2.1 有理数的加法(1)
- 格式:ppt
- 大小:911.50 KB
- 文档页数:17
教师版2.1有理数的加法(1)【知识清单】1.有理数加法法则:(1)同号两数相加,取与加数相同的符号,并把绝对值相加.(2)异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.(3)互为相反数的两个数相加得零;一个数同零相加,仍得这个数.2.灵活运用法则:灵活使用运算法则能简化运算步骤,提高计算效率,通常有下列规律:①互为相反的两个数,可以先相加;②符号相同的数,可以先相加;③分母相同的数,可以先相加;④几个数相加能得到整数,可以先相加.【经典例题】例题1、如果a+b=c,且a、b都大于c,那么a、b一定是()A. 同为负数B. 一个正数一个负数C. 同为正数D. 一个负数一个是零【考点】有理数的加法.【分析】根据题意两个加数都大于和可得,两个加数必为负数.【解答】∵a+b=c,且a、b都大于c,∴a、b一定都是负数.故选A.【点评】根据有理数的加法:负数加负数和小于任意一个加数这是确定答案的关键.例题2、若a的相反数是最大的负整数,b的绝对值是5,试求a+b的值.【考点】握手问题.【分析】根据a的相反数是最大的负整数,可得a=1,b的绝对值是5,可得b=±5.首先根据题意确定出a、b的值,再计算a+b即可.【解答】∵a的相反数是最大的负整数,∴a=1,∵b的绝对值是5,∴b=±5.当b=5时,a+b=1+5=6,当b=-5时,a+b=1+(-5)=-4,∴a+b=6或-4.【点评】本题是一道综合题目,主要考查了有理数的加法,绝对值,相反数,解决该题的关键是理解和掌握相反数和绝对值概念,正确确定a、b的值.【夯实基础】1、两个数相加,若和为负数,则这两个数( )A .都是负数B .必定一个数的零,另一个数为负数C .总是一正一负D .至少有一个是负数 2、已知a >b 且a +b =0,则( )A .a >0B .a <0C .b ≤0D .b <03、把五个数填入下列方框中,使横、竖三个数的和相等,其中错误的是是( )4、若x 的相反数是3,y =6,则x +y 的值为 ( )A .-9B .3C .-9或3D .9或-3 5、直接写出下列各式的结果:(1) (-3)+(-4)= ; (2) (+3)+(-4)= ; (3) (-3)+(4)= ; (4) (-0.75)+(+43)= ; (5))322(-+0= ; (6) (-3.125)+872-= .6、当a 、b 满足 时,b a b a +=+成立.7、某粮食储备库周一到周四该粮仓小麦的进出情况如下表:(当天运进小麦1万吨,记作+1万吨;当天运出小麦1万吨,记作-1万吨.)上午 下午 算式合计 周一 1.10.61.1+0.6周二 -0.4 -0.8(-0.4)+(-0.8) 周三 -0.60.6 (-0.6)+0.6 周四1.2-0.71.2+(-0.7)补全该表,并说明该粮食储备库四天运进和运出情况?8、(1)大于-5而小于2的所有整数是?(2)绝对值不大于4的所有整数的和的多少?A B C D9、有理数a ,b ,c 在数轴上的位置如图所示,用“>”或“<”比较下列式子与“0”的大小. (1)c +a 0;(2)b +c 0;(3)b +(-a ) 0;(4)b +(-c ) 0.【提优特训】10、土星表面的夜间平均温度为-150℃,白天比夜间高27℃,那么白天的平均温度是( ) A .-177℃ B .-123℃ C .123℃ D .177℃ 11、若a <0,b <0,且b a <,则a +(-b )的一点是( )A .负数B .正数C . 0D .不确定 12、在下列叙述中,正确的是( )A .若b a =,则a =bB .若b a >,则a >bC .若a <b ,则 b a <D .若b a =,则a =±b13、已知两个有理数a 与b 的和至少小于其中一个加数,则a 与b 在数轴上的位置不可能是( )14、计算:1+(-2)+3+(-4)+…+2017+(-2018)的结果是( )A .0B .-1C .-1009D .101015、某潜水员先潜入水下83米,然后又上升52米,这时潜水员在什么位置 . 16、计算:(1)(+7)+(-12)+(+8);(2)(- 3.125)+(+4.75)+(879-)+(+415)+(324-);(3)(-5.38)+(+4.23)+(-1.3)+(+7.15)+(-6.7).17、在数轴上有理数a ,b ,c 所对应的点的位置如图所示.则下列四个结论中,正确的是 . ①2a +c +b <0;②)()()(c a c b b a -+=-++-+;③c b a --<1;④-a >-b >-c ;⑤a c b <<.A BC D 第9题图第17题图18、先阅读下列材料,再解决问题:学习数轴之后,有同学发现在数轴上到两点之间距离相等的点,可以用表示这两点的数来确定.如:解决问题:根据上述规律完成下列各题:(1)到点50和150距离相等的数是多少?(3)到点-12和点-26距离相等的点表示的数是多少?你能说出你得到的规律吗?-x,求x+y的值.20、钟面上有1,2,3,…,11,12,共12个数字.(1)试在某些数字的前面添加负号,使钟面上的数字之和等于0,你能找到几种添法?这样的负号至少需要填几个?(2)哪些时间段里分针和时针所夹的数字前面添加负号,钟面上的所有数字的和等于0?【中考链接】21、(2018•柳州)计算:0+(-2)=()A.-2 B.2 C.0 D.-2022、(2018•德州)计算:|-2+3|=.参考答案1、D2、D3、B4、C5、(1)-7,(2)-1,(3)1,(4)0,(5)322-,(6)41-6、a 和b 符号相同或有一个0或两个都是0 10、B 11、B 12、D 13、D 14、C 15、潜水员在水下31米处 21、A 22、17、某粮食储备库周一到周四该粮仓小麦的进出情况如下表:(当天运进小麦1万吨,记作+1万吨;当天运出小麦1万吨,记作-1万吨.)上午 下午 算式合计 周一 1.10.61.1+0.6 1.7周二 -0.4 -0.8(-0.4)+( -0.8) -1.2周三 -0.6 0.6 (-0.6)+0.6 0 周四1.2-0.71.2+(-0.7)0.5补全该表,并说明该粮食储备库四天运进和运出情况? 解:周一合计:1.1+0.6=1.7, 周二合计:(-0.4)+(-0.8)=-1.2, 周三合计:(-0.6)+0.6=0, 周四年合计:1.2+(-0.7)=0.5, 1.7+(-1.2)+0+0.5=1(万吨), 所以周一到周四这四天运进1万吨. 8、(1)大于-5而小于2的所有整数是?(2)绝对值不大于4的所有整数的和的多少?解:(1)大于-5而小于2的所有整数为-4,-3,-2,-1,0,1.(2)绝对值不大于4,即4≤x 所有整数为-4,-3,-2,-1,0,1,2,3,4,故和是0 9、有理数a ,b ,c 在数轴上的位置如图所示,用“>”或“<”比较下列式子与“0”的大小. (1)c +a < 0;(2)b +c > 0;(3)b +(-a ) > 0;(4)b +(-c ) < 0.16、计算:(1)(+7)+(-12)+(+8);第9题图(2)(- 3.125)+(+4.75)+(879-)+(+415)+(324-); (3)(-5.38)+(+4.23)+(-1.3)+(+7.15)+(-6.7). 