2010年高考数学(理科)试题及参考答案(全国卷I)(新浪微博@高考直通车)
- 格式:doc
- 大小:1.27 MB
- 文档页数:12
绝密★启用前2010年普通高等学校招生全国统一考试及答案第I 卷一.选择题 (1)复数3223i i+=-(A)i (B)i - (C)12-13i (D) 12+13i1.A 【命题意图】本小题主要考查复数的基本运算,重点考查分母实数化的转化技巧.【解析】32(32)(23)694623(23)(23)13i i i i i i ii i +++++-===--+.(2)记cos(80)k -︒=,那么tan 100︒=A.21k k- B. -21k k- C.21k k- D. -21k k-2.B 【命题意图】本小题主要考查诱导公式、同角三角函数关系式等三角函数知识,并突出了弦切互化这一转化思想的应用. 【解析】222sin 801cos 801cos (80)1k=-=--=-,所以tan 100tan 80︒=-2sin 801.cos 80k k-=-=-(3)若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为(A)4 (B)3 (C)2 (D)13.B 【命题意图】本小题主要考查线性规划知识、作图、识图能力及计算能力.【解析】画出可行域(如右图),由图可知,当直线l 经过点A(1,-1)时,z 最大,且最大值为m ax 12(1)3z =-⨯-=.0x y += 1Oy x =y20x y --=xA 0:20l x y -=2-2A(4)已知各项均为正数的等比数列{n a },123a a a =5,789a a a =10,则a a a=(A) 52(B) 7 (C) 6 (D) 424.A 【命题意图】本小题主要考查等比数列的性质、指数幂的运算、根式与指数式的互化等知识,着重考查了转化与化归的数学思想.【解析】由等比数列的性质知31231322()5a a a a a a a === ,37897988()a a a a a a a ===10,所以132850a a =,所以13336456465528()()(50)52a a a a a a a a a =====(5)353(12)(1)x x +-的展开式中x 的系数是(A) -4 (B) -2 (C) 2 (D) 45.B 【命题意图】本小题主要考查了考生对二项式定理的掌握情况,尤其是展开式的通项公式的灵活应用,以及能否区分展开式中项的系数与其二项式系数,同时也考查了考生的一些基本运算能力.【解析】35533(12)(1)(16128)(1)x x x x x x x +-=+++-故353(12)(1)x x +-的展开式中含x的项为333551()1210122C x xC x x x ⨯-+=-+=-,所以x的系数为-2.(6)某校开设A 类选修课3门,B 类选择课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有 (A) 30种 (B)35种 (C)42种 (D)48种6.A 【命题意图】本小题主要考查分类计数原理、组合知识,以及分类讨论的数学思想.【解析】:可分以下2种情况:(1)A 类选修课选1门,B 类选修课选2门,有1234C C 种不同的选法;(2)A 类选修课选2门,B 类选修课选1门,有2134C C 种不同的ABC DA 1B 1C 1D 1 O选法.所以不同的选法共有1234C C +2134181230C C =+=种.(7)正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为 A23B33C 23D637.D 【命题意图】本小题主要考查正方体的性质、直线与平面所成的角、点到平面的距离的求法,利用等体积转化求出D 到平面AC 1D 的距离是解决本题的关键所在,这也是转化思想的具体体现.【解析】因为BB 1//DD 1,所以B 1B 与平面AC 1D 所成角和DD 1与平面AC 1D 所成角相等,设DO ⊥平面AC1D ,由等体积法得11D A C D D A C DV V --=,即111133A C D A C D S D O S D D ∆∆⋅=⋅.设DD 1=a,则12211133sin 60(2)2222AC D S AC AD a a ∆==⨯⨯=,21122A C D S A D C D a ∆==.所以1312333AC DAC DS D D aD O a S a∆∆===,记DD 1与平面AC1D 所成角为θ,则13sin 3D O D D θ==,所以6cos 3θ=.(8)设a=3log 2,b=In2,c=125-,则A a<b<c Bb<c<a C c<a<b D c<b<a8.C 【命题意图】本小题以指数、对数为载体,主要考查指数函数与对数函数的性质、实数大小的比较、换底公式、不等式中的倒数法则的应用. 【解析】 a=3log 2=21log 3, b=In2=21log e,而22log 3log 1e >>,所以a<b,c=125-=15,而2252log 4log 3>=>,所以c<a,综上c<a<b.(9)已知1F 、2F 为双曲线C:221x y -=的左、右焦点,点p 在C 上,∠1F p 2F =060,则P 到x 轴的距离为 (A)32(B)62(C) 3 (D) 69.B 【命题意图】本小题主要考查双曲线的几何性质、第二定义、余弦定理,考查转化的数学思想,通过本题可以有效地考查考生的综合运用能力及运算能力.【解析】不妨设点P 00(,)x y 在双曲线的右支,由双曲线的第二定义得21000||[()]12a P F e x a e x x c=--=+=+,22000||[)]21aPF e x ex a x c=-=-=-.由余弦定理得 cos ∠1F P 2F =222121212||||||2||||P F P F F F P F P F +-,即cos 0602220000(12)(21)(22)2(12)(21)x x x x ++--=+-,解得2052x =,所以2200312y x =-=,故P 到x 轴的距离为06||2y =(10)已知函数F(x)=|lgx|,若0<a<b,且f(a)=f(b),则a+2b 的取值范围是 (A)(22,)+∞ (B)[22,)+∞ (C)(3,)+∞ (D)[3,)+∞10.A 【命题意图】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本小题时极易忽视a 的取值范围,而利用均值不等式求得a+2b 222a a=+>,从而错选A,这也是命题者的用苦良心之处.【解析】因为 f(a)=f(b),所以|lga|=|lgb|,所以a=b(舍去),或1b a=,所以a+2b=2a a+又0<a<b,所以0<a<1<b ,令2()f a a a=+,由“对勾”函数的性质知函数()f a 在a ∈(0,1)上为减函数,所以f(a)>f(1)=1+21=3,即a+2b 的取值范围是(3,+∞).(11)已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为俩切点,那么PA PB ∙的最小值为 (A) 42-+(B)32-+(C) 422-+ (D)322-+11.D 【命题意图】本小题主要考查向量的数量积运算与圆的切线长定理,着重考查最值的求法——判别式法,同时也考查了考生综合运用数学知识解题的能力及运算能力. 【解析】如图所示:设PA=PB=x (0)x >,∠APO=α,则∠APB=2α,APO=21x +,21sin 1xα=+,||||cos 2P A P B P A P B α∙=⋅ =22(12sin )x α-=222(1)1x x x -+=4221x x x -+,令PA PB y ∙= ,则4221x xy x -=+,即42(1)0x y x y -+-=,由2x 是实数,所以2[(1)]41()0y y ∆=-+-⨯⨯-≥,2610y y ++≥,解得322y ≤--或322y ≥-+.故min ()322PA PB ∙=-+.此时21x =-.(12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 (A)233(B)433(C) 23 (D)83312.B 【命题意图】本小题主要考查几何体的体积的计算、球的性质、异面直线的距离,通过球这个载体考查考生的空间想象能力及推理运算能力.【解析】过CD 作平面PCD ,使AB ⊥平面PCD,交AB 与P,设点P 到CD 的距离为h ,则有A B C D 11222323V h h =⨯⨯⨯⨯=四面体,当直径通过AB 与CD 的中点时,22max 22123h =-=,故max 433V =.第Ⅱ卷二.