乘法运算律及简便运算
- 格式:docx
- 大小:19.00 KB
- 文档页数:8
运算律和简便运算加法运算定律 加法交换律 加法交换律的概念为:两个加数交换位置,和不变。
字母公式:a+b+c=(b+a )+c 题例(简算过程):6+18+4 =(6+4)+18 =10+18 =28 加法结合律 加法结合律的概念为:先把前两个数相加,或者先把后两个数相加,和不变。
字母公式:a+b+c=a+(b+c) 题例(简算过程):6+18+2 =6+(18+2) =6+20 =26 乘法运算定律 乘法交换律乘法交换律的概念为:两个因数交换位置,积不变。
字母公式:a×b=b×a 题例(简算过程):125×12×8 =125×8×12 =1000×12 =12000乘法结合律 乘法结合律的概念为:先乘前两个数,或者先乘后两个数,积不变。
字母公式:a×b×c=a×(b×c) 题例(简算过程):30×25×4 =30×(25×4) =30×100 =3000 乘法分配律 乘法分配律的概念为:两个数与一个数相乘,可以先把它们与这个数分别相乘,再相加。
字母公式:(a+b)×c=a×c+b×c 题例(简算过程):(1)12×6.2+3.8×12 =12×(6.2+3.8) =12×10 =120减法性质 减法性质的概念为:一个数连续减去两个数,可以先把后两个数相加,再相减。
字母公式:A-B-C=A-(B+C) 题例(简算过程):20-8-2 =20-(8+2) =20-10 =10 差不变的规律 题例:6-1.99 = 6X100-1.99X100 =( 600-199)/100 =4.014 11 2201628除法性质 除法性质的概念为:一个数连续除以两个数,可以先把后两个数相乘,再相除。
2.乘法运算律及简便运算第1课时乘法交换律和乘法结合律学习内容:教科书第12-13页例1、例2和课堂活动第1题,练习四第1-2题。
学习目标:1.经历探索乘法交换律和乘法结合律的过程,理解并掌握规律,能用字母表示规律。
2. 体验乘法交换律和乘法结合律的应用价值,培养学生的探究意识和问题解决能力,增强数学的应用意识。
3.培养学生观察、比较、归纳等思维能力;并在数学活动中获得成功的体验。
学习重难点:学习重点:理解并掌握乘法交换律和乘法结合律。
学习难点:理解并掌握乘法结合律。
课前准备:实物展示平台导学过程:一、复习引入上学期我们学习了加法的交换律和加法的结合律,下面就请同学们利用加法的运算律来填空。
1.利用加法运算律填空。
45+56=56 + □ (25+49)+51= 25 + (□ +□)甲数 + 乙数= 乙数 + □ (10+ △ )+ c=□+ (□+ □) 学生独立完成后,抽一生反馈结果。
2.这两组算式分别运用了什么运算定律?谁来说说什么是加法交换律和加法结合律?这两个运算律用字母该怎样表示?a+b=b+a (a+b)+c=a+(b+c)3.设疑激趣。
看来同学们对于加法的交换律和结合律都掌握得非常好,请同学们大胆的猜想一下,在乘法运算中有这样的运算律吗?同学们都很有胆量,敢于猜想,那乘法中到底有没有这样的运算律,下面我们就一起来探讨吧。
(板书课题:乘法运算律)二、创设情境,探索新知活动一:1.教学例1,乘法交换律(1)解答例1(出示例1)请你仔细观察例1的鸡蛋图,要求一共有多少个鸡蛋,请列式解答在草稿本上。
反馈:9×4=36(个)4×9=36(个)为什么要用9×4呢?(横着看,一排有9个鸡蛋,有4排,就是有4个9。
)为什么要用4×9呢?(竖着看,一列有4个鸡蛋,有9列,就是有9个4。
)无论是横着观察有4个9,还是竖着观察有9个4,虽然方法不同,但是都得到一共有多少个鸡蛋?(36)(2)观察算式特点仔细观察:9×4=36,4×9=36,这两个算式有什么特点呢?两个算式中的因数位置交换了,但结果相同,我们就可以用等号把它们连接起来。
【学霸笔记】四年级下册数学同步重难点讲练第6章运算律第3课时乘法分配律以及相关的简便计算1、两个数的和与一个数相乘,可以先把这两个数分别与这个数相乘,再把所得的积相加。
用字母表示为:(a+b)×c=a×c+b×c。
