力学答案 第九章 振动
- 格式:doc
- 大小:935.50 KB
- 文档页数:21
第九章一、选择题1、弹簧振子作简谐运动时,如果振幅增加为原来的两倍,则它的总能量是[ ](A) 原来总能量的2倍 (B) 原来总能量的4倍(C) 原来总能量的一半 (D) 不发生变化2、关于共振,下列说法正确的是:[ ](A) 当振子作无阻尼受迫振动时,共振时振幅为无限大(B) 当振子作无阻尼受迫振动时,共振的振幅很大,但不会无限大(C) 受迫振动是一个稳定的简谐振动(D) 共振不是受迫振动3、弹簧振子作简谐运动时,如果振幅增加为原来的两倍,而频率减小为原来的一半,则它的总能量是[ ](A)原来总能量的2倍(B)原来总能量的4倍(C)原来总能量的一半(D)不发生变化4、对一个作简谐振动的物体,下面哪种说法是正确的?[ ](A) 物体处在运动正方向的端点时,速度和加速度都达到最大值(B) 物体位于平衡位置且向负方向运动时,速度和加速度都为零(C) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零(D) 物体处在负方向的端点时,速度最大,加速度为零5、以下关于简谐振动的合成,说法正确的是[ ](A)两个同方向、同频率简谐振动合成后还是一个简谐振动,频率发生了改变(B)两个同方向、同频率简谐振动合成后还是一个简谐振动,频率不发生改变(C)两个同方向、同频率简谐振动合成后不是一个简谐振动,频率不发生改变(D)两个同方向、同频率简谐振动合成后不是一个简谐振动,频率发生了改变6、以下关于驻波的说法错误的是[ ](A)驻波是入射波和反射波叠加的结果(B)驻波中,除了节点外,各点均做同频率的简谐振动(C)驻波中,波腹和波节等距离交互排列(D )两相邻波节间各点的振动位相相同,一波节两侧的点的振动位相也相同7、一质点同时参与两个同方向的简谐振动,振动方程分别为)45cos(05.01π+=t x ,250.05cos(5)4x t π=+,则合振动方程为[ ] (A) 0 (B) 30.05cos(5)2x t π=+ (C) 30.1cos(5)2x t π=+ (D)30.1cos(10)2x t π=+8、同一个弹簧振子,使它分别在光滑水平面上,竖直方向上,光滑的斜面上以相同的振幅作简谐振动,则:[ ](A )它们的频率不同 (B )通过平衡位置时的动能不同(C )到达平衡位置时弹簧形变相同 (D )它们的周期相同9、竖直弹簧振子系统谐振周期为T ,将小球放入水中,水的浮力恒定,粘滞阻力及弹簧质量不计,若使振子沿铅直方向振动起来,则:[ ](A) 振子仍作简谐振动,但周期<T (B) 振子仍作简谐振动,但周期>T(C) 振子仍作简谐振动,且周期仍为T (D) 振子不再作简谐振动10、一质点的振动方程为:)3/2cos(2.0ππ+=t x ,则在t=0.3 (s )时:[ ](A) 质点在平衡位置右方,沿x 轴负向运动(B) 质点在平衡位置左方,沿x 轴正向运动(C) 质点在平衡位置右方,沿x 轴正向运动(D) 质点在平衡位置左方,沿x 轴负向运动11、弹簧振子作简谐振动时的总能量为E ,如果振幅增大为原来的两倍,振动质量减少为原来的一半,则总能量E’为:[ ](A )E’=E (B )E’=2E (C )E’=0.5E (D )E’=4E12、质量为m 的物体作简谐振动,振幅为A ,最大加速度为a ,则通过平衡位置时的动能为:[ ](A )0.5maA 2 (B) 0.5ma 2A 2 (C) ma 2A 2 (D) 0.5maA二、填空题1、两个同方向同频率的简谐振动合成后的运动是 。
《振动力学》习题集(含答案)1.1 质量为m 的质点由长度为l 、质量为m 1的均质细杆约束在铅锤平面内作微幅摆动,如图E1.1所示。
求系统的固有频率。