解:(1)原式=(+7)+(+8)+(-12) =15+(-12)=3; (2)原式=(813-)+(879-)+(+434)+(+415)+(324-) =(-13)+10+(324-)=-3+(324-)=327-;(3)原式=(-5.38)+(-6.3)+(-8.7)+(+4.23)+ (+7.15). =(-20.38)+11.38=-9.17、在数轴上有理数a ,b ,c 所对应的点的位置如图所示.则下列四个结论中,正确的是① ② ④ ⑤ .①2a +c +b <0;②)()()(c a c b b a -+=-++-+;③c b a --<1;④-a >-b >-c ;⑤a c b <<.18、先阅读下列材料,再解决问题:学习数轴之后,有同学发现在数轴上到两点之间距离相等的点,可以用表示这两点的数来确定.如:(1)到点4和点10距离相等的点表示的数是7,有这样的关系7=21(4+10); (2)到点-3和点-7距离相等的点表示的数是-5,有这样的关系-5=[])7()3(21-+-.解决问题:根据上述规律完成下列各题:(1)到点50和150距离相等的数是多少? (2)到点32和85- 距离相等的点表示的数是多少? (3)到点-12和点-26距离相等的点表示的数是多少?你能说出你得到的规律吗? 解:(1)21(50+150)=100; (2)21⎥⎦⎤⎢⎣⎡-+)85(32=481; (3)21[])26()12(-+-= -19. 第17题图在数轴上到两个点距离相等的点表示的数为这两个点所表示数之和的一半.-x,求x+y的值.∴x=±6,y=±10,-x,∴当x=6,y=10时,等式成立,则x+y=16;当x=-6,y=10时,等式成立,则x+y=4;故答案为4或16.20、钟面上有1,2,3,…,11,12,共12个数字.(1)试在某些数字的前面添加负号,使钟面上的数字之和等于0,你能找到几种添法?这样的负号至少需要填几个?(2)哪些时间段里分针和时针所夹的数字前面添加负号,钟面上的所有数字的和等于0?解:(1)∵1+2+3+…+12=78,∴78÷2=39.∴只要凑得几个数字使得他们之和是39,再把这些数,或者剩下来的数前面都加上负号就行了.如:①12+11+10+6 或9,8,7,5,4,3,2,1;②12+11+9+7或10,8,6,5,4,3,2,1;③12+10+9+8或11,7,6,5,4,3,2,1;④11+10+9+8+1或12,7,6,5,4,3,2;⑤12+11+10+5+1或9,8,7,6,4,3,2.……这样的负号至少需要填4个;(2)∵在时针分针所夹的所有数字前添加负号.但必须是连续几个数之和是39才可以.∴4,5,6,7,8,9和12,11,10,1,2,3符合条件.∴9:15至9点20之间分针和时针所夹的数字为4,5,6,7,8,9;以及3点45至3点50之间分针和时针所夹的数字为10,11,12,1,2,3.2.1有理数的加法(2)【知识清单】 有理数加法的运算律: (1)加法交换律:两个数相加,交换加数的位置,和不变. 用字母表示: a + b = b + a (2)加法结合律:三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变. 用字母表示:(a + b ) + c = a + (b + c ) 【经典例题】 例题1、计算:(1) (-37)+(+85)+(-63)+(+19); (2) (+0.75)+(432-)+(+0.125)+(7312-)+ (815-). 【考点】有理数的加法的运算律.【分析】根据题意灵活运用加法的交换律、结合律即可解决.【解答】(1)原式=[][])19()85()63()37(++++-+- =(-100)+(+104) =4;(2) 原式= (+0.75) +(+0.125) + (815-)+(7312-)+ (432-)= ⎥⎦⎤⎢⎣⎡-++)432()43(+⎥⎦⎤⎢⎣⎡-++)815()81(+(7312-)=(-2)+(-5)+(7312-) =7319-. 【点评】多个有理数相加,注意观察各加数的特点,一般遵循:(1)互为相反数相加;(2)同号相加;(3)整数相加;(4)同分母相加;(5)小数、分数合理互化,同时注意灵活运用加法的交换律、结合律.例题2、检修小组乘汽车沿公路检修线路(约定前进为正,后退为负),某天自A 地出发到收工时所走的路程(单位:千米)为 11,-5,3,-4,8,14,-6,12,-9,6 (1)收工时离A 地有多少千米?(2)若每千米耗油0.2千克,则自A 地出发到收工时共耗油多少千克?【考点】有理数的加法以及结合律、结合律.【分析】弄懂题意是关键.(1)约定前进为正,后退为负,依题意列式求出和即可; (2)要求耗油量,需求他共走了多少路程,这与方向无关.. 【解答】(1)11+(-5)+3+(-4)+8+14+(-6)+12+(-9)+6,=54-24, =30千米.故收工时离A 地有30千米;(2)6912614843511++-+++-+++++-+++-++=54+24 =78千米. 78×0.2=15.6千克.故自A 地出发到收工时共耗油多15.6千克.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示,(2)中注意需要求出它们的绝对值的和.【夯实基础】1、下列变形,运用加法运算律正确的是( )A .7+(-5)= 5+7B .2+(-3)+5=(-3)+2+5C .[]8)4()9(+-++=[]4)8()9(+-++D .)41()4()43(++-++=4)41()43(+⎥⎦⎤⎢⎣⎡+++2、某地一天早晨的气温是-7℃,中午上升了11℃,午夜又下降了9℃,则午夜的气温是( )A .-5℃B .5℃C .-3℃D .-9℃ 3、计算)4(32)5()65(-++-+-时,先将其变成 [])4()5(32)65(-+-+⎥⎦⎤⎢⎣⎡+-,然后再计算结果,这个过程运用了 ( )A .加法的交换律B .加法的结合律C .加法的交换律和加法的结合律D .无法判断4、如图,在一个由6个圆圈组成的三角形里,把3,4,5,-6,-7,-8这6个数分别填入图的圆圈中,要求三角形的每条边上的三个数的和S 都相等,那么S 的最小值是( ) A .-1 B .-6 C .-10D .-125、计算(-2.786)+(-3.254)+(+3.786)时,应该先把 和 这两个数相加较为简便.第4题图6、若=a +d +(-b )+(-c ),则的值是 .7、(1)6+((2)(-4.23)+(-3.25)+(+4.23)= +[(-4.23)+ (+4.23)] ,即(a +b )+c = . 8.计算:9、一名足球守门员练习折返跑,从球门的位置出发,向前记作正数,返回记作负数,他的记录如下(单位:米):+6,-5,+9,-10,+13,-9,-4. (1)守门员是否回到了原来的位置? (2)守门员离开球门的位置最远是多少? (3)守门员一共走了多少路程?【提优特训】10、下列说法正确的个数为( )①两个数的和一定大于加数; ②两个数的和有可能等于加数; ③两个数相加,绝对值大的加数为负,则和一定为负;④所有的加数都非正,和一定为负.A .1个B .2个C .3个D .4个11、下面运用加法的运算律计算)3.4()23()7.5()313()23()327(-+++-+++-++,最恰当的是( )A .[])3.4()23()7.5()313()23()327(-+-+-+⎥⎦⎤⎢⎣⎡+++++B .[])23()23()7.5()313()3.4()327(-+++-+⎥⎦⎤⎢⎣⎡++-++C .[][])3.4()7.5()23()23()313()327(-+-+++-+⎥⎦⎤⎢⎣⎡+++D .