存在法则方法,并利用后者得到两个重要极限。
5.利用极限来描述连续这种直观现象是用极限对函数研究的第一次应用,并得到了初等函数的连续性。
作为连续函数,当其在闭区间上时具有特殊的性质。
二、重要结论1.lim an =a的定义为:∀ε>0,∃N>0,∀n>N,满足an−a<ε。
n→∞2.lim f (x)=A的定义为:∀ε>0,∃δ>0,∀x∈U(x,δ),满足f(x)−A<ε。
x→x0lim+f(x)=A的定义为:∀ε>0,∃δ>0,∀x∈(x,x+δ),满足f(x)−A<ε。
x→xlim−f(x)=A的定义为:∀ε>0,∃δ>0,∀x∈(x−δ,x),满足f(x)−A<ε。
x→xlim f(x)=A的定义为:∀ε>0,∃X>0,∀x满足x>X时,成立f(x)−A<ε。
x→∞lim f(x)=A的定义为:∀ε>0,∃X>0,∀x满足x>X时,成立f(x)−A<ε。
x→+∞lim f(x)=A的定义为:∀ε>0,∃X>0,∀x满足x<−X时,成立f(x)−A<ε。
x→−∞3.数列极限或函数极限若存在则必唯一。
4.收敛数列必为有界数列,函数极限存在有局部有界性。
5.函数极限若存在,则有局部保号性。
6.lim f (x)=A,当n→∞时,xn与上极限中的x有相同的变化趋势,则lim f(xn)=A。
n→∞7.lim f(x)=A⇔f(x)=A+o(1)。
高等数学一微积分考试必过归纳总结要点重点微积分是高等数学一门重要的学科,对于大部分学习该学科的学生来说,微积分考试是一个必须要过的关卡。
为了帮助大家更好地应对微积分考试,下面将对微积分的重点内容进行归纳总结,希望对大家有所帮助。
1. 导数与微分- 定义:导数是描述函数在某一点的变化率,微分是导数的代数形式。
- 基本公式:常见函数的导函数,如幂函数、指数函数、对数函数等。
- 高阶导数:描述函数变化率变化的快慢程度。
2. 极限与连续性- 极限的概念:函数逐渐趋近于某一值的过程。
- 常见极限:基本极限,如常数极限、幂函数极限、指数函数极限等。
- 连续性:函数在某一点上没有间断的特性。
- 常见连续函数:多项式函数、三角函数、指数函数等。
3. 微分中值定理与导数应用- 中值定理:介于两个点之间存在某一点,该点的切线斜率等于这两个点的斜率之差。
- 增量与微分:增量是函数值的改变量,微分是函数值的无穷小部分。
- 泰勒展开:将函数表示为幂级数的形式,用来逼近函数在某一点附近的近似值。
4. 积分与定积分- 不定积分:求函数的原函数,即求导的逆运算。
- 定积分:表示曲线下面的面积。
- 牛顿-莱布尼兹公式:定积分与不定积分的关系。
5. 微分方程与应用- 常微分方程:描述变化的过程中,一些量的关系式。
- 一阶微分方程:只涉及到一阶导数的方程。
- 区分可分离方程、一阶线性方程、齐次方程、可化为齐次形式的方程等常见类型。
以上就是微积分考试的必过归纳总结要点重点,希望对大家的学习有所帮助。
无论是在理论还是实际应用中,微积分都是一门重要的学科,需要大家掌握扎实。
希望大家通过复习和练习,能够在微积分考试中取得好成绩。
祝愿大家学业进步!。
微积分 (知识点概要)第一章函数、极限与连续1.1函数定义与符号1.2极限概念与运算法则1.3求极限的方法1.4函数的连续性1.1函数的定义(P1)1.若变量x、y之间存在着确定的对应关系,即当x的值给定时,唯一y值随之也就确定,则称y是x的函数,记为y=f(x)。
2.确定函数有两个要素:函数的定义域和对应关系。
例如:y=lgx2 与y =2lgx 就不是相同的函数,因为它们的定义域不同。
一旦在问题中设定函数y=f(x),记号“f”就是表示确定的对应规则,f(3)就是表示按此对应规则在x=3时所对应的函数值y等。
P6)称幂函数x k(k为常数),指数函数a x ,对数函数loga x (a为常数,a﹥0,a≠1)三角函数及反三角函数为基本初等函数。
凡由基本初等函数经有限次...加、减、乘、除及有限次复合且能用一个式子表达的函数,称为初等函数。
(1)有界性:(P5)对于函数f(x),若存在常数M、m对定义域内所有xf(x)≤M 称f(x)有上界f(x)≥m 称f(x)有下界,既有上界又有下界简称有界。