填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上. (注意:在试题卷上作答无效)(13)不等式2211x x +-≤的解集是 .13.[0,2] 【命题意图】本小题主要考查根式不等式的解法,利用平方去掉根号是解根式不等式的基本思路,也让转化与化归的数学思想体现得淋漓尽致. 解析:原不等式等价于2221(1),10x x x ⎧+≤+⎨+≥⎩解得0≤x ≤2.(14)已知α为第三象限的角,3cos 25α=-,则tan(2)4πα+= .14.17-【命题意图】本小题主要考查三角函数值符号的判断、同角三角函数关系、和角的正切公式,同时考查了基本运算能力及等价变换的解题技能.12x =y=1xy aO12x =-414a y -=2y x x a=-+【解析】因为α为第三象限的角,所以2(2(21),2(21))(k k k Z απππ∈+++∈,又3c o s 25α=-<0, 所以2(2(21),2(21))()2k k k Z παπππ∈++++∈,于是有4sin 25α=,sin 24tan 2cos 23ααα==-,所以tan(2)4πα+=41tantan 2134471tantan 2143παπα-+==--+.(15)直线1y =与曲线2y x x a =-+有四个交点,则a 的取值范围是 .15.(1,5)4【命题意图】本小题主要考查函数的图像与性质、不等式的解法,着重考查了数形结合的数学思想.【解析】如图,在同一直角坐标系内画出直线1y =与曲线2y x x a =-+,观图可知,a 的取值必须满足1,4114a a >⎧⎪⎨-<⎪⎩解得514a <<.(16)已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D ,且BF 2FD =uu r uur,则C 的离心率为 . 16.23【命题意图】本小题主要考查椭圆的方程与几何性质、第二定义、平面向量知识,考查了数形结合思想、方程思想,本题凸显解析几何的特点:“数研究形,形助数”,利用几何性质可寻求到简化问题的捷径. 【解析】如图,22||BF b c a =+=,作1D D y ⊥轴于点D 1,则由BF 2FD =uu r uur,得1||||2||||3O F BF D D BD ==,所以133||||22D D O F c ==,即32D c x =,由椭圆的第二定义得2233||()22ac cFD e a ca=-=-又由||2||BF FD =,得232c c a a=-,整理得22320c a ac -+=.xO yBF1DD两边都除以2a ,得2320e e +-=,解得1()e =-舍去,或23e =.三.解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分10分)(注意:在试题卷上作答无效............) 已知A B C V 的内角A ,B 及其对边a,b 满cot cot a b a A b B +=+,求内角C .17. 【命题意图】本小题主要考查三角恒等变形、利用正弦、余弦定理处理三角形中的边角关系,突出考查边角互化的转化思想的应用.【解析】(18)(本小题满分12分)(注意:在试题卷上作答无效.........).投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专家的评审, 则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评 审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录 用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3. 各专家独立评审.(I)求投到该杂志的1篇稿件被录用的概率;(II)记X 表示投到该杂志的4篇稿件中被录用的篇数,求X 的分布列及期望. 【命题意图】本题主要考查等可能性事件、互斥事件、独立事件、相互独立试验、分布列、数学期望等知识,以及运用概率知识解决实际问题的能力,考查分类与整合思想、化归与转化思想.【解析】(18)解:(Ⅰ)记 A 表示事件:稿件能通过两位初审专家的评审; B 表示事件:稿件恰能通过一位初审专家的评审; C 表示事件:稿件能通过复审专家的评审; D 表示事件:稿件被录用. 则 D=A+B·C,()0.50.50.25,()20.50.50.5P A P B P C=⨯==⨯⨯== ()()P D P A B C=+=()()P A P B C + =()()()P A P B P C + =0.25+0.5×0.3 =0.40.(Ⅱ)~(4,0.4)X B ,其分布列为: 4(0)(10.4)0.1296,P X ==-= 134(1)0.4(10.4)0.3456,P X C ==⨯⨯-= 2224(2)0.4(10.4)0.3456,P X C ==⨯⨯-= 334(3)0.4(10.4)0.1536,P X C ==⨯⨯-=4(4)0.40.0256.P X === 期望40.4 1.6E X =⨯=.(19)(本小题满分12分)(注意:在试题卷上作答无效.........) 如图,四棱锥S-ABCD 中,SD ⊥底面ABCD ,AB//DC ,AD ⊥DC ,AB=AD=1,DC=SD=2,E 为棱SB 上的一点,平面EDC ⊥平面SBC .(Ⅰ)证明:SE=2EB ;(Ⅱ)求二面角A-DE-C 的大小 .【命题意图】本小题主要考查空间直线与直线、直线与平面、平面与平面的位置关系,二面角等基础知识,考查空间想象能力、推理论证能力和运算能力. (19) 【解析】解法一:(Ⅰ)连接BD,取DC 的中点G ,连接BG,由此知 1,DG GC BG ===即A B C ∆为直角三角形,故B C B D ⊥.又ABCD,BC SD SD ⊥⊥平面故,所以,BC ⊥⊥平面BDS,BC DE .作BK ⊥EC,EDC SBC K ⊥为垂足,因平面平面,(Ⅱ) 由225,1,2,,SA SD AD AB SE EB AB SA =+===⊥知22121,AD =133AE SA AB ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭又. 故AD E ∆为等腰三角形.取ED 中点F,连接A F ,则226,3AF D E AF AD D F⊥=-=.连接F G ,则//,FG EC FG DE ⊥.所以,A F G ∠是二面角A D E C --的平面角. 连接AG,AG=2,2263FG D G D F=-=,2221cos 22AF FG AGAFG AF FG+-∠==-,所以,二面角A D E C --的大小为120°.解法二:以D 为坐标原点,射线D A 为x 轴的正半轴,建立如图所示的直角坐标系D xyz -,由,m D E m D C⊥⊥,得m D E⊥=,0m DC⊥=故20,20 111x y zyλλλλλ++==+++.令2x=,则(2,0,)mλ=-.(20)(本小题满分12分)(注意:在试题卷上作答无效.........) 已知函数()(1)ln 1f x x x x =+-+.(Ⅰ)若2'()1xf x x ax ≤++,求a 的取值范围; (Ⅱ)证明:(1)()0x f x -≥ .【命题意图】本小题主要考查函数、导数、不等式证明等知识,通过运用导数知识解决函数、不等式问题,考查了考生综合运用数学知识解决问题的能力以及计算能力,同时也考查了函数与方程思想、化归与转化思想. 【解析】20.解: (Ⅰ)11()ln 1ln x f x x x xλ+'=+-=+,()l n 1x f x x x '=+, 题设2()1xf x x ax '≤++等价于ln x x a -≤.令()ln g x x x =-,则1()1g x x'=-当01x <<,'()0g x >;当1x ≥时,'()0g x ≤,1x =是()g x 的最大值点,()(1)1g x g =-≤ 综上,a 的取值范围是[)1,-+∞.(Ⅱ)有(Ⅰ)知,()(1)1g x g =-≤即ln 10x x -+≤.当01x <<时,()(1)ln 1ln (ln 1)0f x x x x x x x x =+-+=+-+≤; 当1x ≥时,()l n (l n 1f x x x x x =+-+ 1l n (l n 1)x x x x=++- 11ln (ln 1)x x x x=--+0≥所以(1)()0x f x -≥(21)(本小题满分12分)(注意:在试题卷上作答无效.........) 已知抛物线2:4C y x =的焦点为F ,过点(1,0)K -的直线l 与C 相交于A 、B 两点,点A 关于x 轴的对称点为D . (Ⅰ)证明:点F 在直线BD 上;(Ⅱ)设89F A F B = ,求B D K ∆的内切圆M 的方程 .