[])3.4()23()7.5()313()23()327(-+++⎥⎦⎤⎢⎣⎡-+++⎥⎦⎤⎢⎣⎡-++12、对于有理数a ,b ,如果a >0,b <0,且b a <,那么下列等式成立的是( )A .a +b =b a +B .a +b =-(b a +)C .a +b =[])(b a -+-D .a +b =[])(a b -+- 13、2019个不全相等的有理数之和为0,则这2019个有理数之中( ) A .至少有一个为0 B .至少有一半为正数 C .至少有一个负数 D .至少有一半为负数 14、计算2019321132112111+⋅⋅⋅++++⋅⋅⋅++++++的结果是( ) A .1 B .10101009 C .101010091 D .2 15、如图,某种特定编码由17位数字组成,每一位数字写在下面的一个方格中,如果任何相邻的三个数字之和都等于20,则x +y 的值等于 11 .16、计算1+(-3)+(-5)+7+9+(-11)+(-13)+15+…+2009+(-2011)+(-2013)+2015+2017+(-2019)+(-2021)+2023的值为 .17、已知4=a ,2=b ,5=c ,且有理数a ,b ,c 在数轴上的位置如图所示,计算a +b +c 的值18、若)2.3(-+x +5+y +513+z =0,求x +y +z 的值.19、分别在如图所示的空格内填上适当的数,使得每行每列的三个数之和为零.十分钟内加悬赏第15题图第17题图20、先阅读下列材料,再解决问题:【中考链接】21、(2018•武汉) 温度由-4℃上升7℃是( )A .3℃B .-3℃C .11℃D .-11℃22、(2018•四川自贡)计算-3+1的结果是A. -2B.-4C. 4D. 223、(2018•湖北荆门) 将数1个1,2个21,3个31,…,n 个n1(n 为正整数)顺次排成一列:1,21,21,31,31,31,…,n 1,n 1,…,n 1,记a 1=1,a 2=21,a 3=21,…,S 1=a 1,S 2=a 1+a 2,S 3=a 1+a 2+a 3,…,S n =a 1+a 2+…+a n ,则S 2018= ..参考答案1、B2、A3、C4、C5、-2.786,3.786,6、-67、(1)(-5),b+a;(2) (-3.25),a+(b+c)110、B 11、C 12、D 13、C 14、C 15、1116、0 21、A 22、A 23、6332 8.计算:(1)守门员是否回到了原来的位置? (2)守门员离开球门的位置最远是多少? (3)守门员一共走了多少路程? 解:根据题意得(1)(+6)+(-5)+(+9)+(-10)+(+13)+(-9)+(-4)=0,故回到了原来的位置; (2)离开球门的位置最远是13米;(3)总路程=491310956-+-+++-+++-++=56米.17、已知4=a ,2=b ,5=c ,且有理数a ,b ,c 在数轴上的位置如图所示,计算a +b +c 的值解:根据有理数a ,b ,c 在数轴上的位置, 可以得出a =4,b =-2,c =-5, ∴a +b +c =4+(-2)+(-5)=-3. 18、若)2.3(-+x +5+y +513+z =0,求x +y +z 的值. 解:∵)2.3(-+x +5+y +513+z =0, ∴)2.3(-+x =0,5+y =0,513+z =0, ∴x =3.2,y =-5,z =513-=-3.2. ∴x +y +z =(+3.2)+(-5)+(-3.2) =[(+3.2) +(-3.2)] +(-5) =0+(-5)=-5.19、分别在如图所示的空格内填上适当的数,使得每行每列的三个数之和为零.十分钟内加悬赏 解:20、先阅读下列材料,再解决问题:第17题图第19题图1第19题图3第19题图2第19题图1第19题图3第19题图2学生版2.1有理数的加法(1)【知识清单】1.有理数加法法则:(1)同号两数相加,取与加数相同的符号,并把绝对值相加.(2)异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.(3)互为相反数的两个数相加得零;一个数同零相加,仍得这个数.2.灵活运用法则:灵活使用运算法则能简化运算步骤,提高计算效率,通常有下列规律:①互为相反的两个数,可以先相加;②符号相同的数,可以先相加;③分母相同的数,可以先相加;④几个数相加能得到整数,可以先相加.【经典例题】例题1、如果a+b=c,且a、b都大于c,那么a、b一定是()A. 同为负数B. 一个正数一个负数C. 同为正数D. 一个负数一个是零例题2、若a的相反数是最大的负整数,b的绝对值是5,试求a+b的值.【夯实基础】1、两个数相加,若和为负数,则这两个数( )A.都是负数B.必定一个数的零,另一个数为负数C.总是一正一负D.至少有一个是负数2、已知a>b且a+b=0,则( )A.a>0 B.a<0 C.b≤0 D.b<03、把五个数填入下列方框中,使横、竖三个数的和相等,其中错误的是是( )A B C D4、若x的相反数是3,y=6,则x+y的值为( )A.-9 B.3 C.-9或3 D.9或-35、直接写出下列各式的结果:(1) (-3)+(-4)= ; (2) (+3)+(-4)= ; (3) (-3)+(4)= ; (4) (-0.75)+(+43)= ; (5))322(-+0= ; (6) (-3.125)+872-= .6、当a 、b 满足 时,b a b a +=+成立.7、某粮食储备库周一到周四该粮仓小麦的进出情况如下表:(当天运进小麦1万吨,记作+1万吨;当天运出小麦1万吨,记作-1万吨.)上午 下午 算式合计 周一 1.10.61.1+0.6周二 -0.4 -0.8(-0.4)+(-0.8) 周三 -0.60.6 (-0.6)+0.6 周四1.2-0.71.2+(-0.7)补全该表,并说明该粮食储备库四天运进和运出情况?8、(1)大于-5而小于2的所有整数是?(2)绝对值不大于4的所有整数的和的多少?9、有理数a ,b ,c 在数轴上的位置如图所示,用“>”或“<”比较下列式子与“0”的大小. (1)c +a 0;(2)b +c 0;(3)b +(-a ) 0;(4)b +(-c ) 0.【提优特训】10、土星表面的夜间平均温度为-150℃,白天比夜间高27℃,那么白天的平均温度是( ) A .-177℃ B .-123℃ C .123℃ D .177℃ 11、若a <0,b <0,且b a <,则a +(-b )的一点是( )A .负数B .正数C . 0D .不确定第9题图12、在下列叙述中,正确的是( )A .若b a =,则a =bB .若b a >,则a >bC .若a <b ,则 b a <D .若b a =,则a =±b13、已知两个有理数a 与b 的和至少小于其中一个加数,则a 与b 在数轴上的位置不可能是( )14、计算:1+(-2)+3+(-4)+…+2017+(-2018)的结果是( )A .0B .-1C .-1009D .101015、某潜水员先潜入水下83米,然后又上升52米,这时潜水员在什么位置 .16、计算:(1)(+7)+(-12)+(+8);(2)(- 3.125)+(+4.75)+(879-)+(+415)+(324-);(3)(-5.38)+(+4.23)+(-1.3)+(+7.15)+(-6.7).17、在数轴上有理数a ,b ,c 所对应的点的位置如图所示.