图E1.1解: 系统的动能为:()222121x I l x m T +=其中I 为杆关于铰点的转动惯量:2102120131l m dx x l m x dx l m I l l ⎰⎰==⎪⎭⎫⎝⎛=则有:()221221223616121x l m m x l m x ml T +=+=系统的势能为:()()()2121212414121 cos 12cos 1glx m m glx m mglx x lg m x mgl U +=+=-⋅+-=利用x xn ω= 和U T =可得: ()()lm m gm m n 113223++=ω1.2 质量为m 、半径为R 的均质柱体在水平面上作无滑动的微幅滚动,在CA=a 的A 点系有两根弹性刚度系数为k 的水平弹簧,如图E1.2所示。
求系统的固有频率。
图E1.2解:如图,令θ为柱体的转角,则系统的动能和势能分别为:22222243212121θθθ mR mR mR I T B =⎪⎭⎫ ⎝⎛+==()[]()222212θθa R k a R k U +=+⋅=利用θωθn= 和U T =可得: ()mkR a R mR a R k n 343422+=+=ω1.3 转动惯量为J 的圆盘由三段抗扭刚度分别为1k ,2k 和3k 的轴约束,如图E1.3所示。
求系统的固有频率。
图E1.3解: 系统的动能为:221θ J T =2k 和3k 相当于串联,则有:332232 , θθθθθk k =+=以上两式联立可得:θθθθ32233232 , k k k k k k +=+=系统的势能为:()232323212332222*********θθθθ⎥⎦⎤⎢⎣⎡+++=++=k k k k k k k k k k U利用θωθn= 和U T =可得: ()()3232132k k J k k k k k n +++=ω1.4 在图E1.4所示的系统中,已知()b a m i k i , ,3,2,1 和=,横杆质量不计。
第九章 振动学习题9-1 一小球与轻弹簧组成的振动系统,按(m) 3ππ8cos 05.0⎪⎭⎫ ⎝⎛+=t x ,的规律做自由振动,试求(1)振动的角频率、周期、振幅、初相、速度最大值和加速度最大值;(2)t=1s ,2s ,10s 等时刻的相位;(3)分别画出位移、速度和加速度随时间变化的关系曲线。
解:(1)ω=8πs -1,T=2π/ω=0.25s ,A=0.05m ,ϕ0=π/3,m A ω=v ,2m a A ω=(2)π=8π3t φ+ (3)略9-2 一远洋货轮质量为m ,浮在水面时其水平截面积为S 。
设在水面附近货轮的水平截面积近似相等,水的密度为ρ,且不计水的粘滞阻力。
(1)证明货轮在水中做振幅较小的竖直自由运动是谐振动;(2)求振动周期。
解:(1)船处于静止状态时gSh mg ρ=,船振动的一瞬间()F gS h y mg ρ=-++ 得F gSy ρ=-,令k gS ρ=,即F ky =-,货轮竖直自由运动是谐振动。
(2)ω==,2π2T ω==9-3 设地球是一个密度为ρ的均匀球体。
现假定沿直径凿通一条隧道,一质点在隧道内做无摩擦运动。
(1)证明此质点的运动是谐振动;(2)计算其振动周期。
解:以球心为原点建立坐标轴Ox 。
质点距球心x 时所受力为324433x mF G G mx x πρπρ=-=-令43k G m πρ=,则有F kx =-,即质点做谐振动。
(2)ω==2πT ω== 9-4 一放置在水平桌面上的弹簧振子,振幅A =2.0 ×10-2 m ,周期T s 。
当t =0时,(1)物体在正方向端点;(2)物体在平衡位置,向负方向运动;(3)物体在x ×10-2m 处,向负方向运动;(4)物体在x =-×10-2 m 处,向正方向运动。
求以上各种情况的振动方程。
解:ω=2π/T=4πs -1(1)ϕ0=0,0.02cos4(m)x t π=(2)ϕ0=π/2,0.02cos 4(m)2x t ππ⎛⎫=+ ⎪⎝⎭(3)ϕ0=π/3,0.02cos 4(m)3x t ππ⎛⎫=+ ⎪⎝⎭(4)ϕ0=4π/3,40.02cos 4(m)3x t ππ⎛⎫=+ ⎪⎝⎭9-5 有一弹簧,当其下端挂一质量为m 的物体时,伸长量为9.8 ×10-2 m 。