2、应用乘法分配律:两个数相乘,如果有一个数接近整百数,可以先将这个数转化成整百数加或减一个数的形式,再应用乘法分配律进行计算。
3、应用乘法分配律逆运算:当两积之和的算式里有一个乘数相同,另外两个乘数相加可凑成整十、整百数时,可以逆向应用乘法分配律算出结果,使计算简便。
4、用两种方法解决相遇问题(1)画图的方法可将题意形象地展示出来,同时也能准确地反映出数量关系,所求问题易于发现并解答。
(2)列表的方法清晰明了地表达了信息及其相互的联系,便于分析、比较。
【例1】两个数的和乘一个数,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
这个规律叫作乘法分配律,用字母表示为a×(b+c)=ab+ac。
【分析】乘法分配律的概念为:两个数的和乘另一个数,等于把这个数分别同两个加数相乘,再把两个积相加,得数不变,用字母表示:a×(b+c)=ab+ac;据此填空即可。
【解答】解:两个数的和乘一个数,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
这个规律叫作乘法分配律,用字母表示为a×(b+c)=ab+ac。
故答案为:相乘,相加,乘法分配律,a×(b+c)=ab+ac。
【点评】本题主要考查了学生对于乘法分配律的理解和掌握情况。
【例2】在“□”里填上合适的数或字母。
(53+25)×2=□×□+□×□152×6+48×6=(□+□)×□(m+n)×9=m×□+□×□a×36+a×64=□×(□+□)【分析】根据乘法分配律:两个数的和乘另一个数,等于把这个数分别同两个加数相乘,再把两个积相加,得数不变,用字母表示:a×(b+c)=ab+ac;据此填空即可。
乘法运算律与简便计算一、乘法的交换律乘法的交换律是指乘法运算中,两个数交换位置结果不变。
即对于任意实数a和b,有a*b=b*a。
例如,3*4=4*3=12二、乘法的结合律乘法的结合律是指在多个乘法运算的情况下,可以改变运算顺序而不改变结果。
即对于任意实数a、b和c,有(a*b)*c=a*(b*c)。
例如,(2*3)*4=2*(3*4)=24三、乘法的分配律乘法的分配律是指在加法和乘法混合运算中,可以分步进行,先进行乘法再进行加法。
即对于任意实数a、b和c,有a*(b+c)=a*b+a*c。
例如,2*(3+4)=2*3+2*4=14四、乘法的幂次运算乘法的幂次运算是指对一个数进行多次乘法运算,这可以通过重复乘法或指数运算来实现。
例如,2³=2*2*2=8五、负数乘法负数乘法是指一个正数与一个负数相乘,其结果为一个负数。
即正数乘以负数得到负数。
例如,2*(-3)=-6下面是一些简便计算方法,可用于在乘法运算中快速求解。
1.利用零的性质:任何数与0相乘结果都为0,即a*0=0。
这使得在计算中可以通过将0乘以一些数来快速计算结果为0的情况。
2.利用单位元:单位元是指一个数与1相乘结果等于其自身,即a*1=a。
这使得在计算中可以通过将1乘以一些数来快速计算结果为该数的情况。
3.利用相似性:当两个乘数非常相似时,可以通过对其中一个乘数进行微调来快速估算乘积。
例如,计算36*42时,可以将42视为40,结果会接近1440。
然后再通过稍微调整得出准确结果。
4.利用乘积的性质:当一个数字包含多个相同的因子时,可以利用因子的个数和乘法运算律来简化计算。
例如,计算2³*4³可以视为(2*4)³,结果为8³=5125.利用乘法的结合律:当一个乘法式子中有多个因子时,可以改变因子的顺序,以便进行更简单的计算。
例如,计算2*3*4时,可以通过改变顺序为4*3*2来计算,结果为246.利用乘法的逆运算:如果已知一个乘积和其中一个因子,可以通过除法来求解另一个因子。
乘法运算律与简便计算乘法运算律是数学中的一条重要规则,用来描述乘法的性质和运算方式。
简便计算是指通过一些技巧和方法来简化乘法计算的过程。
在日常生活和工作中,我们经常会遇到需要进行乘法计算的情况,掌握乘法运算律和简便计算方法可以提高计算效率和准确性。
本文将详细介绍乘法运算律和一些简便计算方法。
