2011年中考第一轮复习课件精品第5讲函数的应用
- 格式:ppt
- 大小:1.09 MB
- 文档页数:33
第三章三角函数、解三角形第5讲三角函数的图象与性质教材回顾▼夯实基础课本温故追根求源知识梳理Aj=sinxJ =COSXj=tanxJT2k盘 ----2JJI2k Jt H—,L 23Ji"2— H——2」仇wz)为减[2 吃7T, 2航+兀]仗WZ)为减;\2kn—n92kn\(k^Z)为(一-于,仇GZ)为增2.学会求三角函数值域(最值)的两种方法(1)将所给函数化为j=Asin(ft>x+ (p)的形式,通过分析亦+卩的范围,结合图象写出函数的值域;(2)换元法:把sin x(cos劝看作一个整体,化为二次函数来解决.双基自测1. (2015•高考四川卷)下列函数中,最小正周期为兀的奇函数是(A.j=sin(2x+—B.j=cos^2r+~C.y= sin 2x+ cos 2xD.y= sin x+ cos xC 项,y=sin 2x+cos 2x=\/2sin^2x+—为非奇非偶函数,不符合题意;ink+于)最小正周期为2兀, 为非奇非偶函数,不符合题意.( JIj=sin|2x+- 为偶函数,不符合题意;解析:A 项,= cos 2x,最小正周期为n ,且y= cos^2r+_j= —sin 2x,最小正周期为 函数,符合题意;B 项, 1=/兀,且为奇,最小正周期为皿,D 项,j=sin x+ cos兀B. x=——33 x=-兀4解析:由题意得 f(x)= 2cos 2^x+~J= 2sin 2x= 1— cos 2x,函 数图象的对称轴方程为尸竺kEZ,故选D.2A • x~—4 C. 71故函数/(对=$中一了丿在区间[o,于]±的最小值为一申.3・函数/(x) = sin上的最小值为A. -1B. -申C 誓 D. 0解析:由已知xG 0, 兀 8二討得加-2兀 -eJI2在区间o,兀4所以14.(必修4 P40 练习1X2)改编)函数/(x) = 4-2cos -x, xE32,取得最小值时,X的取值集合为R的最小值是—{x\x=6kn9 kEL}(JT JI \5.(必修4 P44例6改编)函数j=tan|^-x—yJ的最小正周期是—,单调增区间是G+"扌+2”(疋牛典例剖析▼考点突破*名师导悟以例说法考点一三角函数的定义域和值域^§例1 (1)函数y= lg(2sin x—1)+*\/1 —2cosx的定义域是" 兀5兀、2k Ji +—, 2k 乳—]9 ZL 3 6 丿______ .3(2)函数j=cos 2x+ 2sin x的最大值为—132'[解析]⑴要使函数丿=lg(2sinx —1)+^/1—2cos 兀有意义,sin ,■ “Ji 5 n解得 2k Ji +_^x<2^ Ji +飞-,kEL.即函数的定义域为卜—+专,2—+寻)kE 乙3i 3所以当/=扌时,函数取得最大值字2sinx —1>0, 即1—2cosx^0, cosxWq.+WWl),(2)y=cos 2x+2sin x= —2sin 2x+2sin x+1,设 f=sin x(—12Q互动探光本例(2)变为函数y = cos 2x+ 4sin5的最大值为 _________解析:j=cos 2x+4sin x= — 2sin2x+ 4sin 兀+1,设t=sin中冬怎*),则原函数可以化为y=~li +4(+1= —2(1—1『+3,所以当1=扌时,函数取得最大值丰.⑴三角函数定义域的求法求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图象来求解.(2)三角函数值域的不同求法①利用sinx和cosx的值域直接求.②把所给的三角函数式变换成y=Asin(cox+^的形式求值域.③把sin兀或cos兀看作一个整体,转换成二次函数求值域・④利用sin兀土cos兀和sin xcos x的关系转换成二次函数求值域.