大学物理活页答案(振动和波部分)第一节 简谐振动1. D2.D3.B4.B5.B6.A7. X=0.02cos (52π−π2) 8. 2:1 9. 0.05m -37° 10. π or 3π 11. 012.解: 周期 3/2/2=ω=πT s , 振幅 A = 0.1 m , 初相 φ= 2π/3, v max = A = 0.3π m/s ,a max = 2A = 0.9π2 m/s 2 .13.提示:旋转矢量法(1)x =0.1cos (πt −π2)(2)x =0.1cos (πt +π3) (3)x =0.1cos (πt +π)14. (1)x =0.08cos (π2t +π3)t=1 x=-0.069m F=-kx=−m ω2x =2.7×10−4(2)π3=π2t t=0.67s第二节 振动能量和振动的合成1. D2.D3.D4.B5.B6. )(212121k k m k k +=νπ 提示:弹簧串联公式等效于电阻并联 7. 0.02m 8. π 0 提示:两个旋转矢量反向9. 402hz10. A=0.1m 位相等于113° 提示:两个旋转矢量垂直。
11. mv 0=(m +M)v ′ 12kA 2=1(m+M)v ′22 A=0.025m ω=√k m+M =40 x=0.025cos (40t −π/2)12. x=0.02cos (4t +π/3)x (m) ω π/3 π/3 t = 0 0.04 0.08 -0.04 -0.08 O A A机械波第一节 简谐波1. B2. A3.D4.C5.A (注意图缺:振幅A=0.01m )6.B7. 503.2 8. a 向下 b 向上 c 向上 d 向下 (追赶前方质元)9. π 10. 4π 或011.解:(1) )1024cos(1.0x t y π-π=)201(4cos 1.0x t -π= (SI) (2) t 1 = T /4 = (1 /8) s ,x 1 = λ /4 = (10 /4) m 处质点的位移)80/4/(4cos 1.01λ-π=T y m 1.0)818/1(4cos 1.0=-π= (3) 振速 )20/(4sin 4.0x t ty -ππ-=∂∂=v . )4/1(212==T t s ,在 x 1 = λ /4 = (10 /4) m 处质点的振速 26.1)21sin(4.02-=π-ππ-=v m/s 12.λ=0.4m u =0.05 k =ωu =2πλ=5π ω=π4 ϕ0=π2−2πT ∙T 2=−π2 y (x,t )=0.06cos (π4t −5πx −π2) y (0.2,t )=0.06cos (π4t −3π2)13. 210)cos sin 3(21-⨯-=t t y P ωω 210)]cos()21cos(3(21-⨯π++π-=t t ωω )3/4cos(1012π+⨯=-t ω (SI). 波的表达式为:]2/234cos[1012λλω-π-π+⨯=-x t y )312cos(1012π+π-⨯=-λωx t (SI) 第二节 波的干涉 驻波 电磁波1.D2.C3. D4.B5.B6.A7.C8. y =−2Acos (ωt ) ðy ðt =2Aωsin (ωt)9. 2A (提示:两振动同相)10. 0.5m 11. Acos2π(t T −x λ) A12. > 70.8hz 13. 7.96×10-2 W/m 214.