1.乘法结合律:a×(b×c)=(a×b)×c。
即,无论括号怎么分配,相乘的结果是不变的。
例子:2×(3×4)=(2×3)×4=242.乘法交换律:a×b=b×a。
即,两个数相乘的结果与它们的位置无关。
例子:4×3=3×4=123.乘法分配律:a×(b+c)=a×b+a×c。
即,一个数乘以一个加法表达式的和等于这个数分别乘以每个加法项的和。
例子:3×(2+4)=3×2+3×4=18通过乘法运算律,我们可以合理地调整计算的顺序,化简和优化乘法计算。
简便计算方法除了乘法运算律,还有一些简便计算方法可以在乘法运算中帮助我们更快地得到准确的结果。
1.利用倍数关系:当计算一个数的一些倍数时,我们可以利用倍数关系来简化计算。
例如,计算49×3时,我们可以发现49×3=7×7×3=7×21=1472.利用相似性:当计算两个数中一个为另一个的两倍或十倍时,我们可以利用相似性来简化计算。
例如,计算18×10时,我们可以发现18×10=(9×2)×10=9×(2×10)=9×20=180。
3.利用平方数:当计算一些数的平方时,我们可以利用平方数的性质来简化计算。
例如,计算72×72时,我们可以发现72×72=(36×2)×(36×2)=36×36×2×2=1296×4=51844.利用近似值:当计算一个较大的数与一个较小的数相乘时,我们可以利用近似值来简化计算。
乘法运算律与简便计算
乘法结合律:对于任意三个数a、b、c,有(a*b)*c=a*(b*c)。
简单
来说,就是无论三个数怎样进行乘法运算,最终的结果都是一样的。
乘法交换律:对于任意两个数a、b,有a*b=b*a。
简单来说,两个数
的乘积不会因为它们的顺序不同而改变。
下面我将介绍一些简便计算方法,以利用乘法运算律来简化乘法计算。
1.同因数法:当两个数有相同的因数时,可以利用乘法运算律进行简
便计算。
例如,计算36*24时,我们可以发现它们都可以被12整除,即
36=3*12,24=2*12,所以36*24=3*12*2*12=(3*2)*(12*12)=6*144=864
2.乘法分解法:当一个数可以被分解成较小的因数相乘时,可以利用
乘法运算律进行简便计算。
例如,计算18*25时,我们可以将18分解成
2*3*3,25可以分解成5*5,所以18*25=(2*3*3)*(5*5)=2*3*3*5*5=450。
3.十倍数法:当一个数的乘法运算中有10的倍数时,可以通过移动
小数点的方式进行简便计算。
例如,计算57*10时,我们可以将10移动
一位得到570。
乘法运算法则还有其他一些应用,比如:
-平方运算:一个数的平方等于这个数自己与自己相乘,即n^2=n*n。
例如,9的平方等于9*9=81
-立方运算:一个数的立方等于这个数自己与自己相乘再与自己相乘,即n^3=n*n*n。
例如,2的立方等于2*2*2=8
以上是一些利用乘法运算律简化乘法计算的方法,它们可以让我们在
进行乘法运算时更加高效和准确。
第六单元运算律1、加法运算定律:(1)加法交换律:两个数相加,交换加数的位置,和不变。
a+b=b+a如:1+2=2+1 1+2+3=2+3+1(2)加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。
(a+b) +c=a+(b+c)(3)加法的这两个定律往往结合起来一起使用。
(加法交换律与结合律)如:165+93+35=93+(165+35)(4)简便计算几个加数是否能简便计算,关键是看加数的个位相加是否能凑整方法规律连加计算仔细看,考虑加数是关键。
整十、整百与整千,结合起来会简便。
交换定律记心间,交换位置和不变,结合定律应用广,加数凑整更简单。
2、连减的性质:一个数连续减去两个数,等于这个数减去那两个数的和。
(结合连除) a-b-c=a-(b+c)3、乘法运算定律:(1)乘法交换律:两个数相乘,交换因数的位置,积不变。
a×b=b×a(2)乘法结合律:三个数相乘,可以先把前两个数相乘,再乘以第三个数,也可以先把后两个数相乘,再乘以第一个数,积不变。
(a×b) ×c=a×(b×c)乘法的这两个定律往往结合起来一起使用。