则下列四个结论中,正确的是 . ①2a +c +b <0;②)()()(c a c b b a -+=-++-+;③c b a --<1;④-a >-b >-c ;⑤a c b <<.A BC D 第17题图18、先阅读下列材料,再解决问题:学习数轴之后,有同学发现在数轴上到两点之间距离相等的点,可以用表示这两点的数来确定.如:解决问题:根据上述规律完成下列各题:(1)到点50和150距离相等的数是多少?(3)到点-12和点-26距离相等的点表示的数是多少?你能说出你得到的规律吗?-x,求x+y的值.20、钟面上有1,2,3,…,11,12,共12个数字.(1)试在某些数字的前面添加负号,使钟面上的数字之和等于0,你能找到几种添法?这样的负号至少需要填几个?(2)哪些时间段里分针和时针所夹的数字前面添加负号,钟面上的所有数字的和等于0?【中考链接】21、(2018•柳州)计算:0+(-2)=()A.-2 B.2 C.0 D.-2022、(2018•德州)计算:|-2+3|=.2.1有理数的加法(2)【知识清单】 有理数加法的运算律: (1)加法交换律:两个数相加,交换加数的位置,和不变. 用字母表示: a + b = b + a (2)加法结合律:三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变. 用字母表示:(a + b ) + c = a + (b + c ) 【经典例题】 例题1、计算:(1) (-37)+-(+85)+(63)+(+19); (2) (+0.75)+(432-)+(+0.125)+(7312-)+ (815-).例题2、检修小组乘汽车沿公路检修线路(约定前进为正,后退为负),某天自A 地出发到收工时所走的路程(单位:千米)为 11,-5,3,-4,8,14,-6,12,-9,6 (1)收工时离A 地有多少千米?(2)若每千米耗油0.2千克,则自A 地出发到收工时共耗油多少千克?【夯实基础】1、下列变形,运用加法运算律正确的是( )A .7+(-5)= 5+7B .2+(-3)+5=(-3)+2+5C .[]8)4()9(+-++=[]4)8()9(+-++D .)41()4()43(++-++=4)41()43(+⎥⎦⎤⎢⎣⎡+++2、某地一天早晨的气温是-7℃,中午上升了11℃,午夜又下降了9℃,则午夜的气温是( )A .-5℃B .5℃C .-3℃D .-9℃ 3、计算)4(32)5()65(-++-+-时,先将其变成 [])4()5(32)65(-+-+⎥⎦⎤⎢⎣⎡+-,然后再计算结果,这个过程运用了 ( )A .加法的交换律B .加法的结合律C .加法的交换律和加法的结合律D .无法判断4、如图,在一个由6个圆圈组成的三角形里,把3,4,5,-6,-7,-8这6个数分别填入图的圆圈中,要求三角形的每条边上的三个数的和S 都相等,那么S 的最小值是( ) A .-1 B .-6 C .-10D .-125、计算(-2.786)+(-3.254)+(+3.786)时,应该先把 和 这两个数相加较为简便.6、若=a +d +(-b )+(-c ),则的值是 .7、(1)6+(-5)= +6,即a +b = .(2)(-4.23)+(-3.25)+(+4.23)= +[(-4.23)+ (+4.23)] ,即(a +b )+c = . 8.计算:(1) (+27)+(-18.36)+(-24)+(+18.36); (2) (-2.75)+)414(-+)832(-+83;(3) (-52)+(+18)+(-8)+(-14)+(+32)+(+17); (4) 32.5+)7510(-+⎥⎦⎤⎢⎣⎡-+-)725()2146(.9、一名足球守门员练习折返跑,从球门的位置出发,向前记作正数,返回记作负数,他的记录如下(单位:米):+6,-5,+9,-10,+13,-9,-4. (1)守门员是否回到了原来的位置?第4题图(2)守门员离开球门的位置最远是多少? (3)守门员一共走了多少路程?【提优特训】10、下列说法正确的个数为( )①两个数的和一定大于加数; ②两个数的和有可能等于加数; ③两个数相加,绝对值大的加数为负,则和一定为负;④所有的加数都非正,和一定为负.A .1个B .2个C .3个D .4个11、下面运用加法的运算律计算)3.4()23()7.5()313()23()327(-+++-+++-++,最恰当的是( )A .[])3.4()23()7.5()313()23()327(-+-+-+⎥⎦⎤⎢⎣⎡+++++B .[])23()23()7.5()313()3.4()327(-+++-+⎥⎦⎤⎢⎣⎡++-++C .[][])3.4()7.5()23()23()313()327(-+-+++-+⎥⎦⎤⎢⎣⎡+++D .[])3.4()23()7.5()313()23()327(-+++⎥⎦⎤⎢⎣⎡-+++⎥⎦⎤⎢⎣⎡-++12、对于有理数a ,b ,如果a >0,b <0,且b a <,那么下列等式成立的是( )A .a +b =b a +B .a +b =-(b a +)C .a +b =[])(b a -+-D .a +b =[])(a b -+- 13、2019个不全相等的有理数之和为0,则这2019个有理数之中( ) A .至少有一个为0 B .至少有一半为正数 C .至少有一个负数 D .至少有一半为负数 14、计算2019321132112111+⋅⋅⋅++++⋅⋅⋅++++++的结果是( ) A .1 B .10101009 C .101010091 D .2 15、如图,某种特定编码由17位数字组成,每一位数字写在下面的一个方格中,如果任何相邻的三个数字之和都等于20,则x +y 的值等于 11 .16、计算1+(-3)+(-5)+7+9+(-11)+(-13)+15+…+2009+(-2011)+(-2013)+2015+2017+(-2019)+(-2021)+2023的值为 .17、已知4=a ,2=b ,5=c ,且有理数a ,b ,c 在数轴上的位置如图所示,计算a +b +c 的值18、若)2.3(-+x +5+y +513+z =0,求x +y +z 的值.19、分别在如图所示的空格内填上适当的数,使得每行每列的三个数之和为零.第17题图第19题图1第19题图3第19题图220、先阅读下列材料,再解决问题:【中考链接】21、(2018•武汉) 温度由-4℃上升7℃是( )A .3℃B .-3℃C .11℃D .-11℃22、(2018•四川自贡)计算-3+1的结果是A. -2B.-4C. 4D. 223、(2018•湖北荆门) 将数1个1,2个21,3个31,…,n 个n1(n 为正整数)顺次排成一列:1,21,21,31,31,31,…,n 1,n 1,…,n 1,记a 1=1,a 2=21,a 3=21,…,S 1=a 1,S 2=a 1+a 2,S 3=a 1+a 2+a 3,…,S n =a 1+a 2+…+a n ,则S 2018= ..。