(2)奇偶性:(P3)若函数f(x)的定义域关于x=0的对称区间,又对于定义域内的任意x均有f(-x)=f(x) 则称f(x)为偶函数。
f(-x)=-f(x) 则称f(x)为奇函数。
(3)单调性:(P4)若函数f(x)在[a、b]上有定义对∀x∊[a、b]x1﹤x2时f(x1)≤f(x2) f(x) 在[a、b]上↗f(x1)≥f(x2) f(x) 在[a、b]上↘(4)周期性:(P5)若存在常数a(a≠0),使对任意x且有f(x)= f(x+a)则称f(x)为周期函数,称常数a 为f(x)的周期。
1.2极限概念与运算法则P11)当一个变量f(x)在x →a 的变化过程中变化趋势是无限地接近于一个常数b ,则称变量f(x)在x →a 的过程中极限存在。
称常数b 为它的极限,记为ax →lim f(x)=b 否则就称极限不存在。
大学微积分l 知识点总结【第一部分】大学阶段准备知识 1、不等式:ab 2ba ≥+ab2b a 22≥+3abc 3c b a ≥++ ()n n21n 21...a a a n a ...a a ≥+++abc 3c b a 333≥++2b a 2b a ab b1a 1222+≤+≤≤+b a b a b -a +≤±≤()nn 21n 21n 21n x ...x x y p p x ...x x x ...x x y ⎪⎭⎫⎝⎛+++=+++•••=的最大值为:则为常数,且扩展:若有柯西不等式:设a 1、a 2、...a n ,b 1、b 2、...b n 均是实数,则有:()()()()()()()()()22221222212n n 2211......a a b a ...b a b a n n b b b a +++++≤+++()时取等号为常数,当且仅当,n ...3,2,1i b a i i ==λλ2、函数周期性和对称性的常用结论1、若f (x+a )=±f (x+b ),则f (x )具有周期性;若f (a+x )=±f (b-x ),则f (x )具有对称性。
口诀:“内同表示周期性,内反表示对称性” 2、周期性(1)若f (x+a )=f (b+x ),则T=|b-a| (2)若f (x+a )=-f (b+x ),则T=2|b-a| (3)若f (x+a )=±1/f (x ),则T=2a(4)若f (x+a )=【1-f (x )】/【1+f (x )】,则T=2a (5)若f (x+a )=【1+f (x )】/【1-f (x )】,则T=4a 3、对称性(1)若f (a+x )=f (b-x ),则f (x )的对称轴为x=(a+b )/2(2)若f (a+x )=-f (b-x )+c ,则f (x )的图像关于((a+b )/2,c/2)对称引申双向不等式: 两侧均在ab ≥0或ab ≤0时取等号4、函数图象同时具备两种对称性,即两条对称轴,两个对称中心,一条对称轴和一个对称中心,则函数必定为周期函数,反之亦然。
大一(上) 微积分 知识点第一章 函数一、A ⋂B=∅,则A 、B 是分离的。
二、设有集合A 、B ,属于A 而不属于B 的所有元素构成的集合,称为A 与B 的差。
A-B={x|x ∈A 且x ∉B}(属于前者,不属于后者)三、集合运算律:①交换律、结合律、分配律与数的这三定律一致; ②摩根律:交的补等于补的并。
四、笛卡尔乘积:设有集合A 和B ,对∃x ∈A,∃y ∈B ,所有二元有序数组(x,,y )构成的集合。
五、相同函数的要求:①定义域相同②对应法则相同六、求反函数:反解互换七、关于函数的奇偶性,要注意:1、函数的奇偶性是就函数的定义域关于原点对称时而言的,若函数的定义域关于原点不对称,则函数无奇偶性可言,那么函数既不是奇函数也不是偶函数;2、判断函数的奇偶性一般是用函数奇偶性的定义:若对所有的)(f D x ∈,)()(x f x f =-成立,则)(x f 为偶函数;若对所有的)(f D x ∈,)()(x f x f -=-成立,则)(x f 为奇函数;若)()(x f x f =-或)()(x f x f -=-不能对所有的)(f D x ∈成立,则)(x f 既不是奇函数也不是偶函数;3、奇偶函数的运算性质:两偶函数之和是偶函数;两奇函数之和是奇函数;一奇一偶函数之和是非奇非偶函数(两函数均不恒等于零);两奇(或两偶)函数之积是偶函数;一奇一偶函数之积是奇函数。