如:125×78×8 简算。
(3)乘法分配律:两个数的和与一个数相乘,可以先把这两个数分别与这两个数相乘,再把积相加。
(a+b)×c = a×c + b×c(合起来乘等于分别乘)(a-b)×c = a×c - b×c 4、连除的性质:一个数连续除以两个数,等于除以这两个数的积。
(结合连减) a÷b÷c=a÷(b×c)5、相遇问题路程和=速度和×相遇时间。
专题五 简便运算类型三 乘法简算【知识讲解】一、简便运算律(一)交换两个因数的位置,积不变,这叫做乘法交换律。
用字母表示:a b b a⨯=⨯(二)先乘前两个数,或者先乘后两个数,积不变,这叫做乘法结合律。
用字母表示: ()()a b c a b c a c b ⨯⨯=⨯⨯=⨯⨯()(三)两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加,这叫做乘法分配律。
用字母表示:()a b c a c b c a b c a b a c +⨯=⨯+⨯⨯+=⨯+⨯()或二、简便方法(一)结合法一个数连续乘两个一位数,可根据情况改写成用这个数乘这两个数的积的形式,使计算简便。
例1 计算:19×4×519×4×5=19×(4×5)=19×20=380在计算时,添加一个小括号可以使计算简便。
因为括号前是乘号,所以括号内不变号。
(二)分解法一个数乘一个两位数,可根据情况把这个两位数分解成两个一位数相乘的形式,再用这个数连续乘两个一位数,使计算简便。
例2 计算:45×1848×18=45×(2×9)=45×2×9=90×9=810将18分解成2×9的形式,再将括号去掉,使计算简便。
(三)拆数法有些题目,如果一步一步地进行计算,比较麻烦,我们可以根据因数及其他数的特征,灵活运用拆数法进行简便计算。
例3 计算:99×99+199(1)在计算时,可以把199写成99+100的形式,由此得到第一种简便算法:99×99+199=99×99+99+100=99×(99+1)+100=99×100+100=10000(2)把99写成100-1的形式,199写成100+(100-1)的形式,可以得到第二种简便算法:99×99+199=(100-1)×99+(100-1)+100=(100-1)×(99+1)+100=(100-1)×100+100=10000(四)改数法有些题目,可以根据情况把其中的某个数进行转化,创造条件化繁为简。
授课学案学生姓名授课教师班主任上课时间主任审批授课标题运算律学习目标1、要仔细观察算式,如果算式里只有乘法,一般用到乘法交换和结合律,如果只有加法,一般用到加法交换和结合律,如果既有加又有乘,一般用到乘法分配律。
当然要注意一些变式。
2、还要观察算式里面的特殊数字,如25和4,125和8,2和5等,有时101可以变成(100+1),想想如何利用好这些特殊数字。
3、要熟练掌握运算定律的字母表示形式,并注意多动脑思考。
重点难点1、乘法交换律:a×b=b×a2、乘法结合律:(a×b)×c=a×(b×c)3、乘法分配律:(a+b)×c=a×c+b×c(合起来乘等于分别乘)4、衍生:(a-b)×c=a×c-b×c授课内容.运算定律简便运算(做前必读)要想运用运算定律做好简便运算,要注意以下几点:1、要仔细观察算式,如果算式里只有乘法,一般用到乘法交换和结合律,如果只有加法,一般用到加法交换和结合律,如果既有加又有乘,一般用到乘法分配律。
当然要注意一些变式。
2、还要观察算式里面的特殊数字,如25和4,125和8,2和5等,有时101可以变成(100+1),想想如何利用好这些特殊数字。
3、要熟练掌握运算定律的字母表示形式,并注意多动脑思考。
简便运算越做越有趣,祝大家学得开心。