2.1、有理数的加法 (1)1.选择题(1)如果两个数的和是正数,那么[ ]A .这两个加数都是正数B .一个加数为正,另一个加数为0C .这两个加数一正一负,且正数的绝对值较大D .必属于上面三种情况之一(2)两数相加,其和小于每一个加数,那么[ ]A .这两个加数必有一个数是0B .这两个加数必是两个负数C .这两个加数一正一负,且负数的绝对值较大D .这两个加数的符号不能确定(3).一个数是5,另一个数比5的相反数大2,则这两个数的和为[ ]A .2B .-2C .7D .12(4).若|A |=3,|B |=2,则|A +B |等于[ ]A .5B .1C .5或1D .±5或±1(5).下列运算结果的符号是正的个数有[ ]①(-3.2)+(-2.8) ②(+0.5)+(-0.7) ③(-51)+(-52) ④(-91)+(+95) A .1 B .2 C .3 D .42.绝对值小于5的所有整数的和是_____.3.计算:(1)(-10)+(-5); (2)(-54)+43 (3)0+(-6.6);(4)(-2103)+(+353) (5)(-4.8)+5.2; (6)17+(-17)2.1有理数的加法(2)一.选择题1.下列各式适宜用加法运算律简化计算的是 ( )A .)3(--B .432+-C .)2.8()4()2.1()6(-+-+++-D .)711()5()41(-+++-2.绝对值大于1且小于5的所有整数和是( )A .15B .-15C .5D .0二.填空题3.某天股票A 开盘价17元,上午跌3.4元,下午又涨了1.5元,则股票A 这天收盘价为 。
4.三个不同的有理数(不全同号)和为2,请你写出一个算式 。
三.解答题5.计算:(1))5.5()72.3(72.15.2-+-++- (2))435()41()812(25.0-+-+-+6.有5个铅球,以2.5千克为准,超过的千克数记为正,不足记为负,称重记录如下: +0.2,-0.1,+0.1,-0.3,0总计超过或不足多少千克?5个铅球的总质量是多少千克?2.1 有理数的加法(3)◆基础训练一、选择题1.如果两个数的和为正数,那么( ).A .两个加数都是正数B .一个数为正,另一个为0C .两个数一正一负,且正数绝对值大D .以上三种情况都有可能2.下列结论不正确的是( ).A .若a>0,b>0,且a+b>0B .若a<0,b<0,且a+b<0C .若a>0,b<0,且│a│>│b│,则a+b>0D .若a<0,b>0,且│a│>│b│,则a+b>03.一个数是10,另一个数比10的相反数小2,则这两个数的和为( ).A .18B .-2C .-18D .2二、填空题4.在题后的括号内填上变形的根据:(a+b )+c=a+(b+c ) ( )=a+(c+b ) ( )=(a+c )+b ( )5.某校储蓄所办理了7笔业务:取出9.5元,存进5元,取出8元,存进12元,•存进25元,取出10.25元,取出2元,这时,储蓄现款增加了______元.6.已知:两数5和-3,则这两个数的和是______,这两个数的和的相反数是_____,这两个数的相反数的和是_____,这两个数的和的绝对值是______,这两个数的绝对值的和是______.三、解答题7.利用运算律计算:(1)(-1.9)+3.6+(-10.1)+1.4;(2)(-7)+(+11)+(-13)+9;(3)33311+(-2.16)+9811+(-32125);(4)491921+(-78.21)+27221+(-21.79).◆能力提高一、填空题8.如图的程序中,若输入的数x是2,则输出的结果是______.(1)最小正整数,绝对值最小的数与最大的负整数的和是_______;(2)绝对值不大于3的整数有______个,它们的和是______.二、计算题9.(1)(+15)+(-20)+(+28)+(-5)+(-7)+(-10);(2)(1-12)+(12-13)+(13-14)+…(12005-12006).◆拓展训练10.10名同学参加数学竞赛,以80分为准,超过的记为正数,不足的记为负数,•评分记录如下:+10,+15,-10,-9,-8,-1,+2,-1,-2,+1.问:(1)10名同学的总分超过或不足标准多少分?(2)总分是多少?11.一辆货车从货场A 出发,向东走了2千米到达批发部B ,继续向东走1.5•千米到达商场C ,又向西走了5.5千米到达超市D ,最后回到货场.(1)用一个单位长度表示1千米,以东为正方向,以货场为原点,•画出数轴并在数轴上标明货场A ,批发部B ,商场C ,超市D 的位置;(2)超市D 距货场A 多远?(3)货车一共行驶了多少千米?2.1有理数的加法(4)一.选择题1.下列计算正确的是 ( )A .7)4()3(-=-+-B .9)9(4=-+C .29)7(-=+-D .63)3(=+-2.在数轴原点的左边2个单位处有一点P ,向数轴正方向移动了1.5个单位.则点P 最后所在的数为( )A .-0.5B .-3.5C .2.5D .3.5二.填空题3.计算:①(+ 2.7)+(-6.7 )= ,②( -0.5 )+( -0.6 )= ,4.林林家开了个小商店,前两天盈亏情况如下:(亏为负,单位:元):28.3、-29.6,则小商店这两天的盈亏情况是 。
2.1.1 有理数的加法(第1课时)教学设计一、内容和内容解析1.内容本节课是人教版(2024)《义务教育教科书•数学》七年级上册(以下统称“教材”)第二章“有理数的运算”2.1有理数的加法与减法第1课时,内容包括有理数的加法法则及运算.2.内容解析本节课是通过回顾小学学过的正数之间及正数与0的加法运算、回顾负数的引入,及章首图中的问题导入有理数加法法则探究的.探究有理数的加法法则,教材是通过“思考”和“探究”来完成的.小学已经学过正数与正数、正数与0相加.负数与负数相加、负数与正数相加、负数与0相加,则是负数引入后遇到的新情况.教材先探究的是同号两个有理数的和.对于同为正号、同为负号的两个数相加,其结果学生应该容易理解.但是,对于两个负数相加的结果,最后归结到“和取相同的符号,且和的绝对值等于加数的绝对值的和”的认识,需要教师通过问题加以引导.异号两个有理数的加法法则,分别探究物体先向左运动3m,再向右运动5m,以及物体先向右运动3m,再向左运动5m运动得到的最后结果,对应的表达式分别是:(-3)+(+5) =+2,(+3)+(-5)=-2,进而归纳总结出异号两个有理数加法的法则,即:绝对值不相等的异号两数相加,和取绝对值较大的加数的符号,且和的绝对值等于加数的绝对值中较大者与较小者的差.与同号两个有理数相加一样,结果也分别从符号、绝对值两个方面来概括的.注意引导学生从符号、绝对值两个方面来审视两个加数,与结果的符号、绝对值的关系.最后“探究”的特例,以及0与一个非零有理数相加的结果,学生应该容易理解.可以先提出问题,让学生自己思考给出答案.有理数加法法则的归纳与总结,要让学生先用自己的语言尝试表述,最后教师再给予规范.有理数加法法则的掌握,不能仅仅要求学生熟记法则的文字,更重要的是要求学生理解有理数加法法则的合理性,并通过一定量的练习加以巩固.本节课的教学,要充分利用数轴来帮助学生理解.应该突出前后知识的联系(与小学加法,负数和数轴的概念等),还应该突出分类讨论思想在探究两个有理数相加的几种情况,以及加法法则表述中的应用.基于以上分析,确定本节课的教学重点为:有理数加法的法则及其简单应用.二、目标和目标解析1.目标(1)理解有理数加法法则的探究过程,掌握有理数加法的法则;(2)能利用有理数加法的法则进行简单的有理数加法运算.2.目标解析(1)有理数加法的法则,教材是借助于数轴,利用物体作左、右方向运动的路程探究其运动的结果获得的.物体作左、右方向连续运动的路程和,分别对应着两个正数、一个正数一个负数、两个负数、一个正数与零、一个负数与零等5种情况中两个有理数的加法,进而得到这5种情况的两个有理数的加法法则.要通过探究过程,理解5种情况的两个有理数加法法则的合理性.理解有理数加法法则探究过程中,体现出来的分类讨论思想和数形结合思想.(2)5种情况的有理数加法可以分为3类,即同号的两个有理数的和,异号的两个有理数的和,零与一个有理数(正数或负数)的和.学生对第一、三两类的法则可能容易理解.对异号两个有理数相加“先定符号再计算绝对值”的方法,一是要在探究法则的过程中强调学生对法则的理解,二是要通过一定量的练习,让学生切实巩固异号两个有理数的和的计算方法.