【命题意图】本小题为解析几何与平面向量综合的问题,主要考查抛物线的性质、直线与圆的位置关系,直线与抛物线的位置关系、圆的几何性质与圆的方程的求解、平面向量的数量积等知识,考查考生综合运用数学知识进行推理论证的能力、运算能力和解决问题的能力,同时考查了数形结合思想、设而不求思想.【解析】(21)解:设11(,)A x y ,22(,)B x y ,11(,)D x y -,l 的方程为1(0)x my m =-≠.(Ⅱ)由①知,21212(1)(1)42x x m y m y m +=-+-=- 1212(1)(1) 1.x x m y m y =--=因为 11(1,),FA x y =-uu r 22(1,)FB x y =-uur,212121212(1)(1)()1484FA FB x x y y x x x x m ⋅=--+=-+++=-uu r uur故 28849m -=,解得 43m =±所以l 的方程为3430,343x y x y ++=-+=又由①知 2214(4)4473y y m -=±-⨯=±故直线BD 的斜率21437y y =±-,因而直线BD 的方程为3730,3730.x y x y +-=--=因为KF 为BK D ∠的平分线,故可设圆心(,0)(11)M t t -<<,(,0)M t 到l 及BD 的距离分别为3131,54t t +-. 由313154t t +-=得19t =,或9t =(舍去),故 圆M 的半径31253t r +==.所以圆M 的方程为2214()99x y -+=.(22)(本小题满分12分)(注意:在试题卷上作答无效.........) 已知数列{}n a 中,1111,n na a c a +==-.(Ⅰ)设51,22n n c b a ==-,求数列{}n b 的通项公式;(Ⅱ)求使不等式13n n a a +<<成立的c 的取值范围 .【命题意图】本小题主要考查数列的通项公式、等比数列的定义、递推数列、不等式等基础知识和基本技能,同时考查分析、归纳、探究和推理论证问题的能力,在解题过程中也渗透了对函数与方程思想、化归与转化思想的考查. 【解析】(Ⅱ)12211,1, 2.a a c a a c ==->>由得 用数学归纳法证明:当2c >时1n n a a +<. (ⅰ)当1n =时,2111a c a a =->,命题成立;。
第1/10页2010年普通高等学校招生全国统一考试理科数学(必修+选修II )本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
第I 卷1至2页。
第II 卷3至4页。
考试结束后,将本草纲目试卷和答题卡一并交回。
第I 卷注意事项: 1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无交通工效............。
3.第I 卷共12小题,第小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A 、B 互斥,那么 球的表面积公式)(()()P A BP A P B +=+ 24S R π=如果事件A 、B 相互独立,那么 其中R 表示球的半径 )(()()P A B P A P B ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 343v R π=n 次独立重复试验中事件A 恰好发生K 次的概率 其中R 表示球的半径 ())((10,1,2,,C ηκηηρκρρκη-AA=-=⋅⋅⋅一. 选择题(1)复数3223ii+-=(A ).i (B ).-i (C ).12—13i (D ).12+13i (2) 记cos (-80°)=k ,那么tan100°=(A )(B ). —(C.)(D ).第2/10页(3)若变量x ,y 满足约束条件则z=x —2y 的最大值为(A ).4 (B )3 (C )2 (D )1(4) 已知各项均为正数比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6=(B) 7(C) 6(5)35的展开式中x 的系数是(A) -4 (B) -2 (C) 2 (D) 4(6) 某校开设A 类选修课3门,B 类选修课4门,一位同学从中共选3门。
2010年高考理科数学试题及答案-全国卷1注意事项:1. 在答题卡上用直径0.5毫米黑色墨水签字笔填写姓名、准考证号,并贴好条形码。
请核对条形码上的准考证号、姓名和科目。
选择题:1. 求复数3+2i与2-3i的商。
(A) i (B) -i (C) 12-13i (D) 12+13i2. 已知cos(-80°)=k,求tan100°。
(A) -k/(1-k^2) (B) k/(1-k^2) (C) k (D) -k3. 若变量x,y满足约束条件x+y≥0,x-y-2≤0,y≤1,则z=x-2y的最大值为(A) 4 (B) 3 (C) 2 (D) 14. 已知各项均为正数的等比数列{an},a1a2a3=5,a7a8a9=10,则a4a5a6=?(A) 52 (B) 7 (C) 6 (D) 425. 将(1+2x)^3(1-3x)^5展开式中x的系数求出。
(A) -4 (B) -2 (C) 2 (D) 46. 某校开设A类选修课3门,B类选择课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有(A) 30种 (B) 35种 (C) 42种 (D) 48种第Ⅱ卷1. 已知函数f(x)=sin2x+cos2x,求f(x+π/4)的值。
2. 已知函数f(x)=x^2-2x-3,g(x)=2x+1,则f(g(x))=?3. 已知函数f(x)=e^x,g(x)=lnx,则f(g(x))=?4. 求曲线y=x^3-3x^2+2的单调递减区间和单调递增区间。
5. 已知函数f(x)=x^3-3x,g(x)=f(x+1),求g(x)的零点。
6. 已知函数f(x)=e^x,g(x)=x^2+1,则f(g(x))的最小值为多少?7. 已知函数f(x)=ax^2+bx+c,经过点(1,3),且在x=2处的导数为4,则a+b+c=?8. 已知函数f(x)=x^3+ax^2+bx+c,其中a,b,c均为常数,且f(-1)=2,f(0)=1,f(1)=4,则f(-2)=?9. 已知函数f(x)=x^3+ax^2+bx+c,其中a,b,c均为常数,且f(1)=0,f'(1)=-2,f''(1)=2,则f(-1)=?10. 已知函数f(x)=x^3-3x,g(x)=f(x+1),求g(x)的反函数。
2010年普通高等学校招生全国统一考试(1)复数3223ii+=- (A)i (B)i - (C)12-13i (D) 12+13i1.A 【解析】32(32)(23)694623(23)(23)13i i i i i i i i i +++++-===--+. (2)记cos(80)k -︒=,那么tan100︒=A.21k k -B. -21k k- C.21k k- D. -21k k-2.B 【解析】222sin 801cos 801cos (80)1k =-=--=- ,所以tan100tan80︒=-2sin801.cos80k k-=-=-(3)若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为(A)4 (B)3 (C)2 (D)1 3.B 【解析】画出可行域(如右图),由图可知,当直线l 经过点A(1,-1)时,z 最大,且最大值为max 12(1)3z =-⨯-=.(4)已知各项均为正数的等比数列{n a },123a a a =5,789a a a =10,则456aaa = (A) 52 (B) 7 (C) 6 (D) 424.A 【解析】由等比数列的性质知31231322()5a a a a a a a === ,0x y += 1O y x = y20x y --=xA0:20l x y -=2-2AABC DA 1B 1C 1D 1O37897988()a a a a a a a === 10,所以132850a a =, 所以13336456465528()()(50)52a a a a a a a a a ===== (5)353(12)(1)x x +-的展开式中x 的系数是 (A) -4 (B) -2 (C) 2 (D) 45.B 【解析】35533(12)(1)(16128)(1)x x x x x x x +-=+++- 故353(12)(1)x x +-的展开式中含x 的项为3303551()1210122C x xC x x x ⨯-+=-+=-,所以x 的系数为-2.(6)某校开设A 类选修课3门,B 类选择课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有 (A) 30种 (B)35种 (C)42种 (D)48种6.A 【解析】:可分以下2种情况:(1)A 类选修课选1门,B 类选修课选2门,有1234C C 种不同的选法;(2)A 类选修课选2门,B 类选修课选1门,有2134C C 种不同的选法.