(1)乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)38×25×4 42×125×8 25×17×4 (25×125)×(8×4) 49×4×538×125×8×3 (125×25)×4 5 ×289×2 (125×12)×8 125×(12×4)(2) 乘法交换律和结合律的变化练习125×64 125×88 44×25 125×24 25×28(3)加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)357+288+143 158+395+105 167+289+33 129+235+171+165378+527+73 169+78+22 58+39+42+61 138+293+62+107(4)乘法分配律:(a+b)×c=a×c+b×c 练习(80+4)×25 (20+4)×25 (125+17)×8 25×(40+4) 15×(20+3)(5)乘法分配律正用的变化练习:36×3 25×41 39×101 125×88 201×24(6)乘法分配律反用的练习:34×72+34×28 35×37+65×37 85×82+85×18 25×97+25×3 76×25+25×24(7)乘法分配律反用的变化练习:38×29+38 75×299+75 64×199+64 35×68+68+68×64☆思考题:(8)其他的一些简便运算。
数学简便运算方法归类运算律:1、加法运算定律加法交换律:加数交换位置,和不变。
字母公式:a+b+c=b+a+c加法结合律:先把前两个数相加,或者先把后两个数相加,和不变。
字母公式:a+b+c=a+(b+c)加法的性质:一个加数增加多少,另一个加数减少多少,和不变。
字母公式:a+b=(a+c)+(b-c)2、减法运算定律减法性质1:一个数连续减去几个数,可以先把这几个减数相加,再相减,差不变。
字母公式:a-b-c=a-(b+c)减法性质2:被减数和减数同时增大或缩小,差不变。
a-b=(a+c)-(b+c)=(a-c)-(b-c)3、乘法运算定律乘法交换律:两个因数交换位置,积不变。
字母公式:a×b=b×a乘法结合律:先乘前两个因数,或者先乘后两个因数,积不变。
字母公式:a×b×c=a×(b×c)乘法的性质:一个因数扩大多少倍,另一个因数缩小多少倍,积不变。
字母公式:a×b=(a×c)×(b÷c)乘法分配律:两个数的和(差)与一个数相乘,可以先把它们与这个数分别相乘,积再相加(减)。
字母公式:(a±b)×c=a×c±b×c提取公因数:几个有相同因数的乘式相加减,可以用相同的因数乘以剩下因数的计算结果。
字母公式:a×d-b×d+c×d=d×(a-b+c)4、除法运算定律运算顺序:同级运算调换顺序,需要把数字前边的运算符号一起调换。
注意:1、只能在同级运算内调换顺序。
2、算式最左端的运算符号为“+”或“×”可省略,“-”或“÷”不可省略。
3、调换在算式最左端数字的位置,省略的运算符号必须重新写出来。
4、优先运算的结果可以当做一个具体数字。
括号:1、括号是用来规定运算顺序的符号2、括号左边的运算符号是括号的运算符号。
小学四年级数学《乘法运算律及简便运算》教案模板四篇小学四年级数学《乘法运算律及简便运算》教案模板一教学内容义务教育课程标准实验教科书(西南师大版)四年级(下)第17~18页例1~2,练习四第1题。
教学目标1? 经历在计算和解决问题的具体情景中探索发现乘法交换律、结合律的过程。
2? 理解并掌握乘法交换律和结合律,初步能用这两个运算律解释计算的理由。
3? 体验数学与日常生活密切相关,培养学生自主探索数学知识和应用数学知识解决简单实际问题的能力。
教学重点在具体情景中探索发现乘法交换律、乘法结合律。
教学过程一、创设情景,探索新知1?教学例1出示例1图,学生独立列式解答,然后在小组中互相交流。
板书:9×4=36(个),4×9=36(个)。
学生观察板书,思考:这两个算式有什么特点?板书:9×4=4×9。
教师:你还能写出几个有这样规律的算式吗?板书学生举出的算式。
如:15×2=2×158×5=5×8 ……教师:观察这些算式,你发现了什么?学生1:两个因数交换位置,积不变。
学生2:这就叫乘法交换律。
教师:你能用自己喜欢的方式表示乘法交换律吗?(学生独立思考后交流) 教师:如果用a、b表示两个数,这个规律可怎样表示呢?(a×b=b×a) 2?教学例2出示例2情景图,口述数学信息和解决的问题。
学生独立思考,列式解答。