第二章 极限与连续一、一个数列有极限,就称这个数列是收敛的,否则就称它是发散的。
二、极限存在定理:左、右极限都存在,且相等。
三、无穷小量的几个性质:1、limf(x)=0,则2、若limf(x)=)(lim x g =0,则0)()(lim =+x g x f3、若limf(x)=)(lim x g =0,则lim )(x f ·)(x g 0=4、若g(x)有界(|g(x)|<M ),且limf(x)=0,则limf(x)·g(x )=0四、无穷小量与无穷大量的关系:①若y 是无穷大量,则y 1是无穷小量;②若y (y ≠0)是无穷小量,则y1是无穷大量。
高中微积分重要知识点总结一、函数与极限1. 函数概念:函数是一种特殊的映射关系,它将一个自变量映射为一个因变量。
2. 函数的性质:奇函数、偶函数、周期函数等。
3. 极限概念:当自变量趋于某一值时,函数的取值趋于一个确定的常数。
4. 极限的性质:唯一性、有界性、保号性等。
5. 极限的计算方法:无穷小替换法、洛必达法则、泰勒展开式等。
二、导数与微分1. 导数的概念:函数在某一点的变化率。
2. 导数的性质:可加性、可积性、伊尔米特公式等。
3. 导数的计算方法:基本导数公式、复合函数求导、隐函数求导、参数方程求导等。
4. 微分的概念:函数值的变化量与自变量的变化量的比值。
5. 微分的性质:可加性、可积性、微分中值定理等。
三、微分中值定理与应用1. 微分中值定理:拉格朗日中值定理、柯西中值定理、罗尔中值定理等。
2. 泰勒公式及应用:泰勒展开式、泰勒公式的应用。
3. 凹凸性与拐点:二阶导数的概念、凹凸性的判定、拐点的判定。
四、不定积分与定积分1. 不定积分:初等函数的不定积分、换元积分法、分部积分法、有理函数的积分、三角函数的积分等。
2. 定积分:黎曼积分的概念、定积分的性质、定积分的计算方法、定积分的应用。
五、微分方程1. 微分方程的基本概念:微分方程的定义、微分方程的分类、微分方程的初值问题等。
2. 微分方程的解法:可分离变量法、齐次微分方程、常数变易法、一阶线性微分方程等。
3. 高阶微分方程:高阶微分方程的基本概念、高阶微分方程的解法、特解与通解等。
六、级数与收敛1. 级数的概念:无穷级数、收敛级数、发散级数、等比级数、调和级数等。
2. 收敛的判定:级数的收敛判定、级数的比较判别法、级数的积分判别法、级数的根值判别法等。
3. 级数的运算:级数的加法、级数的乘法、级数的分解、级数的换序等。
综上所述,高中微积分的重要知识点包括函数与极限、导数与微分、微分中值定理与应用、不定积分与定积分、微分方程以及级数与收敛等内容。
f -1 f f f n nn n高等数学微积分知识整理第一章 极限与连续一、函数1、函数的定义与要素(定义域、对应法则;函数相等的条件)2、函数的性质:单调性,奇偶性,周期性,有界性 *单调性的定义(以递增为例):∀x 1 , x 2 ∈ D f ,若x 1<x 2时f (x 1 ) ≤ f (x )在D f 上严格单调递增。
f (x 2 ),则f (x )在D f 上单调递增;将≤ 改为<,则*有界的定义: ∃M >0,对于∀x ∈ A ⊆ D f ,都有| f (x ) |≤ M ,则f (x )在A 上有界。
(f (x )≥m ∈R ,则 f (x )下有界;反之则上有界。
只有既上有界又下有界的函数才是有界函数。
)3、函数的运算:四则运算、复合运算、反函数*题型:判断某个函数由哪些基本初等函数复合而成。
*反函数存在的可能情况:①y 与 x 一一对应;②f (x )是某区间上的严格单调函数 (反函数的单调性与原来的函数相同)* D = R ;当x ∈ D 时,f -1 ( f (x )) = x ;当x ∈ R 时,f ( f -1 (x )) = x 。
4、初等函数:包括 6 大基本初等函数(常数函数、幂函数、指数函数、对数函数、三角函数、反三角函数)以及它们的有限次四则、复合运算构成的函数。
