2014高考总复习数学(文)课时作业31数列求和
- 格式:doc
- 大小:445.50 KB
- 文档页数:6
课时作业31 数列求和[基础达标]1.[2020·某某某某二十四中模拟]已知数列{a n}的各项都是正数,n∈N*.(1)若{a n}是等差数列,公差为d,且b n是a n和a n+1的等比中项,设=b2n+1-b2n,n∈N*,求证:数列{}是等差数列;(2)若a31+a32+a33+…+a3n=S2n,S n为数列{a n}的前n项和,求数列{a n}的通项公式.解析:(1)由题意得b2n=a n a n+1,则=b2n+1-b2n=a n+1a n+2-a n a n+1=2da n+1,因此+1-=2d(a n+2-a n+1)=2d2,∴{}是等差数列.(2)当n=1时,a31=a21,∵a1>0,∴a1=1.当n≥2时,a31+a32+a33+…+a3n=S2n,①a31+a32+a33+…+a3n-1=S2n-1,②①-②得,a3n=S2n-S2n-1=(S n-S n-1)(S n+S n-1).∵a n>0,∴a2n=S n+S n-1=2S n-a n,③∵a1=1合适上式,∴当n≥2时,a2n-1=2S n-1-a n-1,④③-④得a2n-a2n-1=2(S n-S n-1)-a n+a n-1=2a n-a n+a n-1=a n+a n-1,∵a n+a n-1>0,∴a n-a n-1=1,∴数列{a n}是首项为1,公差为1的等差数列,可得a n=n.2.[2020·某某某某诊断]已知等差数列{a n}的公差大于0,且a4=7,a2,a6-2a1,a14是等比数列{b n}的前三项.(1)求数列{a n}的通项公式;(2)记数列{b n}的前n项和为S n,若S n>39,求n的取值X围.解析:(1)设等差数列{a n}的公差为d(d>0),由a4=7,得a1+3d=7,①又a2,a6-2a1,a14是等比数列{b n}的前三项,∴(a6-2a1)2=a2a14,即(5d-a1)2=(a1+d)(a1+13d),化简得d=2a1,②联立①②,解得a1=1,d=2.∴a n=1+2(n-1)=2n-1.(2)∵b1=a2=3,b2=a6-2a1=9,b3=a14=27是等比数列{b n}的前三项,∴等比数列{b n}的首项为3,公比为3.∴S n =31-3n1-3=33n-12. 由S n >39,得33n-12>39,化简得3n >27,解得n >3,n ∈N *.3.[2020·某某某某省级示X 高中联考]在数列{a n }中,a 1=1,a n +1a n =4n +12n n +2,设b n =n +1n·a n .(1)证明:数列{b n }是等比数列; (2)求{a n }的前n 项积T n .解析:(1)因为b n +1b n =n +2n +1·a n +1n +1n·a n =n n +2n +12·a n +1a n =n n +2n +12·4n +12n n +2=4,b 1=2a 1=2,所以数列{b n }是首项为2,公比为4的等比数列. (2)由(1)知b n =n +1n ·a n =2·4n -1,则a n =n n +1·22n -1. 从而T n =(12×23×34×…×n n +1)·21+3+5+…+(2n -1)=2n 2n +1.4.[2020·某某河津二中月考]设数列{a n }满足a 1=1,3a 2-a 1=1,且2a n =a n -1+a n +1a n -1a n +1(n ≥2,n ∈N *).(1)求数列{a n }的通项公式;(2)设数列{b n }中,b 1=12,4b n =a n -1a n (n ≥2,n ∈N *),{b n }的前n 项和为T n ,证明:T n <1.解析:(1)∵2a n =a n -1+a n +1a n -1a n +1(n ≥2),∴2a n =1a n -1+1a n +1,又a 1=1,3a 2-a 1=1,∴1a 1=1,1a 2=32,∴1a 2-1a 1=12, ∴⎩⎨⎧⎭⎬⎫1a n 是首项为1,公差为12的等差数列,∴1a n =1+12(n -1)=12(n +1),即a n =2n +1. (2)∵4b n =a n -1a n (n ≥2),∴b n =1nn +1=1n -1n +1(n ≥2),又b 1=12符合上式,∴b n=1n -1n +1(n ∈N *), ∴T n =b 1+b 2+…+b n =(1-12)+(12-13)+…+(1n -1n +1)=1-1n +1<1.5.