乘法运算律及简便运算复习
- 格式:ppt
- 大小:582.00 KB
- 文档页数:13
运算律和简便运算(一)加减法运算定律1、加法交换律定义:两个加数交换位置,和不变 字母表示:a b b a +=+例如:16+23=23+16 546+78=78+5462、加法结合律定义:先把前两个数相加,或者先把后两个数相加,和不变。
字母表示:)()(c b a c b a ++=++ 注意:加法结合律有着广泛的应用,如果其中有两个加数的和刚好是整十、整百、整千的话,那么就可以利用加法交换律将原式中的加数进行调换位置,再将这两个加数结合起来先运算。
3、减法的性质 注意:这些都是由加法交换律和结合律衍生出来的。
减法性质①:如果一个数连续减去两个数,那么后面两个减数的位置可以互换。
字母表示:b c a c b a --=--减法性质②:如果一个数连续减去两个数,那么相当于从这个数中减去后面两个数的和。
字母表示:)(c b a c b a +-=--4、拆分、凑整法简便计算拆分法:当一个数比整百、整千稍微大一些的时候,我们可以把这个数拆分成整百、整千与一个较小数的和,然后利用加减法的交换、结合律进行简便计算。
例如:103=100+3,1006=1000+6,…凑整法:当一个数比整百、整千稍微小一些的时候,我们可以把这个数写成一个整百、整千的数减去一个较小的数的形式,然后利用加减法的运算定律进行简便计算。
例如:97=100-3,998=1000-2,…注意:拆分凑整法在加、减法中的简便不是很明显,但和乘除法的运算定律结合起来就具有很大的简便了。
(二)乘除法运算定律1.乘法交换律定义:交换两个因数的位置,积不变。
字母表示:a b b a ⨯=⨯例如:85×18=18×85 23×88=88×232、乘法结合律定义:先乘前两个数,或者先乘后两个数,积不变。
字母表示:)()(c b a c b a ⨯⨯=⨯⨯ 乘法结合律的应用基于要熟练掌握一些相乘后积为整十、整百、整千的数。
简便运算与应用题复习简便运算一、运算律与运算性质1、加法{交换律:a +b =b +a结合律:(a +b )+c =a +(b +c)2、减法减法运算性质:a −(b +c )=a −b −c ,a −(b −c )=a −b +c3、乘法 {交换律:a ×b =b ×a 结合律:(a ×b )×c =a ×(b ×c ) 分配律:(a +b )×c =a ×c +b ×c 积不变性质:a ×b =(a ×c )×(b ÷c )=(a ÷c )×(b ×c)4、除法除法运算性质:a ÷(b ×c )=a ÷b ÷c ,a ÷(b ÷c )=a ÷b ×c 二、乘、除法混合运算的性质1、商不变性质:被除数和除数乘(或除)以同一个非零数,其商不变2、在连除时,可以交换除数的位置,商不变,即a ÷b ÷c =a ÷c ÷b3、在乘、除混合运算中,被乘数、乘数或除数可以连同运算符号一起交换位置(或称“带着符号搬家”)a ×b ÷c =a ÷c ×b =b ÷c ×a4、在乘、除混合运算中,去或添括号的规则:去或添括号时,括号前是“×”时,“×”“÷”不变号;括号前是“÷”时,去或添括号后,括号中“×”变为“÷”,“÷” 变为“×”5、两个数之积除以两个数之积,可以分别相除后再相乘. (a ×b )÷(c ×d )=(a ÷c )×(b ÷d )=(a ÷d )×(b ÷c) 三、速算巧算的核心思想和本质:凑整 1、分组凑整法.2、拆补凑整法.有些算式中直接凑整不明显,这时可“借数”或“拆数”凑整.3、数值原理法.先把加在一起为整十、整百、整千……的数相加,然后再与其它的数相加.4、“基准数”法.当几个比较接近于某一整数的数相加时,选这个整数为“基准数”(要注意把多加的数减去,把少加的数加上)【例1】 直接写出得数0.2+2.6= 3.2-2.2 = 0.7×2= 0.6÷2= 4.6-3= 2.1×3= 25+15×2= 64÷8×8 = (10-2)÷(20-12=)【例2】递等式计算,能简便计算就简便计算(1) 23.4-0.8-13.4-7.2(2) 12.78-(4.97+2.78)(3) 12.5×0.4×2.5×8(4) 63.4÷2.5÷0.4(5) 35÷(0.35×2)(6) 9+99+999+9999+99999【例3】计算,并将得数用“四舍五入”法凑整到百分位(1)6.8×0.79 (2)4.04×0.52(3)3.14÷0.3 (4)7.356÷2.5【例4】递等式计算(能用简便方法的用简便方法计算)(1)7.8÷2.5×4 (2)(0.8+4)×12.5×2.5 (3)146.5-(23+46.5) (4)6.73×4.8+5.2×6.73(5)1.4×3.8+6.2×(4.2-2.8) (6)[5.6-(1.6+1.6÷4)]÷0.12【例5】列式计算(1)一个数的5倍加上3.2,和是38.2,求这个数。