所以不同的选法共有1234C C +2134181230C C =+=种.(7)正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为 A23 B 33 C 23 D 637.D【解析】因为BB 1//DD 1,所以B 1B 与平面AC 1D 所成角和DD 1与平面AC 1D 所成角相等,设DO ⊥平面AC 1D ,由等体积法得11D ACD D ACD V V --=,即111133ACD ACD S DO S DD ∆∆⋅=⋅.设DD 1=a,则12211133sin 60(2)2222ACD S AC AD a a ∆==⨯⨯= ,21122ACD S AD CD a ∆== . 所以1312333A C D A C D S D D a D O a S a ∆∆=== ,记DD 1与平面AC 1D 所成角为θ,则13sin 3DO DD θ==,所以6cos 3θ=. (8)设a=3log 2,b=In2,c=125-,则A a<b<c Bb<c<a C c<a<b D c<b<a8.C 【命题意图】本小题以指数、对数为载体,主要考查指数函数与对数函数的性质、实数大小的比较、换底公式、不等式中的倒数法则的应用. 【解析】 a=3log 2=21log 3, b=In2=21log e,而22log 3log 1e >>,所以a<b, c=125-=15,而2252log 4log 3>=>,所以c<a,综上c<a<b. (9)已知1F 、2F 为双曲线C:221x y -=的左、右焦点,点p 在C 上,∠1F p 2F =060,则P 到x 轴的距离为 (A)32 (B)62(C) 3 (D) 69.B 【解析】不妨设点P 00(,)x y 在双曲线的右支,由双曲线的第二定义得21000||[()]12a PF e x a ex x c =--=+=+,22000||[)]21a PF e x ex a x c=-=-=-.由余弦定理得cos ∠1F P 2F =222121212||||||2||||PF PF F F PF PF +-,即cos 0602220000(12)(21)(22)2(12)(21)x x x x ++--=+-, 解得2052x =,所以2200312y x =-=,故P 到x 轴的距离为06||2y = (10)已知函数F(x)=|lgx|,若0<a<b,且f(a)=f(b),则a+2b 的取值范围是 (A)(22,)+∞ (B)[22,)+∞ (C)(3,)+∞ (D)[3,)+∞10.A 【命题意图】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本小题时极易忽视a 的取值范围,而利用均值不等式求得a+2b 222a a=+>,从而错选A,这也是命题者的用苦良心之处.【解析】因为 f(a)=f(b),所以|lga|=|lgb|,所以a=b(舍去),或1b a =,所以a+2b=2a a+ 又0<a<b,所以0<a<1<b ,令2()f a a a=+,由“对勾”函数的性质知函数()f a 在a ∈(0,1)上为减函数,所以f(a)>f(1)=1+21=3,即a+2b 的取值范围是(3,+∞). (11)已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为俩切点,那么PA PB ∙的最小值为(A) 42-+ (B)32-+ (C) 422-+ (D)322-+ 11.D【解析】如图所示:设PA=PB=x (0)x >,∠APO=α,则∠APB=2α,PO=21x +,21sin 1xα=+,||||cos2PA PB PA PB α∙=⋅=22(12sin )x α-=222(1)1x x x -+=4221x x x -+,令P A P B y∙=,则4221x x y x -=+,即42(1)0x y x y -+-=,由2x 是实数,所以2[(1)]41()0y y ∆=-+-⨯⨯-≥,2610y y ++≥,解得322y ≤--或322y ≥-+.故min ()322PA PB ∙=-+.此时21x =-.(12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 (A)233 (B)433 (C) 23 (D) 83312.B 【命题意图】本小题主要考查几何体的体积的计算、球的性质、异面直线的距离,通过球这个载体考查考生的空间想象能力及推理运算能力.【解析】过CD 作平面PCD ,使AB ⊥平面PCD,交AB 与P,设点P 到CD 的距离为h ,则有ABCD 11222323V h h =⨯⨯⨯⨯=四面体,当直径通过AB 与CD 的中点时,22max 22123h =-=,故max 433V =. (13)不等式2211x x +-≤的解集是 .PABO12x =y=1 xyaO12x =-414a y -=2y x x a=-+13.[0,2] 【命题意图】本小题主要考查根式不等式的解法,利用平方去掉根号是解根式不等式的基本思路,也让转化与化归的数学思想体现得淋漓尽致.解析:原不等式等价于2221(1),10x x x ⎧+≤+⎨+≥⎩解得0≤x ≤2.(14)已知α为第三象限的角,3cos 25α=-,则tan(2)4πα+= . 14.17-【解析】因为α为第三象限的角,所以2(2(21),2(21))()k k k Z απππ∈+++∈,又3cos 25α=-<0, 所以2(2(21),2(21))()2k k k Z παπππ∈++++∈,于是有4s i n 25α=,sin 24tan 2cos 23ααα==-,所以tan(2)4πα+=41tan tan 2134471tan tan 2143παπα-+==--+. (15)直线1y =与曲线2y x x a =-+有四个交点,则a 的取值范围是 .15.(1,5)4【解析】如图,在同一直角坐标系内画出直线1y =与曲线2y x x a =-+,观图可知,a 的取值必须满足1,4114a a >⎧⎪⎨-<⎪⎩解得514a <<. (16)已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D ,且BF 2FD =uu r uu r,则C 的离心率为 .16.23【解析】如图,22||BF b c a =+=,作1DD y ⊥轴于点D 1,则由BF 2FD =uu r uu r,得1||||2||||3OF BF DD BD ==,所以133||||22DD OF c ==,即32D c x =,由椭圆的第二定义得2233||()22a c c FD e a c a=-=-又由||2||BF FD =,得232c c a a=-,整理得22320c a ac -+=.两边都除以2a ,得2320e e +-=,解得1()e =-舍去,或23e =. 三.解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分10分)(注意:在试题卷上作答无效............) 已知ABC V 的内角A ,B 及其对边a ,b 满足cot cot a b a A b B +=+,求内角C .(18)(本小题满分12分)(注意:在试题卷上作答无效.........).投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专家的评审, 则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评 审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录 用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3. 各专家独立评审.(I)求投到该杂志的1篇稿件被录用的概率;(II)记X 表示投到该杂志的4篇稿件中被录用的篇数,求X 的分布列及期望. 18.(19如图,四棱锥S-ABCD 中,SD ⊥底面ABCD ,AB//DC ,AD ⊥DC ,AB=AD=1,DC=SD=2,E 为棱SB 上的一点,平面EDC ⊥平面SBC .(Ⅰ)证明:SE=2EB ;(Ⅱ)求二面角A-DE-C 的大小 .(20)已知函数()(1)ln 1f x x x x =+-+.(Ⅰ)若2'()1xf x x ax ≤++,求a 的取值范围; (Ⅱ)证明:(1)()0x f x -≥ .(21)(本小题满分12分)(注意:在试题卷上作答无效.........) 已知抛物线2:4C y x =的焦点为F ,过点(1,0)K -的直线l 与C 相交于A 、B 两点,点A 关于x 轴的对称点为D .(Ⅰ)证明:点F 在直线BD 上;(Ⅱ)设89FA FB = ,求BDK ∆的内切圆M 的方程 .(22)(本小题满分12分)(注意:在试题卷上作答无效.........) 已知数列{}n a 中,1111,n n a a c a +==- .(Ⅰ)设51,22n n c b a ==-,求数列{}n b 的通项公式;(Ⅱ)求使不等式13n n a a +<<成立的c 的取值范围 .。