然后在小组中交流解题思路和方法。
全班汇报,教师板书。
(8×24)×68×(24×6)=192×6=8×144=1152 (户)=1152 (户) 学生对这两种算法进行观察、比较,有什么相同点和不同点? 板书: (8×24)×6=8×(24×6)。
出示下面的算式,算一算,比一比。
16×5×2= 16×(5×2)= 35×25×4=35×(25×4)= 12×125×8= 12×(125×8)=观察算式,有同样的特点吗?每排的两个算式的结果相等吗?学生独立计算,验证自己的猜想,全班交流。
乘法分配律教学内容:西师版数学四(下)第22—24页例4、例5教学目标:1、经历在解决数学问题的情境中探索发现乘法分配律的过程。
2、理解并掌握乘法分配律,并能运用乘法运算律进行简便计算。
3、在解决数学问题中培养学生一题多解的发散思维能力,通过发现运算律培养探索、概括能力。
教学重点:探索发现乘法分配律,理解并能运用乘法运算律进行简便计算。
教学难点:1、归纳和概括乘法分配律。
2、对乘法分配律进行正向和逆向的理解和运用。
教学过程:一、复习引入同学们好,很高兴咱们又见面了,还记得上节课我们学习了什么内容吗?对,我们学习了乘法交换律和乘法结合律,先咱们一起来回忆一下什么是乘法交换律和乘法结合律……上节课我们还学习了运用乘法交换律和结合律来进行简便计算。
一起看这几道题,请你在练习本上进行简算。
算好了吧,我们一起来看看……在刚才的计算中,我们用到了乘法的交换律和结合律。
乘法除了和加法一样有交换律和结合律,还有没有其他的运算律呢?咱们这节课接着讨论。
二、探索乘法分配律1、教学例4(1)得出等式首先我们来看这样一个问题,养鸡场共有多少只鸡?要解决这个问题,我们从图中知道了哪些信息呢?一起读一读,养鸡场左边有50间鸡舍,右边有30间鸡舍,每间鸡舍里有75只鸡。
你能列出综合算式求出养鸡场共有多少只鸡吗?既然都说行,那就在练习本上算一算吧。
都算好了,我们来看看这两个同学的不同算法。
请这个同学来说说左边这种算法你是怎么想的。
我听明白了,他是先把养鸡场左边的50间鸡舍加上右边的30间鸡舍求出养鸡场一共有80间鸡舍,再用一共的80间鸡舍乘上每间鸡舍有75只鸡,就求出养鸡场一共有6000只鸡。
那右边这种算法呢?他是先用左边的50间鸡舍乘上每间鸡舍里有75只鸡,求出左边有3750只鸡,再用右边的30间鸡舍乘上每间鸡舍里有75只鸡,求出右边有2250只鸡,再把两边的鸡的只数相加,就求出了养鸡场一共有6000只鸡。
比较一下两个算式,你有什么想说的?对,这两道题思路不同,却都能求出养鸡场一共有6000只鸡。
乘法运算律及简便运算
第一课时
【教学内容】
四年级(下)第17~18页例1~2,练习四第1题。
【教学目标】
1.经历在计算和解决问题的具体情景中探索发现乘法交换律、结合律的过程。
2.理解并掌握乘法交换律和结合律,初步能用这两个运算律解释计算的理由。
3.体验数学与日常生活密切相关,培养学生自主探索数学知识和应用数学知识解决简单实际问题的能力。
【教学重点】
在具体情景中探索发现乘法交换律、乘法结合律。
【教学过程】
一、创设情景,探索新知
1.教学例1
出示例1图,学生独立列式解答,然后在小组中互相交流。
板书:9×4=36(个),4×9=36(个)。
学生观察板书,思考:这两个算式有什么特点?
板书:9×4=4×9。
教师:你还能写出几个有这样规律的算式吗?
板书学生举出的算式。
如:15×2=2×15
8×5=5×8 ……
教师:观察这些算式,你发现了什么?
学生1:两个因数交换位置,积不变。
学生2:这就叫乘法交换律。
教师:你能用自己喜欢的方式表示乘法交换律吗?(学生独立思考后交流)
教师:如果用a、b表示两个数,这个规律可怎样表示呢?(a ×b=b×a)
2.教学例2
出示例2情景图,口述数学信息和解决的问题。
学生独立思考,列式解答。
然后在小组中交流解题思路和方法。
全班汇报,教师板书。
(8×24)×68×(24×6)=192×6=8×144=1152 (户)=1152 (户)
学生对这两种算法进行观察、比较,有什么相同点和不同点?