壘踪i噬1・(1)函数y= /2+logjx + \/tanx的定义域为r i V 2jxIOVxV亍或Ji WxW4 »____________________________ ■7(2)函数y= (4— 3sin x)(4— 3cos兀)的最小值为xIOVxV 亍或 n4j.解析:⑴要使函数有意义, 厂2+10即亠0,2JIx^kn T —, I 2—o -------- o ——0 ?利用数轴可得函数的定义域是x>0, tan x^O, k 兀 WxVkii T 扌WZ)・-<—e---------(2)j = 16— 12(sin x+ cos x)+ 9sin xcos x,令Z=sinx+cosx,贝!1[—\[29 ^2],且sinxcosx=-------------------2『一1 ]所以y=16- 12Z+9X --------- =一(9,一24/+23)・2 2• 4 7故当时,Jmin = --考点二三角函数的奇偶性、周期性及对称性典例2 (1)(2014-高考课标全国卷I )在函数®j= cos 12x1,®y = Icos xl, (3)j=cos^x, (4)j= tan(2x—^中,最小正周期为n的所有函数为(C )A.②④C.①②③B.①③④D.①③(2)(2016-河北省五校联盟质量监测)下列函数中最小正周期为兀且图象关于直线兀=£■对称的函数是(B)[解析]⑴①yKOsMFOslx, 1- •②由图象知,函数的周期r= 31・③*兀・兀④丁=亍综上可知,最小正周期为询所有函数为①②③.⑵由函数的最小正周期为兀,可排除C •由函数图象关于直JT线*=〒对称知,该直线过函数图象的最高点或最低点,对选B.(i )三角函数的奇偶性的判断技巧于 A,因为 sin^2Xy+确・对于D, sinl2X ---------33 f) ( Tl JI 、 对于 B, sin|2X-——J=_:. =sin Ji =0,所以选项A 不正 =si 可羊所以D 不正确, 兀=sinT =h所以选项B 正确,故首先要知道基本三角函数的奇偶性,再根据题目去判断所求三角函数的奇偶性;也可以根据图象进行判断.(2)求三角函数周期的方法①利用周期函数的定义.②利用公式:y=Asin(cox+(p)和y =Acos(cyx+°)的最小正周2兀JT期为面,y=tan(cox+(/)).③利用图象.(3)三角函数的对称性正、余弦函数的图象既是中心对称图形,又是轴对称图形,正切函数的图象只是中心对称图形,应熟记它们的对称轴和对称中心,并注意数形结合思想的应用.[注意]判断函数的奇偶性时,必须先分析函数定义域是否关于原点对称.MISS] 2.(1)(2016-西安地区八校联考)若函数j = cos(ex+〒j(cyEN*)图象的一个对称中心是匕,0J,则co 的最小值为(A. 1B. 2C. 4D.(2)(2016•揭阳模拟)当心了时,函数/(gin(十)取得最小值,则函数)A.是奇函数且图象关于点仔,0)对称B.是偶函数且图象关于点(兀,0)对称C.是奇函数且图象关于直线兀=于对称D.是偶函数且图象关于直线兀=兀对称,■一JI 6; JI JI解析:(1 --------- 1=kJi ---------- (k £ Z)=>(o = 6k+ 2(kE:Z)=>(o6 6 2min =2Jl⑵因为当x=丁时,函数几兀)取得最小值,4所以sin&+J = —1,所以0=2反兀一普"(kEZ).所以/(x)=sin(+2“ 一冷9=sin|x J(k W Z).所以y=^~~x.=sin(—x)= —sin x.e 兀、JI 所以尸x)是奇函数,且图象关于直线兀=亍对称•考点三三角函数的单调性(高频考点)三角函数的单调性是每年高考命题的热点,题型既有选择题也有填空题,或解答题某一问出现,难度适中,多为中档题.高考对三角函数单调性的考查有以下四个命题角度:(1)求已知三角函数的单调区间;⑵已知三角函数的单调区间求参数;(3)利用三角函数的单调性求值域(或最值);(4)利用三角函数的单调性比较大小.