振动习题答案上课讲义
- 格式:doc
- 大小:772.00 KB
- 文档页数:27
大学物理(第四版)课后习题及答案机械振动13 机械振动解答13-1 有一弹簧振子,振幅A=2.0×10-2m,周期T=1.0s,初相ϕ=3π/4。
试写出它的运动方程,并做出x--t图、v--t 图和a--t图。
13-1分析弹簧振子的振动是简谐运动。
振幅A、初相ϕ、角频率ω是简谐运动方程x=Acos(ωt+ϕ)的三个特征量。
求运动方程就要设法确定这三个物理量。
题中除A、ϕ已知外,ω可通过关系式ω=2π确定。
振子运动的速度T和加速度的计算仍与质点运动学中的计算方法相同。
解因ω=2π,则运动方程 T⎛2πt⎛x=Acos(ωt+ϕ)=Acos t+ϕ⎛⎛T⎛根据题中给出的数据得x=(2.0⨯10-2m)cos[(2πs-1)t+0.75π]振子的速度和加速度分别为v=dx/dt=-(4π⨯10-2m⋅s-1)sin[(2πs-1)t+0.75π] a=d2x/dt2=-(8π2⨯10-2m⋅s-1)cos[(2πs-1)t+0.75πx-t、v-t及a-t图如图13-l所示π⎛⎛13-2 若简谐运动方程为x=(0.01m)cos⎛(20πs-1)t+⎛,求:(1)振幅、频率、角频率、周期和4⎛⎛初相;(2)t=2s 时的位移、速度和加速度。
13-2分析可采用比较法求解。
将已知的简谐运动方程与简谐运动方程的一般形式x=Acos(ωt+ϕ)作比较,即可求得各特征量。
运用与上题相同的处理方法,写出位移、速度、加速度的表达式,代入t值后,即可求得结果。
解(l)将x=(0.10m)cos[(20πs-1)t+0.25π]与x=Acos(ωt+ϕ)比较后可得:振幅A= 0.10 m,角频率ω=20πs-1,初相ϕ=0.25π,则周期T=2π/ω=0.1s,频率ν=1/T=10Hz。
(2)t= 2s时的位移、速度、加速度分别为x=(0.10m)cos(40π+0.25π)=7.07⨯10-2m v=dx/dt=-(2πm⋅s-1)sin(40π+0.25π)a=d2x/dt2=-(40π2m⋅s-2)cos(40π+0.25π)13-3 设地球是一个半径为R的均匀球体,密度ρ5.5×103kg•m。
机械振动复习课讲义(1) 知识点精要简谐运动如果质点的位移与时间的关系遵从正弦函数的规律,即它的振动图象(x-t图象)是一条正弦曲线,这样的振动叫做简谐振动。
平衡位置 振动方向上,受力平衡的位置。
弹簧振子 弹簧振子的周期简谐运动的描述简谐运动的表达式和图象描述i) 表达式振幅:,振动的最大位移频率:为圆频率,简谐运动的快慢。
为运动周期()。
为频率。
相位: 括号内位相位,为初相(的相位)相位差(两个具有相同频率的简谐运动之间)ii) 图象描述振幅、频率、相位、不同时刻质点的位置、质点的运动情况简谐运动的回复力和能量回复力i) 如何理解式子中的负号?ii) 如果质点所受的力与它偏离平衡位置的大小成正比,并且总是指向平衡位置,质点的运动就是简谐运动。
iii) 振动过程中的能量转化情况单摆单摆的周期公式 (应用:如何用单摆测重力加速度)单摆的回复力外力作用下的振动阻尼振动 频率不变,振幅逐渐变小受破振动 受周期性外力的作用,频率与外力的频率相同共振现象 固有频率与驱动力频率越接近,受迫振动的振幅越强;等于时振幅最强。
(2) 习题练习1.判断正误i) 在振动中,平衡位置就是物体振动范围的中心位置。
( )ii) 所有振动都可以看做是简谐振动。
( )iii) 机械振动的位移总是以平衡位置为起点的位移。
( )iv) 简谐运动一定是水平方向上的运动。
( )v) 物体做简谐运动时一定可以得到正弦曲线形的轨迹线。