绝密★启用前2010年普通高等学校招生全国统一考试(课标版) 理科数学第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{}2,RA x x x =≤∈,{}4,ZB x =≤∈,则A B =(A )()0,2 (B )[]0,2 (C ){}0,2 (D ){}0,1,2(2)已知复数1z=,z 是z 的共轭复数,则z z ⋅=(A )14(B )12(C )1 (D )2(3)曲线2xy x =+在点()1,1--处的切线方程为 (A )21y x =+ (B )21y x =- (C )23y x =-- (D )22y x =--(4)如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为0P ,角速度为1,那么点P 到x 轴距离d 关于时间t的函数图像大致为(5)已知命题1p :函数22x x y -=-在R 为增函数, 2p :函数22x x y -=+在R 为减函数,则在命题1q :12p p ∨,2q :12p p ∧,3q :()12p p -∨和4q :()12p p ∧-中,真命题是(A )1q ,3q (B )2q ,3q (C )1q ,4q (D )2q ,4q(6)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为 (A )100 (B )200 (C )300 (D )400 (7)如果执行右面的框图,输入5N=,则输出的数等于 (A )54(B )45(C )65 (D )56(8)设偶函数()f x 满足()()380f x x x =-≥,则(){}20x f x -=>(A ){}2x x x <-或>4 (B ){}0x x x <或>4 (C ){}0x x x <或>6 (D ){}2x x x <-或>2(9)若4cos 5α=-,α是第三象限的角,则1tan 21tan2αα+=-(A )12-(B )12(C )2 (D )2-(10)设三棱柱的侧棱垂直于底面,所有棱的长都为a ,顶点都在一个球面上,则该球的表面积为 (A )2a π (B )273a π (C )2113a π (D )25a π (11)已知函数()lg ,010,16,02x x f x x x ⎧≤⎪=⎨-+⎪⎩<>1若a ,b ,c 互不相等,且()()()f a f b f c ==,则abc 的取值范围是 (A )()1,10 (B )()5,6 (C )()10,12 (D )()20,24(12)已知双曲线E 的中心为原点,F(3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N(-12,-15),则E 的方程为(A )22136x y -= (B ) 22145x y -= (C ) 22163x y -= (D )22154x y -= 第Ⅱ卷二、填空题:本大题共4小题,每小题5分。
2010年全国统一高考数学试卷(理科)(大纲版Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)复数=()A.i B.﹣i C.12﹣13i D.12+13i2.(5分)记cos(﹣80°)=k,那么tan100°=()A.B.﹣C.D.﹣3.(5分)若变量x,y满足约束条件,则z=x﹣2y的最大值为()A.4B.3C.2D.14.(5分)已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7C.6D.5.(5分)(1+2)3(1﹣)5的展开式中x的系数是()A.﹣4B.﹣2C.2D.46.(5分)某校开设A类选修课3门,B类选择课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有()A.30种B.35种C.42种D.48种7.(5分)正方体ABCD﹣A1B1C1D1中,BB1与平面ACD1所成角的余弦值为()A.B.C.D.8.(5分)设a=log32,b=ln2,c=,则()A.a<b<c B.b<c<a C.c<a<b D.c<b<a 9.(5分)已知F1、F2为双曲线C:x2﹣y2=1的左、右焦点,点P在C上,∠F1PF2=60°,则P到x轴的距离为()A.B.C.D.10.(5分)已知函数f(x)=|lgx|,若0<a<b,且f(a)=f(b),则a+2b的取值范围是()A.B.C.(3,+∞)D.[3,+∞)11.(5分)已知圆O的半径为1,PA、PB为该圆的两条切线,A、B为两切点,那么的最小值为()A.B.C.D.12.(5分)已知在半径为2的球面上有A、B、C、D四点,若AB=CD=2,则四面体ABCD的体积的最大值为()A.B.C.D.二、填空题(共4小题,每小题5分,满分20分)13.(5分)不等式的解集是.14.(5分)已知α为第三象限的角,,则=.15.(5分)直线y=1与曲线y=x2﹣|x|+a有四个交点,则a的取值范围是.16.(5分)已知F是椭圆C的一个焦点,B是短轴的一个端点,线段BF的延长线交C于点D,且,则C的离心率为.三、解答题(共6小题,满分70分)17.(10分)已知△ABC的内角A,B及其对边a,b满足a+b=acotA+bcotB,求内角C.18.(12分)投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专家的评审,则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3.各专家独立评审.(Ⅰ)求投到该杂志的1篇稿件被录用的概率;(Ⅱ)求投到该杂志的4篇稿件中,至少有2篇被录用的概率.19.(12分)如图,四棱锥S﹣ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E为棱SB上的一点,平面EDC⊥平面SBC.(Ⅰ)证明:SE=2EB;(Ⅱ)求二面角A﹣DE﹣C的大小.20.(12分)已知函数f(x)=(x+1)lnx﹣x+1.(Ⅰ)若xf′(x)≤x2+ax+1,求a的取值范围;(Ⅱ)证明:(x﹣1)f(x)≥0.21.(12分)已知抛物线C:y2=4x的焦点为F,过点K(﹣1,0)的直线l与C 相交于A、B两点,点A关于x轴的对称点为D.(Ⅰ)证明:点F在直线BD上;(Ⅱ)设,求△BDK的内切圆M的方程.22.(12分)已知数列{a n}中,a1=1,a n+1=c﹣.(Ⅰ)设c=,b n=,求数列{b n}的通项公式;(Ⅱ)求使不等式a n<a n+1<3成立的c的取值范围.。
2010年普通高等学校招生全国统一考试(新课标全国卷)理科数学试题本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合{||2}A x R x =∈≤},{|4}B x Z x =∈≤,则A B ⋂=(A )(0,2) (B)[0,2] (C){0,2] (D ){0,1,2} (2)已知复数23(13)iz i +=-,z 是z 的共轭复数,则z z ⋅= (A)14 (B )12(C) 1 (D )2 (3)曲线2xy x =+在点(1,1)--处的切线方程为(A )21y x =+ (B)21y x =- (C) 23y x =-- (D )22y x =-- (4)如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为0(2,2)P -,角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图像大致为tdπ42OA B C D(5)已知命题1p :函数22x x y -=-在R 为增函数, 2p :函数22x x y -=+在R 为减函数,则在命题1q :12p p ∨,2q :12p p ∧,3q :()12p p ⌝∨和4q :()12p p ∧⌝中,真命题是 (A)1q ,3q (B )2q ,3q (C )1q ,4q (D )2q ,4q(6)某种种子每粒发芽的概率都为0。