解:(1) 反射点是固定端,所以反射有相位突变π,且反射波振幅为A ,因此反 射波的表达式为 ])//(2cos[2π+-π=T t x A y λ(2) 驻波的表达式是 21y y y += )21/2cos()21/2cos(2π-ππ+π=T t x A λ (3) 波腹位置: π=π+πn x 21/2λ, λ)21(21-=n x , n = 1, 2, 3, 4,… 波节位置: π+π=π+π2121/2n x λ λn x 21= , n = 1, 2, 3, 4,…15.解:(1) 与波动的标准表达式 )/(2cos λνx t A y -π= 对比可得: ν = 4 Hz , λ = 1.50 m , 波速 u = λν = 6.00 m/s(2) 节点位置 )21(3/4π+π±=πn x )21(3+±=n x m , n = 0,1,2,3, …(3) 波腹位置 π±=πn x 3/44/3n x ±= m , n = 0,1,2,3, …。
《振动力学》习题集(含答案)1.1 质量为m 的质点由长度为l 、质量为m 1的均质细杆约束在铅锤平面内作微幅摆动,如图E1.1所示。
求系统的固有频率。
图E1.1解:系统的动能为:()222121x I l x m T +=其中I 为杆关于铰点的转动惯量:2102120131l m dx x l m x dx l m I l l ⎰⎰==⎪⎭⎫⎝⎛=则有:()221221223616121x l m m x l m x ml T +=+=系统的势能为:()()()2121212414121 cos 12cos 1glx m m glx m mglx x lg m x mgl U +=+=-⋅+-=利用x xn ω= 和U T =可得:()()lm m gm m n 113223++=ω1.2 质量为m 、半径为R 的均质柱体在水平面上作无滑动的微幅滚动,在CA=a 的A 点系有两根弹性刚度系数为k 的水平弹簧,如图E1.2所示。
求系统的固有频率。
图E1.2解:如图,令θ为柱体的转角,则系统的动能和势能分别为:22222243212121θθθ mR mR mR I T B =⎪⎭⎫ ⎝⎛+==()[]()222212θθa R k a R k U +=+⋅=利用θωθn= 和U T =可得:()mkR a R mR a R k n 343422+=+=ω1.3 转动惯量为J 的圆盘由三段抗扭刚度分别为1k ,2k 和3k 的轴约束,如图E1.3所示。
求系统的固有频率。
图E1.3解:系统的动能为:221θ J T =2k 和3k 相当于串联,则有:332232 , θθθθθk k =+=以上两式联立可得:θθθθ32233232 , k k k k k k +=+=系统的势能为:()232323212332222121212121θθθθ⎥⎦⎤⎢⎣⎡+++=++=k k k k k k k k k k U利用θωθn= 和U T =可得: ()()3232132k k J k k k k k n +++=ω1.4 在图E1.4所示的系统中,已知()b a m i k i , ,3,2,1 和=,横杆质量不计。
第九章 振动学习题9-1 一小球与轻弹簧组成的振动系统,按(m) 3ππ8cos 05.0⎪⎭⎫ ⎝⎛+=t x ,的规律做自由振动,试求(1)振动的角频率、周期、振幅、初相、速度最大值和加速度最大值;(2)t=1s ,2s ,10s 等时刻的相位;(3)分别画出位移、速度和加速度随时间变化的关系曲线。
解:(1)ω=8πs -1,T=2π/ω=0.25s ,A=0.05m ,ϕ0=π/3,m A ω=v ,2m a A ω=(2)π=8π3t φ+ (3)略 9-2 一远洋货轮质量为m ,浮在水面时其水平截面积为S 。
设在水面附近货轮的水平截面积近似相等,水的密度为ρ,且不计水的粘滞阻力。
(1)证明货轮在水中做振幅较小的竖直自由运动是谐振动;(2)求振动周期。
解:(1)船处于静止状态时gSh mg ρ=,船振动的一瞬间()F gS h y mg ρ=-++ 得F gSy ρ=-,令k gS ρ=,即F ky =-,货轮竖直自由运动是谐振动。
