有理数加法第一课时
- 格式:ppt
- 大小:1.49 MB
- 文档页数:15
4有理数的加法(第一课时)学习目标:1、经历探索有理数加法法则和运算律的过程,理解有理数的加法法则和运算律,培养学生的观察、比较、归纳及运算能力。
2、能熟练进行整数加法运算,并能用运算律简化运算学习重点:依据有理数的加法法则熟练进行有理数的加法运算学习难点:有理数的加法法则的理解,有理数加法运算律的应用复习提问1. 数轴三要素:有理数的绝对值是怎么定义的?2.下列各组数中,哪一个较大?利用数轴说明?-3与-2;|3|与|-3|;|-3|与0; -2与|+1|;-|+4|与|-3|.一、问题引入足球比赛中赢球个数与输球个数是相反意义的量.若我们规定赢球为“正”,输球为“负”,它们的和叫作净胜球数。
比如,赢3球记为+3,输1球记为-1.本赛季,凯旋足球队第一场比赛赢了1个球,第二场比赛输了1个球,该队两场比赛的净胜球数是多少?上边的问题用到了正数与负数的加法。
那么两个有理数相加,如何进行运算,根据下面练习进行总结。
下面是凯旋足球队第一场和第二场的比赛情况,请写出表达式并计算出净胜球数。
例:第一场赢了3个球,第二场赢了1个球,表达式为 (+3)+(+1)=+4.1.第一场输了2个球,第二场输了3个球;表达式:2.第一场输了3个球,第二场赢了2个球, 表达式:3.第一场赢了3个球,第二场输了2个球, 表达式:4.第一场输了4个球,第二场赢了4个球, 表达式:二、探究新知我们也可以利用数轴表示加法运算过程,以原点为起点,规定向东的方向为正方向,向西的方向为负方向,(1)同号两数相加如:向东移动5个单位,再向东移动3个单位,一共移动了8个单位,即(+5)+(+3)=+8 用数轴表示如图可见,正数加正数,其和是_____,和的绝对值等于____________.练习:向西移动5个单位,再向西移动3个单位,一共移动了8个单位,即:用数轴表示可见,负数加负数,其和是_____,和的绝对值等于_____________.总结得:同号两数相加,取____的符号,并把绝对值________(2)异号两数相加1.向东移动5个单位,再向西移动5个单位,一共向东移动了____米。
可编辑修改精选全文完整版
有理数的加法(第一课时)教案
教学目标
1.知识与技能
经历探索有理数的加法法则,理解有理数加法的意义,初步掌握有理数加法法则,并能准确地进行有理数的加法运算.
2.过程与方法
①有理数加法法则的导出及运用过程中,训练学生独立分析问题的能力及口头表达能力.
②渗透数形结合的思想,培养学生运用数形结合的方法解决问题的能力.
3.情感、态度与价值观
①通过观察、归纳、推断得到数学猜想,体验数学充满探索性和创造性.
②运用知识解决问题的成功体验.
教学重点难点
重点:有理数的加法法则的理解和运用.
难点:异号两数相加.
教与学互动设计
(一)创设情境,导入新课
课件展示下午放学时,小新的车子坏了,他去修车,不能按时回家,怕妈妈担心,打电话告诉妈妈,可妈妈坚持要去接他,问他在什么地方修车,他说在我们学校门前的东西方向的路上,你先走20米,再走30米,就能看到我了.于是妈妈来到校园门口.
(二)合作交流,解读探究
讨论妈妈能找到他吗?
讨论交流若规定向东为正,向西为负.
(1)若两次都向东,很显然,一共向东走了50米.
算式是:20+30=50
即这位同学位于学校门口东方50米.这一运算可用数轴表示为。