( )vi) 只要物体的振动图象是正弦曲线,一定是做简谐运动。
( )2.作简谐运动的物体每次通过平衡位置时 ( )(A)位移为零,动能为零 (B)动能最大,势能最小(C)速率最大,振动加速度为零 (D)速率最大,回复力不一定为零3.作简谐运动的物体,当它每次经过同一位置时,一定相同的物理量是( )(A)速度 (B)位移 (C)回复力 (D)加速度4.作简谐运动的物体,回复力和位移的关系图是下图所给四个图像中的( )5.关于简谐运动的位移、加速度和速度的关系,下列说法中正确的是(A. 位移减少时,加速度减少,速度也减少B. 位移方向总是更加速度方向相反,跟速度方向相同C. 物体的运动方向指向平衡位置时,速度方向跟位移方向相反;背离平衡位置时,速度方向跟位移方向相同D. 物体向负方向运动时,加速度方向跟速度方向相同;向正方向运动时,加速度方向跟速度方向相反。
机械振动基础课后答案机械振动课件【--文秘基础】引导语:振动物体受回复力等于零的位置;也是振动停止后,振动物体所在位置;平衡位置通常在振动轨迹的中点。
下面是为你带来的机械振动课件,希望对你有所帮助。
1、什么是简谐运动?什么是回复力?2、掌握简谐运动的特点和各量的变化规律1、机械振动:物体在平衡位置所做的往复运动叫机械振动2、回复力:总是指向平衡位置,并使物体回到平衡位置的力叫回复力注意:回复力是效果力,是物体所受力的合力或合力的分力 3、简谐运动(1)定义:物体在与偏离平衡位置的位移大小成正比,总是指向平衡位置的力作用下的振动叫简谐运动(2)简谐运动的特征:回复力F:总是指向平衡位置,其大小与偏离平衡位置的位移大小成正比。
公式:F??kx加速度a:总是指向平衡位置,其大小与偏离平衡位置的位移大小成正比。
公式:a??kxm(3)各量的方向特点:位移x:方向偏离平衡位置回复力F:总是指向平衡位置加速度a:总是指向平衡位置,速度v:除两个端点外的任何位置,速度有两个可能的方向(4)各量的大小变化规律请同学们思考:动量和动能的大小变化规律所以:简谐运动是加速度变化的变速运动。
(5)简谐运动的对称性:在简谐运动中对称的两个点有如下的几个关系:位移大小相等方向相反;回复力大小相等方向相反;加速度的大小相等方向相反;速度的大小相等,方向可能相同可能相反;动量的大小相等,方向可能相同可能相反;动能的大小相等;弹簧振子:理想化的物理模型音叉叉股的上各点的振动,弹簧片上各点的振动,钟摆摆锤的振动等简谐运动是最简单的振动形式,要研究振动只有从简谐运动开始例1:下列哪些物体的运动属于机械振动() A、在水面上随波运动的小舟 B、在地面上拍打的篮球 C、摩托车行驶时的颠簸 D、秋千的运动例2、关于振动的平衡位置,下列说法正确的是() A、位移为零 B、回复力为零 C、加速度为零 D、合力为零 E、速度最大例3、弹簧振子在光滑的水平地面上做简谐振动,在振子向平衡位置运动的过程中() A、振子受回复力逐渐增大 B、振子的位移逐渐增大 C、振子的速度逐渐减小 D、振子的加速度逐渐减小例4、一个弹簧振子沿水平方向的x轴做简谐运动,原点O为平衡位置,在震动中某个时刻可能出现的情况是()A、位移与速度均为正,加速的度为负B、位移为负值,加速度为正值C、位移与加速度均为正值,速度为负值D、位移、速度、加速度均为负值例5:证明竖直弹簧振子的振动是简谐运动。
第九章 振动学习题9-1 一小球与轻弹簧组成的振动系统,按(m) 3ππ8cos 05.0⎪⎭⎫ ⎝⎛+=t x ,的规律做自由振动,试求(1)振动的角频率、周期、振幅、初相、速度最大值和加速度最大值;(2)t=1s ,2s ,10s 等时刻的相位;(3)分别画出位移、速度和加速度随时间变化的关系曲线。