(2)ω==,2π2T ω==9-3 设地球是一个密度为ρ的均匀球体。
现假定沿直径凿通一条隧道,一质点在隧道内做无摩擦运动。
(1)证明此质点的运动是谐振动;(2)计算其振动周期。
解:以球心为原点建立坐标轴Ox 。
质点距球心x 时所受力为324433x m F G G mx x πρπρ=-=- 令43k G m πρ=,则有F kx =-,即质点做谐振动。
(2)ω==2πT ω== 9-4 一放置在水平桌面上的弹簧振子,振幅A =2.0 ×10-2 m ,周期T =0.50s 。
当t =0时,(1)物体在正方向端点;(2)物体在平衡位置,向负方向运动;(3)物体在x =1.0×10-2m 处,向负方向运动;(4)物体在x =-1.0×10-2 m 处,向正方向运动。
求以上各种情况的振动方程。
解:ω=2π/T=4πs -1(1)ϕ0=0,0.02cos4(m)x t π=(2)ϕ0=π/2,0.02cos 4(m)2x t ππ⎛⎫=+ ⎪⎝⎭ (3)ϕ0=π/3,0.02cos 4(m)3x t ππ⎛⎫=+ ⎪⎝⎭ (4)ϕ0=4π/3,40.02cos 4(m)3x t ππ⎛⎫=+ ⎪⎝⎭9-5 有一弹簧,当其下端挂一质量为m 的物体时,伸长量为9.8 ×10-2 m 。
第九章 振动9.2.1 一刚体可绕水平轴摆动.已知刚体质量为m ,其重心C 和轴O 间的距离为h ,刚体对转动轴线的转动惯量为I.问刚体围绕平衡位置的微小摆动是否是简谐运动?如果是,求固有频率,不计一切阻力.[解 答]刚体受力如图所示,规定逆时针为转动正方向,φ为与OC 铅垂线(为平衡位置)的夹角,由对O 的转动定理;I M mghsin βφ==-因φ很小故sin φφ=222220d I mgh 0dtd mgh0dt I φφφφω∴+=+==9.2.2 轻弹簧与物体的连接如图所示,物体质量为m ,轻弹簧的劲度系数为1k 和2k ,支承面是理想光滑面,求系统振动的固有频率.[解 答]以物体m 为隔离体,水平方向受12k ,k 的弹性力12F ,F ,以平衡位置为原点建立坐标系O x -,水平向右为x 轴正方向。
设m 处于O 点对两弹簧的伸长量为0,即两个弹簧都处于原长状态。
m 发生一小位移x 之后,弹簧1k 的伸长量为x ,弹簧2k 被压缩长也为x 。
故物体受力为:x 1212F k x k x=(k k )x =---+ (线性恢复力)m 相当于受到刚度系数为12k=k k +的单一弹簧的作用 由牛顿第二定律:21222122d xm (k k )x dt d xm (k k )x=0dt =-+++2120k k m ω+=9.2.3一垂直悬挂的弹簧振子,振子质量为m ,弹簧的劲度系数为1k .若在振子和弹簧1k 之间串联另一弹簧,使系统的频率减少一半.串联上的弹簧的劲度系数2k 应是1k 的多少倍?[解 答]未串时:平衡位置 1mg k=212212d x mg k (x )m dtd xm k x=0dt-+=+0ω=串联另一刚度系数为2k 的弹簧:此时弹簧组的劲度系数为k ?=112212121212121212k mg ;k mg k k mgmg k k k k /(k k )mg /k k k k /(k k )=⎫⎬=⎭++==+=∴=+0ωω'==前已知:02ωω='02ωω'===前解得:211k k 3= 9.2.4单摆周期的研究.(1)单摆悬挂于以加速度a 沿水平方向直线行驶的车厢内.(2)单摆悬挂于以加速度a 上升的电梯内.(3)单摆悬挂于以加速度a(<g)下降的电梯内.求此三种情况下单摆的周期.摆长为.[解 答](1)以车为参照系,摆锤为隔离体,受重力W ,摆线张力T ,惯性力f ma *=-。