⑴求心)的最小正周期和最大值;⑵讨论心)在[十,牛] 上的单调性.• sin (2015•高考重庆卷)已知函数几兀)=os 2x.[解](l)Ax)=sin 仔一Jsin x —A /§C =cos xsinx — 2 (H~cos 2x)1・,© o 並=-sm 2x — cos 2x —因此冷)的最小正周期为兀,最大值为2苫.os 2x(2)当兀丘[于,牛]时'0W2x —于W 兀,从而当弓^加一7~Wn,即弓时,/(兀)单调递减. Z Q 丄/ J调递减•J fl _ 7 y \ TL1 lz\ A A J KX& M n I y-Z z 产〒 r^Q^i 0« h P <Jlu tz 二\ J nf r/7 J? ryj n r^z^C 77 f r三角函数单调性问题解题策略.兀 兀 当0»亍亏, JI 5 JT . 即訐Tr 时' 的单调递增, 综上可知,几r )在单调递增; 刊上单(1)已知三角函数解析式求单调区间.①求函数的单调区间应遵循简单化原则,将解析式先化简,并注意复合函数单调性规律"同增异减”:②求形如j=Asin(ft)x+^)或y=Acos(ov +卩)(其中少>0)的单调区间时,要视“ov+卩”为一个整体, 通过解不等式求解.但如果evO,那么一定先借助诱导公式将少化为正数,防止把单调性弄错.(2)已知三角函数的单调区间求参数.先求出函数的单调区间,然后利用集合间的关系求解.⑶利用三角函数的单调性求值域(或最值).形如j=Asin(ft>x +°)+〃或可化为y=4sin@v+°)+〃的三角函数的值域(或最值)问题常利用三角函数的单调性解决.通关练习3.(1)已知函数/(x)=2sinC+亍) ,则a9 b9 c的大小关系是(BB. c<a<bD. b<c<aA. a<c<bC. b<a<c减,则 少的取值范围是(A54-(2)已知 ft»O,函数 f(x)=sirA. 12-D. (0, 2]10 —n 21兀因为j=sinx 在0,—上递增,——= 2sin 解:⑴选Ra兀= 2sin所以c<a<b.6>>0,JlJTJIH < 3X ---- < 3 兀 H - ,44 4G JI 3131〒+亡'313 JI3 JI H —W —4 2又 j=sinx所以6) JI3 31"T解得詳。
初三第一轮复习 函数的综合应用(一)课标要求1. 正确理解一次函数,反比例函数,二次函数的概念。
2. 能够在平面直角坐标系中,画出一次,反比例,二次函数图像,理解图像性质。
2. 能建立正确的函数模型, 应用函数的概念、图象和性质解决一些实际问题.(二)知识要点1.一次函数的应用一次函数一般应用在生产、运输、销售、调配等方面的方案设计, 以及决策、经济最优化等问题.常与方程(组)和不等式(组)紧密联系在一起. 一次函数的增减性和分段函数是中考考查的重点内容, 实际问题中自变量的取值范围的确定是难点.2. 反比例函数的应用一般应用在几何图形的面积、行程、工程等问题, 在解题过程中常用到待定系数法和数形结合与转化思想.3.二次函数的应用二次函数的应用问题, 考查较多的是与图形面积、商品销售利润等有关的最大(小)值的实际问题, 在解题方法上常用到待定系数法、配方法、公式法等.在数学思想方面同样要体现函数思想、数形结合思想、转化思想和分类讲座思想等.求二次函数的解析式和函数的最大(小)值是考查重点.(三)例题精讲例 1.在一次运输任务中, 一辆汽车将一批货物从甲地支往乙地, 到达乙地卸货后返回. 设汽车从甲地出发x (h )时, 汽车与甲地的距离y (km ), y 与x 的函数关系如图所示. 根据图象信息,解答下列问题: ⑴这辆汽车的往返、速度是否相同?请说明理由;⑵求返程中y 与x 之间的函数表达式;⑶求这辆汽车从甲地出发h 4时与甲地的距离.【分析】通过看图象可以获取下列信息:甲、乙两地的距离为km 120,汽车从甲地到乙地用了h 2,卸货用了h 5.0, 从乙地返回甲地用了h 5.2.