9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为 (A)100 (B )200 (C )300 (D )400(7)如果执行右面的框图,输入5N =,则输出的数等于(A)54 (B )45(C )65 (D )56(8)设偶函数()f x 满足3()8(0)f x x x =-≥, 则{|(2)0}x f x ->=(A ) {|24}x x x <->或 (B) {|04}x x x <>或 (C ) {|06}x x x <>或 (D ) {|22}x x x <->或(9)若4cos 5α=-,α是第三象限的角,则1tan 21tan2αα+=-(A ) 12-(B )12(C ) 2(D) 2-(10)设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为 (A ) 2a π(B )273a π (C )2113a π (D) 25a π (11)已知函数|lg |,010,()16,10.2x x f x x x <≤⎧⎪=⎨-+>⎪⎩若,,a b c 互不相等,且()()(),f a f b f c ==则abc 的取值范围是(A) (1,10)(B) (5,6)(C) (10,12)(D) (20,24)(12)已知双曲线E 的中心为原点,(3,0)P 是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为(12,15)N --,则E 的方程式为(A )22136x y -= (B) 22145x y -= (C )22163x y -= (D)22154x y -= 第Ⅱ卷本卷包括必考题和选考题两部分,第(13)题~第(21)题为必考题,每个试题考生都必须做答,第(22)题~第(24)题为选考题,考试根据要求做答。
2010年普通高等学校招生全国统一考试(新课标全国卷)理科数学试题本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合{||2}A x R x =∈≤},{|4}B x Z x =∈≤,则A B ⋂=(A)(0,2) (B)[0,2] (C){0,2] (D){0,1,2} (2)已知复数23(13)iz i +=-,z 是z 的共轭复数,则z z ⋅= (A)14 (B)12(C) 1 (D)2 (3)曲线2xy x =+在点(1,1)--处的切线方程为(A)21y x =+ (B)21y x =- (C) 23y x =-- (D)22y x =-- (4)如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为0(2,2)P -,角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图像大致为tdπ42OA B C D(5)已知命题1p :函数22x x y -=-在R 为增函数, 2p :函数22x x y -=+在R 为减函数,则在命题1q :12p p ∨,2q :12p p ∧,3q :()12p p ⌝∨和4q :()12p p ∧⌝中,真命题是(A )1q ,3q (B )2q ,3q (C )1q ,4q (D )2q ,4q(6)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为 (A)100 (B )200 (C)300 (D )400(7)如果执行右面的框图,输入5N =,则输出的数等于(A)54 (B )45(C)65 (D )56(8)设偶函数()f x 满足3()8(0)f x x x =-≥, 则{|(2)0}x f x ->=(A) {|24}x x x <->或 (B) {|04}x x x <>或 (C) {|06}x x x <>或 (D) {|22}x x x <->或(9)若4cos 5α=-,α是第三象限的角,则1tan21tan 2αα+=- (A) 12- (B) 12(C) 2 (D) 2-(10)设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为 (A) 2a π(B)273a π (C)2113a π (D) 25a π (11)已知函数|lg |,010,()16,10.2x x f x x x <≤⎧⎪=⎨-+>⎪⎩若,,a b c 互不相等,且()()(),f a f b f c ==则abc的取值范围是(A) (1,10) (B) (5,6)(C) (10,12)(D) (20,24)(12)已知双曲线E 的中心为原点,(3,0)P 是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为(12,15)N --,则E 的方程式为(A)22136x y -= (B) 22145x y -= (C) 22163x y -= (D) 22154x y -=第Ⅱ卷本卷包括必考题和选考题两部分,第(13)题~第(21)题为必考题,每个试题考生都必须做答,第(22)题~第(24)题为选考题,考试根据要求做答。
2010年全国卷Ⅰ高考理科数学真题及答案本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。
第I 卷1至2页。
第Ⅱ卷3 至4页。
考试结束后,将本试卷和答题卡一并交回。
第I 卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.........。
3.第I 卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A 、B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件A 、B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B = 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 334V R π=n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(0,1,2,)k kn k n n P k C p p k n -=-=…一、选择题 (1)复数3223ii+=- (A)i (B)i - (C)12-13i (D) 12+13i (2)记cos(80)k -︒=,那么tan100︒=A.21k k -B. -21k k -21k -21k-(3)若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为(A)4 (B)3 (C)2 (D)1(4)已知各项均为正数的等比数列{n a },123a a a =5,789a a a =10,则456a a a =(A) 52 (B) 7 (C) 6 (D) 42(5)353(12)(1)x x +-的展开式中x 的系数是(A) -4 (B) -2 (C) 2 (D) 4(6)某校开设A 类选修课3门,B 类选择课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有(A) 30种 (B)35种 (C)42种 (D)48种(7)正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为A23 B 33 C 23D 63 (8)设a=3log 2,b=In2,c=125-,则A a<b<c Bb<c<a C c<a<b D c<b<a(9)已知1F 、2F 为双曲线C:221x y -=的左、右焦点,点p 在C 上,∠1F p 2F =060,则P到x 轴的距离为(A)32 (B)62(C) 3 (D) 6 (10)已知函数()|lg |f x x =,若0<a<b,且f(a)=f(b),则a+2b 的取值范围是(A)(22,)+∞ (B)[22,)+∞ (C)(3,)+∞ (D)[3,)+∞(11)已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为俩切点,那么PA PB •的最小值为(A) 42- (B)32-+ (C) 422-+322-+(12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为(A) 233 (B)433 (C) 23 (D) 833第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。