二、数列的极限1、数列的定义及表示方法2、数列的性质:单调性、有界性3、数列极限的定义:ε-N 语言(存在性命题要学会寻找充分条件,即增加对 N 的限制,从而找到 N ;绝对值不等式与不等式放缩也很重要)4、极限的四则运算5、无穷小量的性质(1) 若lim a = A ,则{a - A }是无穷小量。
(一种证明极限的方法) n →∞(2)有限个无穷小量相加、相乘还是无穷小量。
(3)无穷小量乘以有界量还是无穷小量。
6、收敛数列的性质 (1) 收敛数列必然有界 (2) 收敛数列的任一子列与该数列收敛于同一极限。
大专微积分知识点总结一、导数1. 导数的定义在微积分中,函数在某一点的导数是指该点处函数的变化率。
导数的定义通常用极限来描述,即当自变量取一个极小的增量时,函数值的增量与自变量的增量之比。
导数可以理解为函数在某一点的斜率,它告诉我们函数在该点的变化趋势。
2. 常见函数的导数常见的函数包括多项式函数、指数函数、对数函数和三角函数。
这些函数的导数可以通过基本的导数公式来求解,例如多项式函数的导数等于它的各项次数乘以对应的系数,并降低一次幂;指数函数的导数等于其本身的值乘以自然对数的底e;对数函数的导数等于其自变量的导数除以自变量的值;三角函数的导数可以由其对应的三角函数和导数之间的关系来求解。
3. 链式法则和隐式法则在求解复合函数的导数时,可以使用链式法则,即外函数的导数乘以内函数的导数。
而在求解含有隐式函数的导数时,可以使用隐式法则,即对含有隐函数的方程两边同时求导。
二、微分1. 微分的定义微分是导数的几何解释,它表示函数在某一点处的局部线性逼近。
微分可以理解为函数在某一点处的切线斜率,或者函数值的微小增量。
微分使得我们可以将函数的局部性质近似地用直线来描述,这为后续的积分提供了便利。
2. 微分的应用微分在物理、工程和经济等领域有广泛的应用。
例如,在物理学中,微分可以用来描述物体在某一点的速度和加速度;在工程领域,微分可以用来描述电路的响应和控制系统的稳定性;在经济学中,微分可以用来描述市场的需求和供给曲线。
三、积分1. 定积分的定义定积分是对函数在某一区间上的面积进行求解。
定积分可以理解为将函数图像下的面积分成若干个小矩形,然后求所有小矩形的面积之和。
定积分的几何解释是函数图像下的曲线和坐标轴之间的面积。
2. 定积分的性质定积分具有一些重要的性质,包括线性性、反对称性、区间可加性和积分中值定理等。
这些性质使得我们可以用定积分来求解各种函数的面积和体积,并且在各种应用中有很广泛的用途。
3. 定积分的应用定积分在物理学、工程学和金融学中有广泛的应用。
微积分所有知识点1. 极限啊,那可是微积分的基石呀!就好比盖房子得先有稳固的地基一样。
你想想,函数在某个点无限趋近的值,这多神奇呀!比如,当 x 趋近于0 时,1/x 会趋近于无穷大,是不是很有意思呢?2. 导数呢,简直就是微积分的秘密武器!它就像汽车的速度表,能告诉你函数变化的快慢。
比如一个物体运动的路程函数,它的导数就是速度呀,想象一下你在赛跑,能实时知道自己的速度,酷不酷?3. 积分呀,那是在积累“财富”呢!把小小的部分一点点加起来,最后得到一个大的结果。
就好比你每天存一点钱,时间长了就有一笔可观的存款了。
例如求曲线下的面积,通过积分就能算出来啦,神奇吧!4. 微分中值定理,听起来高大上吧?其实就像在一段路程中总能找到一个特别的点一样。
比如说,在一段曲线中,肯定有一个地方的切线斜率和两端连线的斜率相等,厉害吧!5. 泰勒公式,那可是近似的好帮手哟!它能把复杂的函数用简单的多项式来近似。
就好像有个难搞的家伙,突然变得很听话好接近了。
比如可以用泰勒公式来近似计算三角函数的值哦!6. 定积分的应用,那可多了去了。
像计算体积呀、弧长呀什么的。
就像是在生活中,你可以用它来计算各种实际问题,多有用呀!比如说计算一个圆柱的体积。
7. 无穷级数,哇,那是数不尽的奇妙呀!就如同天上的星星一样多而神秘。
可以用它来表示一些无法用常规式子表示的东西呢,很厉害吧!比如用无穷级数来表示某些特殊函数。
8. 多元函数微积分,那可复杂又有趣呢!就像在一个丰富多彩的世界里探索。
比如研究一个三维物体的性质,是不是感觉很有挑战性呀!我觉得呀,微积分就像一把神奇的钥匙,能打开好多知识的大门,让人深陷其中,不能自拔!。