三、教学问题诊断分析有理数加法该如何分类学生比较难理解.主要原因是学生通过小学四则运算的学习,头脑中已形成相关计算规律,小学所学的数都是指正整数、正分数和零等具体的数,因此学生可能会用小学的思维定势去认知、理解有理数的加法.但是学生知道数已经扩大到有理数,出现了负数,并且学习了数轴和绝对值,在此情况下,学生可能顺利地得到两个加数为非负、一个加数为负和两个加数都为负,但不能把它归为同号、异号及与零相加等三类.解决这个问题的方法是教师要引导学生观察,并引导学生初步用自己的语言归纳出加法法则,也许学生说得不够严谨,但这并不重要,重要的是能用自己的语言表达自己所发现的规律,体现教师是引导者.有理数加法法则的理解主要体现在符号如何确定以及在确定“和”的符号后,两加数的绝对值如何进行加减,尤其是绝对值不相等的异号两数相加.解决这个难点的方法是借助生活中的常见的温度变化的计算方法这一情境,利用多媒体课件的演示,渗透数形结合的数学思想,在学生的观察、合作交流及教师设计问题的引导下来进行探究.最后由教师引导,学生对规律语言组织进行概括,从而得出有理数的加法法则.基于以上分析,确定本节课的教学难点为:异号两个有理数加法法则的理解与应用.四、教学过程设计(一)复习旧知,引入新课1. 下列各组数中,哪一个数的绝对值较大?(1)5和3;(2)-5和3;(3)5和-3;(4)-5和-3.2. 说明下列用负数表示的量的实际意义:(1)小红第一次前进了5米,接着按同一方向又前进了-2米;(2)北京的气温第一天上升了3℃,第二天又上升了-1℃.3. 根据上述问题,列算式回答(1)小红两次一共前进了几米?(5+(-2))(2)北京的气温两天一共上升了多少度?(3+(-1))师生活动:我们在小学所学的正数上学习了负数,把我们学的数的范围扩大了,对于正数的加法运算我们已经很熟悉了,但是我们的生活中很多时候会遇到负数,同样,我们学的负数也有加法运算,那么有负数参与的加法运算又是怎么样的呢?那么我们来一起研究一下有负数参与的加法运算.1. 北京冬季某一天的气温为-3~3℃. 这一天北京的温差是多少?(这一天北京的温差是:3-(-3))2. 李明同学经常对家里的生活垃圾分类,并卖出积攒的可回收物.这样既保护了环境,又增加了零花钱.下表是他某个月零花钱的部分收支情况.这里,“结余12.0”和“结余-3.2”是怎么得到的?(“结余12.0”和“结余-3.2”是这样得到的:18.5+(-6.5),12.0+(-15.2))师生活动:要解决上面的问题,就要计算3-(-3),18.5+(-6.5),12.0+(-15.2).其实像这样的生活实际问题是无处不在,例如收入支出和盈利等问题也涉及了加法的运算,那么我们如何去处理这样的加法运算呢?我们以下面的例子并借助数轴来讨论有理数的加法.【设计意图】通过复习旧知及问题引入有理数的加法,引发学生思考,引起学生的探究欲望和学习兴趣.体现数学来源于生活,让学生体会学习有理数加法的必要性,进而体会学习有理数运算的必要性.(二)新知探究思考:一个物体沿着一条直线做左右方向的运动,我们规定向右为正,向左为负.问题1:如果物体沿着一条直线先向右运动5m,再向右运动3m,那么两次运动的最后结果是什么?可以用怎样的算式表示?师生活动:师:引导学生注意在确定两次总结果时必须确定其位置的“方向”和“距离”,从而认识到有理数加法必须确定和的符号和绝对值,为以下几种情形的探索作铺垫.教师引导学生共同归纳:两次运动的最后结果是两次运动结果的累积,物体从起点向右运动了8m,写成算式就是:(+5)+(+3)=+8.简记为:5 + 3 = 8. ①问题2:如果物体沿着一条直线先向左运动5m,再向左运动3m,那么两次运动的最后结果是什么?可以用怎样的算式表示?师生活动:师:两次运动的最后结果是,物体从起点向左运动了8m,写成算式是:(-5)+(-3)=-8. ②教师引导学生共同归纳1:从算式①②可以看出:符号相同的两个数相加,和的符号不变,且和的绝对值等于加数的绝对值的和.问题3:如果物体沿着一条直线先向左运动3m,再向右运动5m,那么两次运动的最后结果是什么?如何用算式表示?师生活动:教师引导学生共同归纳:两次运动的最后结果是,物体从起点向右运动了2m,用算式表示是:(-3)+(+5)=+2.简记为:(-3)+5=2. ③问题4:如果物体沿着一条直线先向右运动3m,再向左运动5m,那么两次运动的最后结果是什么?如何用算式表示?用算式表示是:(+3)+(-5)=-2.简记为:3+(-5)=-2. ④师生活动:教师引导学生共同归纳2:从算式③④可以看出:绝对值不相等、符号相反的两个数相加,和的符号与绝对值较大的加数的符号相同,且和的绝对值等于加数的绝对值中较大者与较小者的差.问题5:如果物体沿着一条直线先向右运动5m,再向左运动5m,那么两次运动的最后结果是什么?如何用算式表示?用算式表示为:(+5)+(-5)=0.简记为:5+(-5)=0. ⑤师生活动:教师引导学生共同归纳3:算式⑤表明:互为相反数的两个数相加,结果为0.问题6:如果物体第1 s向右(或左)运动5m,第2 s原地不动,那么2 s后物体从起点向________运动了____m.(右或(左);5)用算式表示为:5+0=5或(-5)+0=-5. ⑥师生活动:教师引导学生共同归纳4:算式⑥表明:一个数与0相加,结果仍是这个数.【设计意图】向学生渗透分类思想,体现数学的简洁美.从学生的生活经验出发,从学生已有的认知出发,将对新知的探索设置在学生的最近发展区,能有效激发学生兴趣. 利用数轴直观演示,数形结合,让学生参与探索的过程,直观感受有理数的加法法则.师生活动:师:上面我们列出了两个有理数相加的几种不同情形,并根据它们的具体意义得出了它们相加的和.但是,要计算两个有理数相加所得的和,我们总不能一直用这种方法.现在请同学们仔细观察比较这几个算式,你能从中发现两个有理数相加,有多少种不同的情形?学生先讨论,再思考归纳:有理数加法的分类:师生活动:师:你能从中归纳有理数加法的法则吗?(也就是结果的符号怎么定?绝对值怎么算?)先让学生思考,师生交流,师引导学生观察和的正负号和绝对值的关系入手,发现规律.生大胆说出自己的不同想法,相互交流、补充,概括法则,再由学生自己归纳出有理数加法法则:1. 同号两数相加,和取相同的符号,且和的绝对值等于加数的绝对值的和.2. 绝对值不相等的异号两数相加,和取绝对值较大的加数的符号,且和的绝对值等于加数的绝对值中较大者与较小者的差. 互为相反数的两个数相加得0;3. 一个数与0相加,仍得这个数.【设计意图】渗透由特殊到一般的辩证唯物主义思想,鼓励学生用自己的语言描述法则,提高学生的概括能力和语言表达能力.(三)法则挖掘有理数加法运算的步骤:师生活动:学生逐题作答后师生共同总结:进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.1. 先判断加数的类型(同号、异号);2. 再确定和的符号:同号取相同的符号;异号取绝对值较大的加数的符号;3. 最后进行绝对值的加减运算.【设计意图】通过对法则的深度挖掘,帮助学生熟悉法则,使学生明晰做有理数加法运算时的常用方法和步骤,并养成“算必有据”的习惯. 同时将有理数的加法运算转化为小学学习过的数的加减运算,渗透了化归思想.(四)典例分析例1:计算:(1)(-3)+(-9);(2)(-8)+0 ;(3)12+(-8);(4)(-4.7)+3.9;(5)1122⎛⎫⎛⎫-++⎪ ⎪⎝⎭⎝⎭.