板书:(8×24)×6=8×(24×6)。
出示下面的算式,算一算,比一比。
1.
6×5×2=16×(5×2)=35×25×4=
35×(25×4)=12×125×8=12×(125×8)=
观察算式,有同样的特点吗?每排的两个算式的结果相等吗?学生独立计算,验证自己的猜想,全班交流。
板书:16×5×2=16×(5×2)35×25×4=35×(25×4)43×125×8=43×(125×8)谁能说出这几组算式的规律?
学生1:每个算式只是改变了运算顺序。
学生2:每排左、右两个算式计算结果相等。
学生3:三个数相乘,先算前两个数的积或者先算后两个数的积,值不变。
教师:谁知道这个规律叫什么?
教师板书:乘法结合律。
教师:如果用a、b、c表示3个数,可以怎样表示这个规律?
教师板书:(a×b)×c=a×(b×c)。
教师:这个规律就叫乘法结合律。
小结:同学们,我们一起总结出了乘法交换律和乘法结合律,下面看同学们会不会用。
二、课堂活动
1.练习四第1题:学生独立完成,全班交流,说出依据。
2.连线。
(学生独立完成)
23×15×217×(125×4)17×125×439×(25×8)39×25×823×(15×2)
三、课堂小结
今天这节课你都有哪些收获?还有什么问题?
二是发挥学生的主动性,让学生在自主探索中发现、理解乘法运算律,培养了学生的探索能力。
]
第二课时
【教学内容】
四年级(下)第19~21页例3,课堂活动第1~2题和练习四第2~6题和思考题。
【教学目标】
⒈进一步理解并掌握乘法交换律和结合律,并能运用这两个运算律进行简便计算。
⒉培养学生灵活运用所学知识解决实际问题的能力。
⒊让学生在老师的引导下,经历克服学习困难的过程,体验数学学习的成就感。
共2页,当前第1页12
【教学重、难点】
灵活运用乘法交换律和乘法结合律进行简便计算。
【教学过程】
一、复习旧知,引入新课
1.回忆上节课中所学的乘法交换律和乘法结合律并用自己的语言加以叙述。
2.填空。
a×(×)=b×(×)×c=a×(×)
我们学习了乘法运算律,这节课我们一起运用乘法运算律进行计算。
二、探索新知
学习例3。
出示例3,算一算,议一议。
61×25×48×9×125
教师:观察每个算式中的因数之间有什么特点?可以运用运算律进行简便计算吗?(学生观察思考,独立计算)
全班汇报,教师板书:
(1)
①61×25×4
②61×25×4
③……=61×100 =1525×4 =6100 =6100
(2)①8×9×125
②8×9×125
③……=72×125 =9×1000 =9000 =9000
小组讨论:每题都有几种算法,你认为哪种算法最简便?为什么?运用乘法交换律和结合律进行简便计算时要注意什么?
全班交流汇报。
教师小结:运用乘法运算律进行简便计算,它的核心就是“凑整”。
往往可以把两个或几个数结合在一起乘起来得到整十、整百……有时还可能需要把一个数分解成两个数,再与另外的数结合相乘得到整十数、整百数……总之使计算变得简单。
三、课堂活动
1.课堂活动第1题:先让学生说一说怎样计算简便,并说出依据,再完成在课本上。
2.课堂活动第2题:先让学生独立思考后,再在小组中讨论该怎样进行简便计算,最后全班反馈。
要学生认识到同一个计算可以有不同的简便计算方法。
3.练习四第2题:学生独立完成(连线)后反馈。
4.练习四第7题:学生独立完成后反馈。
5.练习四第8题。
学生观察图中信息,然后抽学生提出问题,教师板演在黑板上。
其余学生判断。
最后让学生独立解决在课堂作业本上,不得少于3个问题。
注意:随时提醒学生观察算式中数据的特点,并应用简便方法进行计算。
四、拓展练习
思考题:引导学生抓住突破点:一是1~9各数字在算式中只出现一次;二是算式中积的个位数字是2。
根据这两个信息可以想到两个因数个位上的数字只能分别是3和4,继续分析便可解决此题。
五、课堂作业
练习四第3~6题。
六、课堂小结
这节课主要学习了什么知识?你还有什么问题吗?。