⑴根据路程一时间的关系求出速度,然后比较即可; ⑵由点()120,5.2和()0,5用待定系数法求出函数表达式; ⑶将4=x 代入所求的函数表达式中求出y 的值即可.【解】⑴这辆汽车的往、返速度不相同. 事实上:∵往、返的路程相同, 去时用了h 2,返回时用了h 5.2, ∴往、返速度不相同.⑵设返程中y 与x 之间的函数表达式为b kx y +=,∵点()120,5.2和()0,5在此函数的图象上, ∴⎩⎨⎧+=+=b k b k 50,5.2120, 解得⎩⎨⎧=-=240,48b k . ∴返程中y 与x 之间的函数表达式为24048+-=x y .⑶当4=x 时, 汽车在返程途中, 此时48240448=+⨯-=y .∴这辆汽车从甲地出发h 4时与甲地的距离为km 48.总结:从图象中正确获取有关信息,然后利用一次函数的有关知识解决问题例2.(2011黄冈) 今年我省干旱灾情严重, 甲地急需要抗旱用水15万吨, 乙地13万吨. 现有A 、B 两水库各调出14万吨水支援甲、乙两地抗旱. 从A 地到甲地50千米, 到乙地30千米; 从B 地到甲地60千米,到乙地45千米.⑴设从A 水库调往甲地的水量为x 万吨, 完成下表:⑵请设计一个调运方案,使水的调运量尽可能小.(调运量=调运水的重量×调运的距离, 单位: 万吨•千米)【分析】⑴根据由A 到甲和乙总和是14万吨,可以表示出由A 到乙是()x -14万吨,再根据到甲的总和是15万吨,即可表示表格中的各个数据;⑵先用含x 的式子表示出调运量的和,根据一次函数的性质可确定x 的值,进而确定调运方案.【解】⑴完成表格如下:⑵设水的调运量为y 万吨•千米,根据题上表,得)1(45)15(60)14(3050-+-+-+=x x x x y ,整理,得12755+=x y .∵⎩⎨⎧≥-≥-01,014x x ,∴141≤≤x 。
五、函数及其应用(6课时)教学目标:1.立足教材,打好基础,查漏补缺,系统复习,熟练掌握本部分的基本知识、基本方法和基本技能.2.让学生自己总结交流所学内容,发展学生的语言表达能力和合作交流能力.3.通过学生自己归纳总结本部分内容,使他们在动手操作方面,探索研究方面,语言表达方面,分类讨论、归纳等方面都有所发展.教学重点与难点重点:将本部分的知识有机结合,强化训练学生综合运用数学知识的能力,.难点:把数学知识转化为自身素质.增强用数学的意识.教学时间:6课时【课时分布】函数部分在第一轮复习时大约需要6个课时,其中包括单元测试.下表为内容及课时安排.课时数内容1变量与函数、平面直角坐标系2 一次函数与反比例函数的图象和性质1 二次函数的图象和性质2 函数的应用函数单元测试与评析教学过程:【知识回顾】1.知识脉络2.基础知识(1)一次函数的图象:函数y =kxb (k 、b 是常数,k ≠0)的图象是过点(0,b )且与直线y =kx 平行的一条直线.一次函数的性质:设y =kx b (k ≠0),则当k >0时,y 随x 的增大而增大;当k <0, y 随x 的增大而减小.正比例函数的图象:函数y =kx (k 是常数,k ≠0)的图象是过原点及点(1,k )的一条直线.当k >0时,图象过原点及第一、第三象限;当k <0时,图象过原点及第二、第四象限.正比例函数的性质:设y =kx (k ≠0),则当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.(2)反比例函数的图象:函数xky =(k ≠0)是双曲线.当k >0时,图象在第一、第三象限;当k <0时,图象在第二、第四象限.反比例函数的性质:设xky =(k ≠0),则当k >0时,在每个象限中,y 随x 的增大而减小;当k <0时,在每个象限中,y 随x 的增大而增大.(3)二次函数一般式:)0(2≠++=a c bx ax y .