平衡位置处有:T mg f 0*++= 由此可得平衡位置时摆线铅直夹角atg g α=(1)由平衡位置发生小角位移θ由牛顿第二定律:在切线方向的分量式sin()cos()mg ma ma ταθαθ-+++=即 (sin cos cos sin )(cos cos sin sin )g a a ταθαθαθαθ-++-=θ 角很小,故sin ,cos 1θθθ==.于是得:(sin cos )(cos sin )g a a ταθααθα-++-=利用(1)式,sin cos ,g a αα=则22(cos sin )d g a a dt τθααθ-+==即 22cos sin0d g a dt θααθ++=因为sinαα==所以02T ω===(2)以电梯为参照系,惯性力与重力沿铅垂方向,同于的分析摆线为铅垂位置时为平衡态.2T =(3) 同(2)的分析得:2T =9.2.5在通常温度下,固体内原子振动的频率数量级为310/s .设想各原子之间彼此以弹簧连结.一摩尔银的质量为108g 且包含236.0210⨯个原子.现仅考虑一列原子,且假设只有一个原子以上述频率振动,其它原子皆处于静止,计算一根弹簧的劲度系数.[解 答]由9.2.2知0ω=这里 12k k k ==0ω∴=201354(/)2k m N m ω==9.2.6一弹簧振子,弹簧的劲度系数为k 9.8N/m =,物体质量为20g现将弹簧自平衡位置拉长并给物体一远离平衡位置的速度,其大小为7.0m/s ,求该振子的运动学方程(SI).[解 答]以平衡位置为原点建立坐标系O-x,水平向右为正方向。
弹簧振子的运动方程为:0cos(),9.8(/),200x A t k N m m g ωα=+==故07(/)rad s ω==0t =时,00),7.0(/)x x cm cm s νν====2310()A m -==⨯0t =时,000cos sin x A A ανωα=⎫⎬=-⎭→0.34()rad α=- 弹簧振子的运动方程:2310cos(70.34)x t -=⨯-9.2.7质量为31.010g ⨯的物体悬挂在劲度系数为61.010dyn /cm ⨯的弹簧下面.(1)求其振动的周期.(2)在t 0=时,物体距平衡位置的位移为0.5cm +,速度为15cm/s +,求其运动学方程.[解答]以平衡位置为原点,建立坐标系O-x,竖直向下为正方向。
(1)0220.199()T sπω===(2)设运动方程为:00cos()31.6cossinx A tx AtAωαωανωα=+==⎧=⎨=-⎩时,即cos0.726sin0.688xAAαναω⎧==⎪⎪⎨⎪=-=--⎪⎩故0.759()43.49radα=-=-所以运动学方程为:36.8910cos(31.60.759)x t-=⨯-9.2.8(1)一简谐振动的运动规律为x5cos(8t+)4π=,若计时起点提前0.5s,其运动学方程如何表示?欲使其初相为零,计时起点应提前或推迟若干?(2)一简谐振动的运动学方程为x8sin(3t)π=-.若计时起点推迟1s,它的初相是多少?欲使其初相为零,应怎样调整计时起点?(3)画出上面两种简谐振动在计时起点改变前后t0=时旋转矢量的位置.[解答](1)5cos(8)4x t π=+ (1)计时起点提前0.5,则0.5t t '=+,代入(1)式,运动方程为:5cos[8(0.5))5cos[84)44x t t ππ''=-+=-+设计时起点提前0t 秒,可使初相为零,即0t t t ''=+,代入(1)式得:05cos(88)5cos(8)4x t t t π''''=-+=有0080,432t t ππ-+==即即提前32π秒时计时可使其初相为零。
(2)38sin(3)8cos(3)2x t t ππ=-=-(2)计时起点提前0t 秒时0t t t '=+代入038cos(33)2x t t π'=--若计时起点推迟一秒,则01t =-,此时初相为0333322t αππ=--=-若要03302t απ=--=,需02t π=-即推迟2π秒计时时,可使初相为零。