2010年普通高等学校招生全国统一考试(新课标全国卷)理科数学试题本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合{||2}A x R x =∈≤},{|4}B x Z x =∈≤,则A B ⋂=(A)(0,2) (B)[0,2] (C ){0,2] (D ){0,1,2} (2)已知复数23(13)iz i +=-,z 是z 的共轭复数,则z z ⋅= (A)14 (B)12(C) 1 (D)2 (3)曲线2xy x =+在点(1,1)--处的切线方程为(A )21y x =+ (B)21y x =- (C ) 23y x =-- (D )22y x =-- (4)如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为0(2,2)P -,角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图像大致为tdπ2OA B C D(5)已知命题1p :函数22x x y -=-在R 为增函数, 2p :函数22x x y -=+在R 为减函数,则在命题1q :12p p ∨,2q :12p p ∧,3q :()12p p ⌝∨和4q :()12p p ∧⌝中,真命题是 (A )1q ,3q (B )2q ,3q (C )1q ,4q (D )2q ,4q(6)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为 (A)100 (B )200 (C )300 (D )400(7)如果执行右面的框图,输入5N =,则输出的数等于(A)54 (B )45(C )65 (D )56(8)设偶函数()f x 满足3()8(0)f x x x =-≥, 则{|(2)0}x f x ->=(A ) {|24}x x x <->或 (B) {|04}x x x <>或 (C) {|06}x x x <>或 (D) {|22}x x x <->或(9)若4cos 5α=-,α是第三象限的角,则1tan 21tan2αα+=-(A) 12-(B)12(C) 2 (D) 2-(10)设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为(A) 2a π(B)273a π (C )2113a π (D) 25a π(11)已知函数|lg |,010,()16,10.2x x f x x x <≤⎧⎪=⎨-+>⎪⎩若,,a b c 互不相等,且()()(),f a f b f c ==则abc的取值范围是 (A) (1,10)(B ) (5,6)(C) (10,12)(D ) (20,24)(12)已知双曲线E 的中心为原点,(3,0)P 是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为(12,15)N --,则E 的方程式为(A)22136x y -= (B) 22145x y -= (C )22163x y -= (D) 22154x y -=第Ⅱ卷本卷包括必考题和选考题两部分,第(13)题~第(21)题为必考题,每个试题考生都必须做答,第(22)题~第(24)题为选考题,考试根据要求做答。
绝密★启用前2010年普通高等学校招生全国统一考试(全国Ⅰ卷)理科数学(必修+选修II)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。
第I 卷1至2页。
第Ⅱ卷3 至4页。
考试结束后,将本试卷和答题卡一并交回。
第I 卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.........。
3.第I 卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A 、B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件A 、B 相互独立,那么 其中R 表示球的半径()()()P A B P A P B = 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 334V R π= n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(0,1,2,)k k n k n n P k C p p k n -=-=… 一、选择题(1)复数3223i i+=- (A)i (B)i - (C)12-13i (D) 12+13i(2)记cos(80)k -︒=,那么tan100︒=A.kB. -k(3)若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为(A)4 (B)3 (C)2 (D)1(4)已知各项均为正数的等比数列{n a },123a a a =5,789a a a =10,则456a a a =(A)(5)35(1(1+的展开式中x 的系数是(A) -4 (B) -2 (C) 2 (D) 4(6)某校开设A 类选修课3门,B 类选择课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有(A) 30种 (B)35种 (C)42种 (D)48种(7)正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为C 23(8)设a=3log 2,b=In2,c=125-,则A a<b<c Bb<c<a C c<a<b D c<b<a(9)已知1F 、2F 为双曲线C:221x y -=的左、右焦点,点p 在C 上,∠1F p 2F =060,则P 到x 轴的距离为(10)已知函数()|lg |f x x =,若0<a<b,且f(a)=f(b),则a+2b 的取值范围是(A))+∞(B))+∞ (C)(3,)+∞ (D)[3,)+∞(11)已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为俩切点,那么PA PB ∙的最小值为(A) 4-3-(C) 4-+3-+(12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为(A) 3 (B)3 (C) 3绝密★启用前2010年普通高等学校招生全国统一考试理科数学(必修+选修II)第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域 内作答,在试题卷上作答无效.........。
3。
第Ⅱ卷共l0小题,共90分。
二.填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上. (注意:在试题卷上作答无效)(13)1x ≤的解集是 .(14)已知α为第三象限的角,3cos 25α=-,则tan(2)4πα+= . (15)直线1y =与曲线2y x x a =-+有四个交点,则a 的取值范围是 .(16)已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D ,cot cot a b a A b B +=+且BF 2FD =uu r uu r ,则C 的离心率为 .三.解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分10分)(注意:在试题卷上作答无效............) 已知ABC V 的内角A ,B 及其对边a ,b 满足cot cot a b a A b B +=+,求内角C .(18)(本小题满分12分)(注意:在试题卷上作答无效.........).投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专家的评审, 则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评 审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录 用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3. 各专家独立评审.(I)求投到该杂志的1篇稿件被录用的概率;(II)记X 表示投到该杂志的4篇稿件中被录用的篇数,求X 的分布列及期望.(19)(本小题满分12分)(注意:在试题卷上作答无效.........) 如图,四棱锥S-ABCD 中,SD ⊥底面ABCD ,AB//DC ,AD ⊥DC ,AB=AD=1,DC=SD=2,E 为棱SB 上的一点,平面EDC ⊥平面SBC .(Ⅰ)证明:SE=2EB ;(Ⅱ)求二面角A-DE-C 的大小 .(20)(本小题满分12分)(注意:在.试题卷上作答无效........) 已知函数()(1)ln 1f x x x x =+-+.(Ⅰ)若2'()1xf x x ax ≤++,求a 的取值范围;(Ⅱ)证明:(1)()0x f x -≥ .(21)(本小题满分12分)(注意:在试题卷上作答无效.........) 