[2019·某某某某中学期中]设数列{a n }满足a 1+3a 2+32a 3+…+3n -1a n =n3,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =⎩⎪⎨⎪⎧n ,n 为奇数,1a n,n 为偶数,求数列{b n }的前n 项和S n .解析:(1)a 1+3a 2+32a 3+…+3n -1a n =n3①,当n ≥2时,a 1+3a 2+32a 3+…+3n -2a n -1=n -13②,①-②,得3n -1·a n =13(n ≥2),即a n =13n ;当n =1时,a 1=13,符合上式.所以数列{a n }的通项公式为a n =13n .(2)由(1)知b n =⎩⎪⎨⎪⎧n ,n 为奇数,3n,n 为偶数,①当n 为奇数时,S n =1+32+3+34+…+3n -1+n =1+n2·1+n 2+=n 2+2n +14+98(3n -1-1).②当n 为偶数时,S n =1+32+3+34+…+(n -1)+3n =[1+n -1]2·n2+91-9n21-9=n 24+98(3n-1).所以数列{b n }的前n 项和S n=⎩⎪⎨⎪⎧n 2+2n +14+983n -1-1,n 为奇数,n 24+983n-1,n 为偶数.6.[2020·某某某某模拟]已知等差数列{a n }的前n 项和为S n ,公差d >0,且a 2a 3=40,a 1+a 4=13,在公比为q (0<q <1)的等比数列{b n }中,b 1,b 3,b 5∈{160,132,120,18,12}.(1)求数列{a n },{b n }的通项公式;(2)若数列{}满足=a n b n ,求数列{}的前n 项和T n .解析:(1)因为{a n }为等差数列,所以a 1+a 4=a 2+a 3=13, 又a 2a 3=40,所以a 2,a 3是方程x 2-13x +40=0的两个实数根. 又公差d >0,所以a 2<a 3,所以a 2=5,a 3=8,所以⎩⎪⎨⎪⎧a 1+d =5,a 1+2d =8,解得⎩⎪⎨⎪⎧a 1=2,d =3,所以a n =3n -1,因为在公比为q (0<q <1)的等比数列{b n }中,b 1,b 3,b 5∈{160,132,120,18,12},所以易知b 1=12,b 3=18,b 5=132.此时公比q 2=b 3b 1=14,所以q =12,所以b n =(12)n .(2)由(1)知a n =3n -1,b n =(12)n ,所以=(3n -1)·(12)n,所以T n =2×(12)1+5×(12)2+8×(12)3+…+(3n -1)×(12)n,12T n =2×122+5×123+…+(3n -4)×12n +(3n -1)×12n +1, 两式相减,得12T n =2×(12)1+3[(12)2+(12)3+…+(12)n ]-(3n -1)×(12)n +1=1+3×(12)[1-(12)n -1]-(3n -1)×(12)n +1=52-(12)n ×3n +52.故{}的前n 项和T n =5-(3n +5)×(12)n .[能力挑战]7.[2020·某某某某联考]若正项数列{a n }的前n 项和为S n ,a 1=1,点P (S n ,S n +1)在曲线y =(x +1)2上.(1)求数列{a n }的通项公式; (2)设b n =1a n ·a n +1,T n 表示数列{b n }的前n 项和,若T n ≥13m -1对任意n ∈N *恒成立,某某数m 的取值X 围.解析:(1)由已知可得S n +1=(S n +1)2,得S n +1-S n =1,所以{S n }是以S 1为首项、1为公差的等差数列,所以S n =S 1+(n -1)×1=n ,得S n =n 2,当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1,当n =1,也符合上式,故{a n }的通项公式为a n =2n -1.(2)b n =1a n ·a n +1=12n -12n +1=12(12n -1-12n +1),所以T n =b 1+b 2+b 3+…+b n =12(1-12n +1),显然T n 是关于n 的增函数,所以T n 有最小值(T n )min =T 1=13,又T n ≥13m -1对任意n ∈N *恒成立,所以13≥13m -1恒成立,所以m ≤4,故实数m 的取值X 围为(-∞,4].。