实际问题平面直角坐标系函 数一次函数的图象与性质反比例函数的图象与性二次函数的图象与性质函 数的应用变量图象:函数)0(2≠++=a c bx ax y 的图象是对称轴平行于y 轴的抛物线. 性质:设)0(2≠++=a c bx ax y①开口方向:当a >0时,抛物线开口向上,当a <0时,抛物线开口向下; ②对称轴:直线abx 2-=; ③顶点坐标()44,22ab ac a b --; ④增减性:当a >0时,如果abx 2-≤,那么y 随x 的增大而减小,如果2b x a ≥-,那么y 随x 的增大而增大;当a <0时,如果ab x 2-≤,那么y 随x的增大而增大,如果2bx a≥-,那么y 随x 的增大而减小.顶点式()()20y a x h k a =-+≠.图象:函数()()20y a x h k a =-+≠的图象是对称轴平行于y 轴的抛物线.性质:设()()20y a x h k a =-+≠①开口方向:当a >0时,抛物线开口向上,当a <0时,抛物线开口向下; ②对称轴:直线x h =; ③顶点坐标(,)h k ;④增减性:当a >0时,如果x h ≤,那么y 随x 的增大而减小,如果x h ≥,那么y 随x 的增大而增大;当a <0时,如果x h ≤,那么y 随x 的增大而增大,如果x h ≥,那么y 随x 的增大而减小. 3.能力要求例1如图,二次函数2y ax bx c =++的图象开口向上,图象经过点(-1,2)和(1,0),且与y 轴相交于负半轴. 给出四个结论:① 0abc <;② 20a b +>;③ 1a c +=; ④1a >.其中正确结论的序号是 .【解】由图象可知:a >0,b <0,c <0,∴abc >0; ∵对称轴x =2b a -在(1,0)的左侧,∴2ba-<1,∴20a b +>; ∵图象过点(-1,2)和(1,0),∴20a b c a b c -+=⎧⎨++=⎩,∴1a c +=,b =-1;∴a =1-c >1.∴正确的序号为:②③④.【说明】函数图象是研究函数性质的有力工具,是数形结合思想方法的重要运用.本题通过形(图象及其位置)的条件得出数(相等和不等关系)的结论.教师在复习总要加强这种思想方法的渗透. 例2设直线1y x b =+与抛物线22y x c =+的交点为A (3,5)和B . ⑴求出b 、c 和点B 的坐标; ⑵画出草图,根据图像回答:当x 在什么范围时12y y ≤.【分析】与一次函数、二次函数的图象交点有关的问题,可通过转化为方程(组)的思路解决.借助于函数图象可直观地解决函数值的大小比较. 【解】(1)∵直线1y x b =+与抛物线22y x c =+的交于点A (3,5),∴3595b c +=⎧⎨+=⎩,∴24b c =⎧⎨=-⎩,∴12y x =+,224y x =-.由224y x y x =+⎧⎨=-⎩得121223,,05x x y y =-=⎧⎧⎨⎨==⎩⎩∴B (-2,0). (2)图象如图所示, 由图象可知:当2x ≤-或3x ≥时,12y y ≤.【说明】本题着重考查与函数图象交点有关的问题及函数值的大小比较问题,要求学生能够利用数形结合思想,沟通函数和方程(组)、不等式的联系和相互转化.例3 已知抛物线y=ax 2+bx+c 的顶点为(1,-4),且抛物线在x 轴上截得的线段长为4,求抛物线的解析式. 【解】∵抛物线的顶点为(1,4),∴设抛物线的解析式为()214y a x =--,∴抛物线的对称轴为直线x =1, 又∵抛物线在x 轴上截得的线段长为4, ∴抛物线与x 轴的交点为(1,0),(3,0),∴0=4a4,∴a =1,∴抛物线的解析式为()214y x =--,即223y x x =--.【说明】抛物线的对称性常常是解题的切入口,本题也可以通过设抛物线与x 轴的交点为()12,0,(,0)x x ,则124x x -=,利用根与系数的关系来求解,但这样显然比较繁琐.