已知抛物线2:4C y x =的焦点为F ,过点(1,0)K -的直线l 与C 相交于A 、B 两点,点A 关于x 轴的对称点为D .(Ⅰ)证明:点F 在直线BD 上; (Ⅱ)设89FA FB = ,求BDK ∆的内切圆M 的方程 .(22)(本小题满分12分)(注意:在试题卷上作答无效.........) 已知数列{}n a 中,1111,n na a c a +==- .[来源:学*科*网] (Ⅰ)设51,22n n c b a ==-,求数列{}n b 的通项公式; (Ⅱ)求使不等式13n n a a +<<成立的c 的取值范围2010年普通高等学校招生全国统一考试(全国Ⅰ卷)理科数学试题(必修+选修Ⅱ)参考答案一、选择题1. A2. B3. B4. A5. C6. A7. D 8. C 9. B 10. C 11. D 12. B二、填空题13. {|02}x x ≤≤ 14. 17- 15. 5(1,)4三、解答题17. 解:由cot cot a b a A b B +=+及正弦定理得 sin sin cos cos sin cos cos sin A B A BA AB B+=+-=- 从而sin cos cos sin cos sin sin cos 4444A A B B ππππ-=-sin()sin()44A B ππ-=- 又0A B π<+< 故44A B ππ-=- 2A B π+= 所以2C π=18. 解: (Ⅰ)记 A 表示事件:稿件能通过两位初审专家的评审;B 表示事件:稿件恰能通过一位初审专家的评审;C 表示事件:稿件能通过复审专家的评审;D 表示事件:稿件被录用.则 D=A+B·C,()0.50.50.25,()20.50.50.5,()0.3,P A P B P C =⨯==⨯⨯== ()()P D P A B C =+=()()P A P B C +=()()()P A P B P C +=0.25+0.5×0.3=0.40.(Ⅱ)~(4,0.4)X B ,其分布列为:4(0)(10.4)0.1296,P X ==-=134(1)0.4(10.4)0.3456,P X C ==⨯⨯-=2224(2)0.4(10.4)0.3456,P X C ==⨯⨯-=334(3)0.4(10.4)0.1536,P X C ==⨯⨯-=4(4)0.40.0256.P X ===期望40.4 1.6EX =⨯=.19. 解法一:(Ⅰ)连接BD,取DC 的中点G ,连接BG,由此知 1,DG GC BG ===即ABC ∆为直角三角形,故BC BD ⊥.又ABCD,BC SD SD ⊥⊥平面故,所以,BC ⊥⊥平面BDS,BC DE .作BK ⊥EC,EDC SBC K ⊥为垂足,因平面平面,故,BK EDC BK DE DE ⊥⊥平面,与平面SBC 内的两条相交直线BK 、BC 都垂直 DE ⊥平面SBC ,DE ⊥EC,DE ⊥SBSB =SD DB DE SB ==-EB SE SB EB ====所以,SE=2EB(Ⅱ) 由1,2,,SA AB SE EB AB SA ====⊥知1,AD=1AE ==又. 故ADE ∆为等腰三角形.取ED 中点F,连接AF ,则,3AF DE AF ⊥==. 连接FG ,则//,FG EC FG DE ⊥. 所以,AFG ∠是二面角A DE C --的平面角.连接AG,A G=FG ==, 2221cos 22AF FG AG AFG AF FG +-∠==- , 所以,二面角A DE C --的大小为120°.解法二:以D 为坐标原点,射线DA 为x 轴的正半轴,建立如图所示的直角坐标系D xyz -,设A(1,0,0),则B(1,1,0),C(0,2,0),S(0,0,2)(Ⅰ)(0,2,-2),(-1,1,0)SC BC ==设平面SBC 的法向量为n=(a,b,c)由,n SC n BC ⊥⊥ ,得0,0n SC n BC ==故2b-2c=0,-a+b=0令a=1,则b=c,c=1,n=(1,1,1)又设SE EB λ= (0)λ>,则2(,,)111E λλλλλ+++ 2(,,),(0,2,0)111DE DC λλλλλ==+++ 设平面CDE 的法向量m=(x,y,z) 由,m DE m DC ⊥⊥,得 0m DE ⊥=,0m DC ⊥=故 20,20111x y z y λλλλλ++==+++. 令2x =,则(2,0,)m λ=-.由平面DEC ⊥平面SBC 得m ⊥n,0,20,2m n λλ=-==故SE=2EB (Ⅱ)由(Ⅰ)知222(,,)333E ,取DE 的中点F ,则111211(,,),(,,)333333F FA =-- , 故0FA DE = ,由此得FA DE ⊥ 又242(,,)333EC =-- ,故0EC DE = ,由此得EC DE ⊥, 向量FA 与EC 的夹角等于二面角A DE C --的平面角于是 1cos(,)2||||FA EC FA EC FA EC ==- 所以,二面角A DE C --的大小为12020.解:(Ⅰ)11()ln 1ln x f x x x x λ+'=+-=+, ()ln 1xf x x x '=+,题设2()1xf x x ax '≤++等价于ln x x a -≤.令()ln g x x x =-,则1()1g x x '=- 当01x <<,'()0g x >;当1x ≥时,'()0g x ≤,1x =是()g x 的最大值点,()(1)1g x g =-≤综上,a 的取值范围是[)1,-+∞.(Ⅱ)由(Ⅰ)知,()(1)1g x g =-≤即ln 10x x -+≤.当01x <<时,()(1)ln 1ln (ln 1)0f x x x x x x x x =+-+=+-+≤; 当1x ≥时,()ln (ln 1)f x x x x x =+-+ 1ln (ln 1)x x x x=++- 11ln (ln 1)x x x x =--+ 0≥所以(1)()0x f x -≥21. 解:设11(,)A x y ,22(,)B x y ,11(,)D x y -,l 的方程为1(0)x my m =-≠. (Ⅰ)将1x my =-代入24y x =并整理得2440y my -+=从而12124,4y y m y y +==直线BD 的方程为 212221()y y y y x x x x +-=-- 即222214()4y y y x y y -=-- 令0y =,得1214y y x == 所以点F(1,0)在直线BD 上(Ⅱ)由(Ⅰ)知,21212(1)(1)42x x my my m +=-+-=-1212(1)(1) 1.x x my my =--=因为 11(1,),FA x y =-uu r 22(1,)FB x y =-uu r ,212121212(1)(1)()1484FA FB x x y y x x x x m ⋅=--+=-+++=-uu r uu r故 28849m -=, 解得 43m =± 所以l 的方程为3430,3430x y x y ++=-+=又由(Ⅰ)知21y y -==故直线BD的斜率214y y =-, 因而直线BD的方程为330,330.x x -=-=因为KF 为BKD ∠的平分线,故可设圆心(,0)(11)M t t -<<,(,0)M t 到l 及BD 的距离分别为3131,54t t +-. 由313154t t +-=得19t =,或9t =(舍去), 故 圆M 的半径31253t r +==. 所以圆M 的方程为2214()99x y -+=. 22. 解: (Ⅰ)12512222nn n na a a a +--=--=, 112142,42222n n n n n n a b b a a a ++==+=+---即 11112214(),1,1332n n b b a b a ++=+===--又故所以2{}3n b +是首项为13-,公比为4的等比数列, 121433n n b -+=-⨯ 112433n n b -=-⨯- (Ⅱ)12211,1, 2.a a c a a c ==->>由得用数学归纳法证明:当2c >时1n n a a +<. (ⅰ)当1n =时,2111a c a a =->,命题成立; (ⅱ)设当n=k 时,1k k a a +<,则当n=k+1时,21111k k k ka c c a a a +++=->-= 故由(ⅰ)(ⅱ)知,当c>2时1n n a a +<当c>2时,令2c a =,由111n n n n a a c a a ++<+=得n a a < 当102,33n c a a <≤<≤时 当103c >时,3a >,且1n a a ≤< 于是111()()3n n n n a a a a a a a a +-=-≤- 11(1)3n na a a +-≤- 当31log 3a n a ->-时,113,3n n a a a a ++-<-> 因此103c >不符合要求 所以c 的取值范围是10(2,]3。