六年级数学下册教案:《运算律》总复习北师大版教学目标1. 让学生理解和掌握四则运算的基本法则,包括加法、减法、乘法和除法的运算律。
2. 培养学生运用运算律解决实际问题的能力,提高计算速度和准确性。
教学内容1. 加法运算律:交换律、结合律2. 减法运算律:减法的性质3. 乘法运算律:交换律、结合律、分配律4. 除法运算律:除法的性质5. 运算律的应用:解决实际问题,简化计算过程教学重点与难点1. 教学重点:理解和掌握四则运算的基本法则,能够灵活运用运算律解决实际问题。
2. 教学难点:乘法分配律的理解和应用,以及如何运用运算律简化计算过程。
教具与学具准备1. 教具:PPT课件,教学视频,运算律示意图2. 学具:练习本,计算器,草稿纸教学过程1. 导入:通过PPT课件展示四则运算的基本法则,引导学生回顾和复习已学的知识。
2. 讲解:详细讲解四则运算的运算律,包括加法、减法、乘法和除法的运算律,并通过教学视频和运算律示意图加深学生的理解。
3. 练习:布置练习题,让学生运用运算律解决实际问题,提高计算速度和准确性。
4. 讨论:分组讨论,让学生分享自己在解决问题时运用运算律的经验和技巧。
板书设计1. 板书《运算律》总复习2. 板书内容:四则运算的基本法则,包括加法、减法、乘法和除法的运算律,以及运算律的应用。
作业设计1. 基础练习:布置一些基本的运算律练习题,让学生巩固已学的知识。
2. 综合练习:布置一些综合性的运算律练习题,让学生运用运算律解决实际问题。
3. 挑战练习:布置一些挑战性的运算律练习题,让学生提高自己的计算能力和解决问题的能力。
课后反思通过本次教学,我深刻地认识到运算律在解决问题中的重要性。
在教学过程中,我注重引导学生理解和掌握四则运算的基本法则,并通过练习和讨论提高学生的计算速度和准确性。
同时,我也发现一些学生在运用运算律解决问题时还存在一些困难,我将在今后的教学中更加注重这方面的指导和辅导。
【教案名称】灵活运用乘法运算律及简便运算【教学目标】1.理解乘法运算律的含义;2.灵活运用乘法运算律求解实际问题;3.用简便的方法进行乘法计算;4.夯实乘法运算的基本功。
【教学重点】灵活运用乘法运算律求解实际问题【教学难点】在实际问题中正确运用乘法运算律【教学准备】教学课件、学生练习册、习题集【教学过程】一、引入1.检查:复习上节课的知识点,如何计算两个数的积。
2.导入:今天我们要讲的是如何灵活运用乘法运算律及简便运算。
二、讲解1.乘法运算律的含义:乘法运算律是指在计算乘法时,任意两个数相乘的结果与这两个数的顺序无关,即“乘法交换律”和“乘法结合律”。
2.运用乘法运算律求解实际问题:(1)乘法交换律:若a、b为任意两个数,则a×b=b×a。
(2)乘法结合律:若a、b、c为任意三个数,则a×b×c=(a×b)×c=a×(b×c)。
(3)运用乘法运算律解决实际问题:a.例题:若每个苹果重30克,你买了3个苹果,那么它们的总重量是多少克?使用乘法运算律。
b.练习:类似的题目,例如一个货物单件重200克,装50件的货箱总重是多少克?又或者,2支笔,每支长15厘米,那么一起的总长度是多少厘米?3. 简便运算:(1)基于乘法10法则的运算,如:8×10=80;3×10×2=60;4×10×5=200。
(2)同因数分解,如:3×15=3×3×5=45;4×24=4×2×2×2×3=96;5×28=5×4×7=140。
(3)代数式的乘法计算,如:(2a+3)(3a-1)=6a²+3a-2。
三、练习1.练习册上的练习;2.基于实际问题自行设计练习,让学生在实践中巩固乘法运算的基本知识点。
2.乘法运算律及简便运算第1课时乘法交换律和乘法结合律学习内容:教科书第12-13页例1、例2和课堂活动第1题,练习四第1-2题。
学习目标:1.经历探索乘法交换律和乘法结合律的过程,理解并掌握规律,能用字母表示规律。
2. 体验乘法交换律和乘法结合律的应用价值,培养学生的探究意识和问题解决能力,增强数学的应用意识。
3.培养学生观察、比较、归纳等思维能力;并在数学活动中获得成功的体验。
学习重难点:学习重点:理解并掌握乘法交换律和乘法结合律。
学习难点:理解并掌握乘法结合律。
课前准备:实物展示平台导学过程:一、复习引入上学期我们学习了加法的交换律和加法的结合律,下面就请同学们利用加法的运算律来填空。
1.利用加法运算律填空。
45+56=56 + □ (25+49)+51= 25 + (□ +□)甲数 + 乙数= 乙数 + □ (10+ △ )+ c=□+ (□+ □) 学生独立完成后,抽一生反馈结果。
2.这两组算式分别运用了什么运算定律?谁来说说什么是加法交换律和加法结合律?这两个运算律用字母该怎样表示?a+b=b+a (a+b)+c=a+(b+c)3.设疑激趣。