解:(1)(-3)+(-9)(两个加数同号,用加法法则的第1条计算)=-(3+9)(和取负号,把绝对值相加)= -12(2)(-8)+0 (一个数与0相加)=-8 (仍得这个数)(3)12+(-8)(两个加数异号,用加法法则的第2条计算)=+(12-8)(和取正号,用大的绝对值减去小的绝对值)=4(4)(-4.7)+ 3.9 (两个加数异号,用加法法则的第2条计算)= -(4.7-3.9)(和取负号,用大的绝对值减去小的绝对值)= -0.8(5)1122⎛⎫⎛⎫-++⎪ ⎪⎝⎭⎝⎭(互为相反数的两个数相加)= 0 (得0 )师生活动:师生共同完成,教师规范写出解答过程,注意解答过程中讲解对法则的应用.教师点评法则运用过程中的注意点:有理数加法运算,先定符号,再算绝对值.例2:足球循环赛中,红队胜黄队4:1,黄队胜红队1:0,计算各队的净胜球数.解:三场比赛中,红队共进4球,失2球,净胜球数为:(+4)+(-2)=+(4-2)=2;黄队共进2球,失4球,净胜球数为:(+2)+(-4)= -(4-2)= -2;蓝队共进1球,失1球,净胜球数为:(+1)+(-1)=0.师生活动:学生书面练习,四位学生板演,教师巡视指导,学生交流,师生评价.【设计意图】通过典例分析,使学生对加法法则的认识由感性上升到理性,加深对加法法则的理解与应用,培养学生解题的规范性.(五)当堂巩固口算下列各题,并说明理由:(+3)+(+5);(-3)+(-5);(+3)+(-5);(-3)+(+5);(+4)+(-4);(+9)+(-2);(-9)+(+2);(-9)+0.【设计意图】通过练习让学生熟练运用有理数加法法则.(六)能力提升1. 用“>”或“<”填空:①如果a>0,b>0,那么a+b0;②如果a<0,b<0,那么a+b0;③如果a>0,b<0,|a|>|b|,那么a+b0;④如果a<0,b>0,|a|<|b|,那么a+b0.(①>;②<;③>;④>.)2.下面的说法是否正确?如果不正确,请举例说明.(1)两个数的和一定比两个数中任何一个都大;(不一定,如5+0=5,(+8)+(-2)=6,(-2)+(-7)= -9等)(2)两个数的和是正数,这两个数定是正数.(不一定,如(+5)+(-2)=3等)师生活动:要求学生不仅能指出说法的正误,并能举出实例证明自己的结论.【设计意图】开放性的题目让学生在探索的过程中进一步理解法则,体会有理数的加法与小学时加法的区别.(七)感受中考1.(2024•广东)计算-5+3的结果是()A.-2B.-8C.2D.8【解答】解:-5+3=-(5-3)=-2.故选:A.2.(2024•陕西)小华探究“幻方”时,提出了一个问题:如图,将0,-2,-1,1,2这五个数分别填在五个小正方形内,使横向三个数之和与纵向三个数之和相等,则填入中间位置的小正方形内的数可以是(写出一个符合题意的数即可).【解答】解:解法一:由题意,填写如下:1+0+(-1)=0,2+0+(-2)=0,满足题意,故答案为:0.(注意:方法不唯一)3.(2023•温州)如图,比数轴上点A表示的数大3的数是()A.-1B.0C.1D.2【解答】解:由数轴可得:A表示-1,则比数轴上点A表示的数大3的数是:-1+3=2.故选:D.【设计意图】通过对最近几年的中考试题的训练,使学生提前感受到中考考什么,进一步了解考点.(八)课堂小结1. 本节课学习的主要内容是什么?2. 运用有理数加法法则的关键问题是什么?3. 本节课涉及的数学思想方法有哪些?【设计意图】使学生对本节课所学的知识有一个总体而深刻地认识.(九)布置作业P34:习题2.1:第1题;P36:习题2.1:第11题.五、教学反思有理数的加法在整个知识系统中的地位和作用是很重要的.初中阶段要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力.运算能力的培养主要是在初一阶段完成.小学所学习的在正有理数和零的范围内进行的加法运算和有理数的意义是本节课的基础.但是,它与小学的算术又有很大的区别.小学的加法运算不需要确定和的符号,运算单一,而有理数的加法,既要确定和的符号,又要计算和的绝对值.有理数的加法作为有理数的运算的一种,它是有理数运算的开始,是进一步学习有理数运算的重要基础之一,也是今后学习实数运算、代数式的运算、解方程以及函数知识的基础.学好这部分内容,对减少两极分化、增强学生学习代数的信心具有十分重要的意义.就第二章而言,有理数的加法是本章的一个重点.有理数的有关概念是有理数运算的基础,有理数的混合运算是这一章的难点,但混合运算是以各种基本运算为基础的.在有理数范围内进行的各种运算中,加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符号和绝对值),关键在于这一节的学习.对于有理数加法法则的合理性是这样突破的:①主要是让学生理解一个物体做两次左右方向的运动,每一次运动的方向(对应于正、负数表示时的符号)、路程(对应于正、负数表示时的绝对值),与最后到达的终点与起点的方向关系,及最后到达的终点离起点的距离,并将它们之间的方向、路程的关系用正、负数表示.需要注意的是,一个物体做两次运动,第一次运动的起点是数轴上的原点,第二次运动的起点是第一次运动的终点.②连续两次运动的方向、路程与最后到达终点时,相对于起点的方向、路程的关系,要让学生自己列式写出,通过与图示的比较加以理解,并尝试用自己的语言提炼、总结.教学时,从方向、路程两个方面提出问题,引导学生从符号、绝对值两个方面进行分析,便于学生从符号、绝对值两个方面来归纳和总结有理数加法的法则.对于异号两个有理数加法法则的理解是这样突破的:①在有理数加法法则涉及的3大类(同号两数相加,异号两数相加,一个非零数与零相加)有理数加法运算中,异号两个有理数加法法则的理解相对困难些.教学时,在通过图示、列式和实际意义分析的基础上,重点从符号、绝对值两个方面加强对有理数加法法则的理解,并通过一定的运算应用加以巩固.②还可以编制如下口诀:同号相加一边倒(符号都相同,绝对值都相加);异号相加“大”减“小”,符号跟着“大”的跑(这里的“大”“小”分别指绝对值大、小.“大”减“小”指运算结果的绝对值是“大”的绝对值减去“小”的绝对值),帮助学生有效记忆和熟练应用有理数的加法法则,③做有理数的加法运算,其基本程序简单地说是,一“定”(确定和的符号,即和是正号、负号,还是0)、二“算”(计算两个加数的绝对值——两个加数同号求和,两个加数异号求差).本节课注重引导学生参与探索、观察、比较、归纳有理数加法法则的过程,适当加强法则的形成过程,从而在此过程中着力培养学生的归纳能力,主动获取知识.这样,学生在这节课上不仅学懂了法则,而且能感知到研究数学问题的一些基本方法.但会减少应用法则进行计算练习的时间,学生掌握法则的熟练程度可能稍差,这是教学中应当注意的问题.在课后练习及后续学习中应着重有意识地加大让学生对有理数加法运算进行训练.。