解:(1)ω=8πs -1,T=2π/ω=0.25s ,A=0.05m ,ϕ0=π/3,m A ω=v ,2m a A ω=(2)π=8π3t φ+ (3)略9-2 一远洋货轮质量为m ,浮在水面时其水平截面积为S 。
设在水面附近货轮的水平截面积近似相等,水的密度为ρ,且不计水的粘滞阻力。
(1)证明货轮在水中做振幅较小的竖直自由运动是谐振动;(2)求振动周期。
解:(1)船处于静止状态时gSh mg ρ=,船振动的一瞬间()F gS h y mg ρ=-++ 得F gSy ρ=-,令k gS ρ=,即F ky =-,货轮竖直自由运动是谐振动。
(2)ω==,2π2T ω==9-3 设地球是一个密度为ρ的均匀球体。
现假定沿直径凿通一条隧道,一质点在隧道内做无摩擦运动。
(1)证明此质点的运动是谐振动;(2)计算其振动周期。
解:以球心为原点建立坐标轴Ox 。
质点距球心x 时所受力为324433x mF G G mx x πρπρ=-=-令43k G m πρ=,则有F kx =-,即质点做谐振动。
(2)ω==2πT ω== 9-4 一放置在水平桌面上的弹簧振子,振幅A =2.0 ×10-2 m ,周期T s 。
当t =0时,(1)物体在正方向端点;(2)物体在平衡位置,向负方向运动;(3)物体在x ×10-2m 处,向负方向运动;(4)物体在x =-×10-2 m 处,向正方向运动。
求以上各种情况的振动方程。
解:ω=2π/T=4πs -1(1)ϕ0=0,0.02cos4(m)x t π=(2)ϕ0=π/2,0.02cos 4(m)2x t ππ⎛⎫=+ ⎪⎝⎭(3)ϕ0=π/3,0.02cos 4(m)3x t ππ⎛⎫=+ ⎪⎝⎭(4)ϕ0=4π/3,40.02cos 4(m)3x t ππ⎛⎫=+ ⎪⎝⎭9-5 有一弹簧,当其下端挂一质量为m 的物体时,伸长量为9.8 ×10-2 m 。
《振动力学》——习题第二章 单自由度系统的自由振动2-1 如图2-1 所示,重物1W 悬挂在刚度为k 的弹簧上并处于静止平衡位置,另一重物2W 从高度为h 处自由下落到1W 上且无弹跳。
试求2W 下降的最大距离和两物体碰撞后的运动规律。
解:222221v gW h W =,gh v 22=动量守恒:122122v gW W v g W +=,gh W W W v 221212+=平衡位置:11kx W =,kW x 11=1221kx W W =+,kW W x 2112+=故:kW x x x 21120=-= ()2121W W kgg W W k n +=+=ω故:tv t x txt x x n nn n nn ωωωωωωsin cos sin cos 12000+-=+-=xx 0x 1x 12平衡位置2-2 一均质等直杆,长为l ,重量为w ,用两根长h 的相同的铅垂线悬挂成水平位置,如图2-2所示。
试写出此杆绕通过重心的铅垂轴做微摆动的振动微分方程,并求出振动固有周期。
解:给杆一个微转角θ2aθ=h α2F =mg由动量矩定理:ah a mg a mg Fa M ml I M I 822cos sin 12122-=-≈⋅-====αθαθ其中12cossin ≈≈θααh l ga p ha mg ml n 22222304121==⋅+θθ g h a l ga h l p T n 3π23π2π222===2-3 一半圆薄壁筒,平均半径为R , 置于粗糙平面上做微幅摆动,如图2-3所示。
试求其摆动的固有频率。
图2-3 图2-42-4 如图2-4 所示,一质量m连接在一刚性杆上,杆的质量忽略不计,试求下列情况系统作垂直振动的固有频率:(1)振动过程中杆被约束保持水平位置;(2)杆可以在铅垂平面内微幅转动;(3)比较上述两种情况中哪种的固有频率较高,并说明理由。