(3) 见图a,b(a)(b)9.2.9 画出某简谐振动的位移——时间曲线,其运动规律为1x 2c o s 2(t )4π=+ (SI 制)[解 答]12cos 2()4x t π=+(SI 制) 令14t t '=+则有2cos2x t π'=为周期引的余弦曲线。
画出 x t '- 曲线,再根据14t t '=-的关系。
将ox 轴右移14周期。
9.2.10半径为R 的薄圆环静止于刀口O 上,令其在自身平面内作微小摆动.(1)求其振动的周期.(2)求与其振动周期相等的单摆的长度.(3)将圆环去掉23而刀口支于剩余圆弧的中央,求其周期与整圆451845cos(84x t '=-+)x π=t '32t π-2x98()s环摆动周期之比.[解 答](1)该装置为物理摆,利用9.2.1对一般刚体得到的公式02T ω==为薄圆球质量。
h R =根据平行轴定理:222200222I I I moo mR mR mR T ''==+=+=∴==(2)根据单摆公式02T=由0,T T = 可得 2R = (3)该装置为物理摆,仍利用公式2T '=由对称性可知,质心位于oo '上。
m '为剩余圆弧的质量,h oc '=。
根据平衡轴定理。
2220()C C I m R I m o c I m R h ''''''''==+=+-2220()2C I I m n m R m R h m h m Rh '''''''''''=+=--+=故22 1.T T T ''===即T T '=可知不管圆环去掉多少,只要刀口高于剩余圆弧中央,其振动周期均不变。
9.2.11 1m 长的杆绕过其一端的水平轴作微小摆动而成为物理摆.另一线度极小的物体与杆的质量相等.固定于杆上离转轴为h 的地方.用0T 表示未加小物体时杆子的周期,用T 表示加上小物体以后的周期.(1)求当h 50cm =和h 100cm =时的比值0TT .(2)是否存在某一h 值,可令0T T =,若有可能,求出h 值并解释为什么h 取此值时周期不变.[解 答](1)利用9.2.1得到的物理摆公式T 2π=设0m 为杆质量,为杆长,未加小物体时, 加小物体后,200c2001I m ,m m ,h 322T 223ggπ=====02200c 0m m h1h 2I m m h ,m 2m ,h 32m 42+'''=+===+00m h T 2hg()42π+=+2h T 3g h T 22h2g()42+=⨯=++00T 100,h 50,h 0.9352T T 4100,h 100,h 1.155T 3==========即时,即时,(2)由0T1T =,即2223h 2h +=+可得:122h ,h 03==讨论:由0T 2=23。
在12h 3=处加另一物体,相当于使等效单摆的摆锤质量增加而摆长不变,故周期不变。
2h 0=,即小物体置于转动轴上,对运动无影响。
故周期不变。
9.2.12天花板下以0.9m 长的轻线悬挂一个质量为0.9kg 的小球.最初小球静止,后另有一质量为0.1kg 的小球沿水平方向以1.0m/s 的速度与它发生完全非弹性碰撞。
求两小球碰撞后的运动学方程.[解 答]以小球12m ,m 为物体系。
碰撞前后的过程始末,在过程中认为12m ,m 仍在原小球2m 静止处。
水平方向动量守恒:22122212m (m m )m 0.1(m /s)m m x xxx νννν=+==+碰撞后成为一个单摆作简谐运动,设其运动方程为0A cos(t )θωα=+以碰后小球12m ,m 获得速度0.1(m/s),而0θ=时为计时起点,即0t 000.1t 00,(0.93.39xνθθω========时角速度)A 0.0337θω===由cos 0α=,00sin 1,A 2θπααω=-=-=-故运动方程0.0337cos(3.3t )2πθ=-在θ很小的条件下,x θ=,所以用线量描述的运动方程为x 0.03cos(3.3t )2θ=-。