2.1 有理数加法【热考题型】【重难点突破】考查题型一有理数加法运算典例1.比﹣2大5的数是()A.﹣7 B.﹣3 C.3 D.7【答案】C【解析】解:比﹣2大5的数是:﹣2+5=3.故选:C.变式1-1.若a=2,|b|=5,则a+b=( )A.-3 B.7 C.-7 D.-3或7【答案】D【解析】∵|b|=5,∴b=±5,∴a+b=2+5=7或a+b=2-5=-3;故选D.变式1-2.如图,下列结论中错误的是()A.a+b<0 B.c+d>0 C.b+c>0 D.c+a<0【答案】C【解析】由数轴可得a<b<0<c<d,|a|>|c|,|b|>|c|,所以a+b<0,c+d>0,b+c<0,c+a<0,故A、B、D 正确,C错误,故选C.变式1-3.如果x<0,y>0,x+y<0,那么下列关系式中,正确的是( )A.x>y>-y>-x B.-x>y>-y>xC.y>-x>-y>x D.-x>y>x>-y【答案】B【解析】由于x<0,y>0,x+y<0,则|x|>y,于是有y<-x,x<-y,易得x,y,-x,-y的大小关系为:x<-y<y<-x.故选:B.考查题型二有理数加法的符号问题典例2.下面结论正确的有()①两个有理数相加,和一定大于每一个加数.②一个正数与一个负数相加得正数.③两个负数和的绝对值一定等于它们绝对值的和.④两个正数相加,和为正数.⑤两个负数相加,绝对值相减.⑥正数加负数,其和一定等于0.A.0个B.1个C.2个D.3个【答案】C【解析】∵①3+(-1)=2,和2不大于加数3,∴①是错误的;从上式还可看出一个正数与一个负数相加不一定得0,∴②是错误的.由加法法则:同号两数相加,取原来的符号,并把绝对值相加,可以得到③、④都是正确的.⑤两个负数相加取相同的符号,然后把绝对值相加,故错误.⑥-1+2=1,故正数加负数,其和一定等于0错误.正确的有2个,故选C.变式2-1.若ab≠0,则a ba b+的结果不可能是()A.﹣2 B.0 C.1 D.2 【答案】C【解析】∵aa=±1,bb=±1,∴a ba b+=2或﹣2或0.故选C.变式2-2.若两个数的和是负数,那么一定是()A.这两个数都是负数B.两个加数中,一个是负数,另一个是0C.一个加数是正数,另一个加数是负数,且负数的绝对值较大D.以上三种均有可能【答案】D【解析】A、两个数的和是负数,这两个数不一定为负数,例如-3+2=-1,两加数为-3和2,本选项错误;B、两个数的和是负数,这两个数不一定一个是负数,另一个是0,例如-3+2=-1,两加数为-3和2,本选项错误;C、两个数的和是负数,这两个数不一定一个加数是正数,另一个加数是负数,且负数的绝对值较大,例如-2+0=-2,本选项错误,所以D正确.故选:D.变式2-3.把(+3)﹣(+5)﹣(﹣1)+(﹣7)写成省略括号的和的形式是().A.﹣3﹣5+1﹣7 B.3﹣5﹣1﹣7 C.3﹣5+1﹣7 D.3+5+1﹣7【答案】C【解析】(+3)﹣(+5)﹣(﹣1)+(﹣7)=(+3)+(-5)+(+1)+(﹣7)=3﹣5+1﹣7,故选C. 变式2-4.如果a b 、是有理数,则下列各式子成立的是( ) A .如果00a b <<、,那么0a b +> B .如果0,0a b <>,那么0a b +> C .若00a b ><、,则0a b +< D .若0,0a b <>,且a b >,则0a b +<【答案】D【解析】解:A 、如果00,a b <<、那么0a b +<,故A 错误;B 、如果0,0a b <>,那么不能判断a b +的符号,故B 错误;C 、若00,a b ><、不能判断a b +的符号,故C 错误;D 、若a <0,b >0,且|a|>|b|,那么a +b <0,正确;故选:D .变式2-5.|a |+|b |=|a +b |,则a ,b 关系是( ) A .a ,b 的绝对值相等 B .a ,b 异号C .a +b 的和是非负数D .a 、b 同号或a 、b 其中一个为0 【答案】D【解析】解:A 、当a 、b 的绝对值相等时,如11a b ==-,,|a |+|b |=2,|a +b |=0,即|a |+|b |≠|a +b |,故本选项不符合题意;B 、当a 、b 异号时,如a =1,b =-3,|a |+|b |=4,|a +b |=2,即|a |+|b |≠|a +b |,故本选项不符合题意;C 、当a +b 的和是非负数时,如:a =﹣1,b =3,|a |+|b |=4,|a +b |=2,即即|a |+|b |≠|a +b |,故本选项不符合题意;D 、当a 、b 同号或a 、b 其中一个为0时,|a |+|b |=|a +b |,故本选项符合题意;故选:D .考查题型三 有理数加法在实际生活中的应用典例3.纽约与北京的时差为﹣13小时(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京时间晚的时数),当北京时间1月7日8时时,纽约的时间是( ) A .1月6日21时 B .1月7日21时C .1月6日19时D .1月6日20时【答案】C【解析】解:24﹣[8+(﹣13)]=19,故选:C .变式3-1.某大米包装袋上标注着“净含量10 kg±150 g”,小华从商店买了2袋大米,这两袋大米相差的克数不可能是( ) A .100 g B .150 gC .300 gD .400 g【答案】D【解析】解:根据题意得:10+0.15=10.15(kg ),10﹣0.15=9.85(kg ),因为两袋两大米最多差10.15﹣9.85=0.3(kg ),=300(g ),所以这两袋大米相差的克数不可能是400g ; 故选D .变式3-2.杨梅开始采摘啦!每筐杨梅以5千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图,则这4筐杨梅的总质量是()A.19.7千克B.19.9千克C.20.1千克D.20.3千克【答案】C【解析】有理数的加法:-0.1-0.3+0.2+0.3=0.1,0.1+5×4=20.1变式3-3.一家快餐店一周中每天的盈亏情况如下(盈利为正):37元,-26元,-15元,27元,-7元,128元,98元,这家快餐店总的盈亏情况是()A.盈利了290元B.亏损了48元C.盈利了242元D.盈利了-242元【答案】C【解析】∵37+(−26)+(−15)+27+(−7)+128+98=242(元),∴一周总的盈亏情况是盈利242元.故选择C.变式3-3.蜗牛在井里距井口18米处,它每天白天向上爬行6米,但每天晚上又下滑3米.蜗牛爬出井口需要的()天数是A.4天B.5天C.6天D.7天【答案】B【解析】从井里距井口18处,第一天,向上爬行6米,晚上下滑3米,最后距井口15米;第二天,向上爬行6米,晚上下滑3米,最后距井口12米;第三天,向上爬行6米,晚上下滑3米,最后距井口9米;第四天,向上爬行6米,晚上下滑3米,最后距井口6米;第五天,向上爬行6米,到井口,则蜗牛爬出井口需要的天数是5天,故选B.考查题型四有理数加法运算律典例4.计算1﹣3+5﹣7+9=(1+5+9)+(﹣3﹣7)是应用了()A.加法交换律B.加法结合律C.分配律D.加法交换律与结合律【答案】D【解析】计算1-3+5-7+9=(1+5+9)+(-3-7)是应用了加法交换律与结合律.故选D.变式4-1.的结果是()A.0 B.1009 C.-1009 D.-2018【答案】C【解析】原式= (1-2)+(3-4)+(5-6)+…+(2015-2016)+(2017-2018)=(-1)+(-1)+(-1)+…+(-1)+(-1) =(-1)×1009=-1009.故选C.变式4-2.计算314+(–235)+534+(–825)时,运算律用得最为恰当的是()A.[314+(–235)]+[534+(–825)] B.(314+534)+[–235+(–825)]C.[314+(–825)]+(–235+534)D.(–235+534)+[314+(–825)]【答案】B【解析】原式=(314+534)+[–235+(–825)]=9+(-11)=-2,故选B.变式4-3.计算(-20)+379+20+(-79),比较合适的做法是()A.把第一、三两个加数结合,第二、四两个加数结合B.把第一、二两个加数结合,第三、四两个加数结合C.把第一、四两个加数结合,第二、三两个加数结合D.把第一、二、四这三个加数结合【答案】A【解析】计算(-20)+379+20+(-79),比较合适的做法是把一、三两个加数结合,二、四两个加数结合.故选A.。