图T 2-9 答案图T 2-9解:(1)保持水平位置:m kk n 21+=ω(2)微幅转动:mglllF2112+=mgl1l2xx2xx'mglll2121+=k2k1ml1l2()()()()()()()()()mgk k l l k l k l mgk k l l k l l k l l l k l mg k k l l k l k l l l l k l l mg l mgk l l l k l l l l l l k l l mg l l l l x x k F x x x 2122122212121221221121212221212211211121212122211211121221112111 ++=+-++=+-⋅+++=⎥⎦⎤⎢⎣⎡+-++++=+-+='+=故:()22212121221k l k l k k l l k e++=mk en =ω 2-5 试求图2-5所示系统中均质刚性杆AB 在A 点的等效质量。
1.1 试举出振动设计、系统识别和环境预测的实例。
1.2 如果把双轴汽车的质量分别离散到前、后轴上去,在考虑悬架质量和非悬架质量两个离散质量的情况下,画出前轴或后轴垂直振动的振动模型简图,并指出在这种化简情况下,汽车振动有几个自由度?1.3 设有两个刚度分别为1k ,2k 的线性弹簧如图T —1.3所示,试证明:1)它们并联时的总刚度eq k 为:21k k k eq +=2)它们串联时的总刚度eq k 满足:21111k k k eq +=解:1)对系统施加力P ,则两个弹簧的变形相同为x ,但受力不同,分别为:1122P k xP k x=⎧⎨=⎩由力的平衡有:1212()P P P k k x =+=+故等效刚度为:12eq Pk k k x ==+2)对系统施加力P ,则两个弹簧的变形为: 1122Px k Px k ⎧=⎪⎪⎨⎪=⎪⎩,弹簧的总变形为:121211()x x x P k k =+=+故等效刚度为:122112111eq k k P k x k k k k ===++1.4 求图所示扭转系统的总刚度。
两个串联的轴的扭转刚度分别为1t k ,2t k 。
解:对系统施加扭矩T ,则两轴的转角为: 1122t t Tk T k θθ⎧=⎪⎪⎨⎪=⎪⎩系统的总转角为:121211()t t T k k θθθ=+=+,12111()eq t t k T k k θ==+故等效刚度为:12111eq t t k k k =+1.5 两只减振器的粘性阻尼系数分别为1c ,2c ,试计算总粘性阻尼系数eq c1)在两只减振器并联时,2)在两只减振器串联时。
解:1)对系统施加力P ,则两个减振器的速度同为x &,受力分别为:1122P c x P c x =⎧⎨=⎩&& 由力的平衡有:1212()P P P c c x =+=+&故等效刚度为:12eq P c c c x ==+& 2)对系统施加力P ,则两个减振器的速度为: 1122P x c P x c ⎧=⎪⎪⎨⎪=⎪⎩&&,系统的总速度为:121211()x x x P c c =+=+&&& 故等效刚度为:1211eq P c x c c ==+&1.6 一简谐运动,振幅为0.5cm,周期为0.15s,求最大速度和加速度。
请打双面习题与综合训练 第一章2-1 一单层房屋结构可简化为题2-1图所示的模型,房顶质量为m ,视为一刚性杆;柱子高h ,视为无质量的弹性杆,其抗弯刚度为EJ 。
求该房屋作水平方向振动时的固有频率。
解:由于两根杆都是弹性的,可以看作是两根相同的弹簧的并联。