例4 利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7. 5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.设每吨材料售价为x (元),该经销店的月销售量为p (吨),月利润为y (元),月销售额为w (元),.(1)当每吨售价是240元时,计算此时的月销售量;求出p 与x 的函数关系式(不要求写出x 的取值范围);(2)求出y 与x 的函数关系式(不要求写出x 的取值范围); (3)该经销店要获得最大月利润,售价应定为每吨多少元?(4)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由. 【解】(1)当每吨售价是240元时,此时的月销售量p =260240457.56010-+⨯=吨;由题意得:p =260457.510x -+⨯,即p =32404x -+. (2)y =()()31001002404x p x x ⎛⎫-=--+ ⎪⎝⎭,即y =23315240004x x -+-.(3)配方得:y =()2321090754x --+,∴当x =210时,y max =9075(元). (4)w =32404xp x x ⎛⎫=-+ ⎪⎝⎭,即w =()23160192004x --+,∴当x =160时w max =19200.∴y 与w 不是同时取得最大值,小静说法不对. 【说明】本题是一次函数和二次函数在实际生活中的综合运用,学生关键要理解商品经济中的进价(成本价),售价,单位利润(每件商品的利润),销售数量,总利润,销售额的概念及其关系.单位利润=售价-进价,总利润=单位利润×销售数量,销售额=售价×销售数量.例5如图,平面直角坐标系中,四边形OABC 为矩形,点A B ,的坐标分别为(40)43(),,,,动点M N ,分别从O B ,同时出发,以每秒1个单位的速度运动.其中,点M 沿OA 向终点A运动,点N 沿BC 向终点C 运动,过点M 作MP OA ⊥,交AC 于P ,连结NP ,已知动点运动了x 秒.(1)P 点的坐标为( )(用含x 的代数式表示);(2)试求NPC △面积S 的表达式,并求出面积S 的最大值及相应的x 值; (3)当x 为何值时,NPC △是一个等腰三角形?简要说明理由.【分析】求P 点坐标,由图可知,就是要求线段OM ,PM ,由△APM ∽△ACO 可得;求△NPC 的面积的关键是用x 的代数式表示边CN 上的高PQ ;△NPC 是等腰三角形有三种情形,不能遗漏.【解】(1)由题意可知,(03)C ,,(0)(43)M x N x -,,,,P ∴点坐标为()x x 3,3-4. (2)设NPC △的面积为S ,在NPC△中,4NC x =-,NC 边上的高为34x ,其中04x ≤≤.221333(4)(4)(2)2882S x x x x x 3∴=-⨯=-+=--+4. S ∴的最大值为32,此时2x =.(3)延长MP 交CB 于Q ,则有PQ BC ⊥.NBAMPCOyx NBAMPCOyx Q①若NP CP =,PQ BC NQ CQ x ⊥==,.34x ∴=,43x ∴=. ②若CP CN =,则35444CN x PQ x CP x =-==,,,516449x x x -=∴=,.③若CN NP =,则4CN x =-.3424PQ NQ x ==-, ,在Rt PNQ △中,222PN NQ PQ =+.2223(4)(42)()4x x x ∴-=-+,12857x ∴=. 综上所述,43x =,或169x =,或12857x =.【说明】本题为双动点综合题,是中考的压轴题,有较大的难度.(1)(2)两小题与函数有关,解题的关键在于把握动点的运动规律,用x 的代数式表示出动点的路程,从而结合相似形的知识把其它有关线段也用x 的代数式表示出来为解题服务.(3)要用到分类讨论的思想方法.。