看来同学们对于加法的交换律和结合律都掌握得非常好,请同学们大胆的猜想一下,在乘法运算中有这样的运算律吗?同学们都很有胆量,敢于猜想,那乘法中到底有没有这样的运算律,下面我们就一起来探讨吧。
(板书课题:乘法运算律)二、创设情境,探索新知活动一:1.教学例1,乘法交换律(1)解答例1(出示例1)请你仔细观察例1的鸡蛋图,要求一共有多少个鸡蛋,请列式解答在草稿本上。
反馈:9×4=36(个)4×9=36(个)为什么要用9×4呢?(横着看,一排有9个鸡蛋,有4排,就是有4个9。
)为什么要用4×9呢?(竖着看,一列有4个鸡蛋,有9列,就是有9个4。
)无论是横着观察有4个9,还是竖着观察有9个4,虽然方法不同,但是都得到一共有多少个鸡蛋?(36)(2)观察算式特点仔细观察:9×4=36,4×9=36,这两个算式有什么特点呢?两个算式中的因数位置交换了,但结果相同,我们就可以用等号把它们连接起来。
课题巧算乘除法四则运算中巧算的方法很多,它主要是根据已学过的知识,通过一些运算定律、性质和一些技巧性方法,达到计算正确而快捷的目的。
实际进行乘、除法以及乘除法混合运算式可利用到以下性质进行巧算:①乘法交换律:a×b = b×a②乘法结合律: a×b×c = a×(b×c)③乘法分配律: (a + b)×c = a×c + b×c由此可推出:a×b + a×c = a×(b + c)(a - b) ×c = a×c - b×ca×b - a×c = a×(b - c)④除法的性质: a÷b÷c = a÷b÷c = a÷(b×c)a÷(b÷c)= a÷b×c利用乘法、除法的这些性质,先凑整得10、100、1000……使计算更简便.教学目标1、熟练掌握乘除法运算法定律及性质2、善于运用运算定律和性质(包括正用、逆用、连用)。
教学重难点重点:乘法运算律,特殊的由原有规律推出的定律难点:把乘除运算律延用到乘除法混合运算中,尤其在含有括号或多项的题目中。
教学过程一、复习引入1、利用乘法运算律,填空:15×10 = 16×______25×7×4 = ______×______×7(60×25)×______ = 60×(______×8)125×(8×______) = (125×______)×143×4×8×5 = (3×4)×(______×______)2、下面哪些运算运用了乘法分配律?117×3 + 117×7 = 117×(3 + 7)24×(5 + 12) = 24×174×a + a×5 = (4 + 5)×a36×(4×6) = 36×6×43、用乘法分配律计算下面各题103×12 20×55 24×205= = == = == = =有了上面的复习,我们把四年级课本上有关乘法的运算律都进行了一个回顾与掌握,今天我们将就如何在巧算中用上这些规律进行讲解。
小学四年级数学《乘法运算律及简便运算》教案模板四篇小学四年级数学《乘法运算律及简便运算》教案模板一教学内容义务教育课程标准实验教科书(西南师大版)四年级(下)第17~18页例1~2,练习四第1题。
教学目标1? 经历在计算和解决问题的具体情景中探索发现乘法交换律、结合律的过程。
2? 理解并掌握乘法交换律和结合律,初步能用这两个运算律解释计算的理由。
3? 体验数学与日常生活密切相关,培养学生自主探索数学知识和应用数学知识解决简单实际问题的能力。
教学重点在具体情景中探索发现乘法交换律、乘法结合律。
教学过程一、创设情景,探索新知1?教学例1出示例1图,学生独立列式解答,然后在小组中互相交流。
板书:9x4=36(个),4x9=36(个)。
学生观察板书,思考:这两个算式有什么特点?板书:9x4=4x9。
教师:你还能写出几个有这样规律的算式吗?板书学生举出的算式。
如:15x2=2x158x5=5x8 ……教师:观察这些算式,你发现了什么?学生1:两个因数交换位置,积不变。
学生2:这就叫乘法交换律。
教师:你能用自己喜欢的方式表示乘法交换律吗?(学生独立思考后交流)教师:如果用a、b表示两个数,这个规律可怎样表示呢?(axb=bxa)2?教学例2出示例2情景图,口述数学信息和解决的问题。
学生独立思考,列式解答。
然后在小组中交流解题思路和方法。
全班汇报,教师板书。
(8x24)x68x(24x6)=192x6=8x144=1152 (户)=1152 (户)学生对这两种算法进行观察、比较,有什么相同点和不同点?板书: (8x24)x6=8x(24x6)。
出示下面的算式,算一算,比一比。
16x5x2= 16x(5x2)= 35x25x4=35x(25x4)= 12x125x8= 12x(125x8)=观察算式,有同样的特点吗?每排的两个算式的结果相等吗?学生独立计算,验证自己的猜想,全班交流。
板书:16x5x2=16x(5x2) 35x25x4=35x(25x4)43x125x8=43x(125x8)谁能说出这几组算式的规律?学生1:每个算式只是改变了运算顺序。