等效弹簧系数为k则 mg k δ=其中δ为两根杆的静形变量,由材料力学易知δ=324mgh EJ =则 k =324EJ h设静平衡位置水平向右为正方向,则有 "m x kx =-所以固有频率3n 24mh EJ p =2-2 一均质等直杆,长为 l ,重量为W ,用两根长h 的相同的铅垂线悬挂成水平位置,如题2-2图所示。
试写出此杆绕通过重心的铅垂轴作微摆动的振动微分方程,并求出振动固有周期。
解:给杆一个微转角θ2aθ=h α2F =mg由动量矩定理: ah a mg a mg Fa M ml I M I 822cos sin 12122-=-≈⋅-====αθαθ其中12c o s s i n ≈≈θααh l ga p ha mg ml n 22222304121==⋅+θθ g h a l ga h l p T n 3π23π2π222=== 2-3 求题2-3图中系统的固有频率,悬臂梁端点的刚度分别是1k 和3k ,悬臂梁的质量忽略不计。
解:悬臂梁可看成刚度分别为k 1和k 3的弹簧,因此,k 1与k 2串联,设总刚度为k 1ˊ。
k 1ˊ与k 3并联,设总刚度为k 2ˊ。
k 2ˊ与k 4串联,设总刚度为k 。
即为21211k k k k k +=',212132k k kkk k++=',4241213231421432421k k k k k k k k k k k k k k k k k k k k ++++++=)(42412132314214324212k k k k k k k k k k m k k k k k k k k k p ++++++=2-4 求题2-4图所示的阶梯轴一圆盘系统扭转振动的固有频率。
1-1一个物体放在水平台面上,当台面沿铅垂方向作频率为5 Hz的简谐振动时,要使物体不跳离平台,对台面的振幅应有何限制?解:物体与桌面保持相同的运动,知桌面的运动为,x=A sin10πt;由物体的受力分析,N = 0(极限状态)物体不跳离平台的条件为:;既有,,由题意可知Hz,得到,mm。
1-2有一作简谐振动的物体,它通过距离平衡位置为cm及cm 时的速度分别为20 cm/s及cm/s,求其振动周期、振幅和最大速度。
解:设该简谐振动的方程为;二式平方和为将数据代入上式:;联立求解得A=10.69cm;1/s;T=s当时,取最大,即:得:答:振动周期为2.964s;振幅为10.69cm;最大速度为22.63m/s。
1-3 一个机器内某零件的振动规律为,x的单位是cm,1/s 。
这个振动是否为简谐振动?试求它的振幅、最大速度及最大加速度,并用旋转矢量表示这三者之间的关系。
解:振幅A=0.583最大速度最大加速度1-4某仪器的振动规律为。
此振动是否为简谐振动?试用x- t坐标画出运动图。
解:因为ω1=ωω2=3ω,ω1≠ω2.又因为T1=2π/ω T2=2π/3ω,所以,合成运动为周期为T=2π/3ω的非简谐运动。
两个不同频率的简谐振动合成不是简谐振动,当频率比为有理数时,可合称为周期振动,合成振动的周期是两个简谐振动周期的最小公倍数。
1-5已知以复数表示的两个简谐振动分别为和,试求它们的合成的复数表示式,并写出其实部与虚部。
解:两简谐振动分别为,,则:=3cos5t+3isin5t=5cos(5t+)+3isin(5t+)或;其合成振幅为:=其合成振动频率为5t,初相位为:=arctan 则他们的合成振动为:实部:cos(5t+ arctan)虚部:sin(5t+ arctan)1-6将题1-6图的三角波展为傅里叶级数。
解∶三角波一个周期内函数x (t)可表示为,由式得n=1,2,3……于是,得x(t)的傅氏级数1-7将题1-7图的锯齿波展为傅氏级数,并画出频谱图。