课时作业(三十一) 数列求和A 级1.设{a n }是公比为q 的等比数列,S n 是其前n 项和,若{S n }是等差数列,则q 为( ) A .-1 B .1 C .±1D .02.已知数列{a n }:12,13+23,14+24+34,…,110+210+310+…+910,…,若b n =1a n a n +1,那么数列{b n }的前n 项和S n 为( )A.nn +1B .4n n +1C .3n n +1D .5n n +13.数列a 1+2,…,a k +2k ,…,a 10+20共有十项,且其和为240,则a 1+…+a k +…+a 10的值为( )A .31B .120C .130D .1854.已知函数f (n )=⎩⎪⎨⎪⎧n 2当n 为奇数时,-n 2当n 为偶数时,且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100等于( )A .0B .100C .-100D .10 2005.等差数列{a n }的首项为a 1,公差为d ,前n 项和S n .则“d >|a 1|”是“S n 的最小值为S 1,且S n 无最大值”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不是充分条件也不是必要条件6.在等差数列{a n }中,S n 表示前n 项和,a 2+a 8=18-a 5,则S 9=________. 7.数列32,94,258,6516,…的前n 项和S n 为________.8.已知{a n }是等比数列,a 2=2,a 5=14,则S n =a 1+a 2+…+a n 的取值范围是________.9.对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=2,{a n }的“差数列”的通项为2n,则数列{a n }的前n 项和S n =________.10.设数列{a n }满足a 1=2,a n +1-a n =3·22n -1.(1)求数列{a n }的通项公式;(2)令b n =na n ,求数列{b n }的前n 项和S n .11.若数列{a n }满足:a 1=23,a 2=2,3(a n +1-2a n +a n -1)=2.(1)证明数列{a n +1-a n }是等差数列;(2)求使1a 1+1a 2+1a 3+…+1a n >52成立的最小的正整数n .B 级1.(2012·福建卷)数列{a n }的通项公式a n =n cos n π2,其前n 项和为S n ,则S 2 012等于( )A .1 006B .2 012C .503D .02.设数列{a n }是以2为首项,1为公差的等差数列,{b n }是以1为首项,2为公比的等比数列,则ab 1+ab 2+…+ab 10=________.3.在等比数列{a n }中,a n >0(n ∈N *),公比q ∈(0,1),且a 3a 5+2a 4a 6+a 3a 9=100,又4是a 4与a 6的等比中项.(1)求数列{a n }的通项公式;(2)设b n =log 2a n ,求数列{|b n |}的前n 项和S n .详解答案课时作业(三十一)A 级1.B 据题意可知,2S 2=S 1+S 3,故2(a 1+a 1q )=a 1+(a 1+a 1q +a 1q 2),即a 1q =a 1q 2,∵a 1≠0,q ≠0,∴q =1.故选B.2.B a n =1+2+3+…+n n +1=n2,∴b n =1a n a n +1=4nn +1=4⎝ ⎛⎭⎪⎫1n -1n +1, ∴S n =4⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=4⎝⎛⎭⎪⎫1-1n +1=4nn +1. 3.C a 1+…+a k +…+a 10=240-(2+…+2k +…+20) =240-2+20×102=240-110=130.4.B 由题意,a 1+a 2+a 3+…+a 100=12-22-22+32+32-42-42+52+…+992-1002-1002+1012=-(1+2)+(3+2)+…-(99+100)+(101+100)=-(1+2+…+99+100)+(2+3+…+100+101)=-1+101=100.故选B.5.A 因为等差数列{a n }中,S n =na 1+n 2(n -1)d =d2n 2+⎝⎛⎭⎪⎫a 1-d 2n ,若S n 的最小值为S 1,且S n 无最大值时,必满足d >0且-a 1-d22×d2≤1,即d ≥-2a 1,且d >0,故d >|a 1|可推导条件成立,而条件成立不能推出d >|a 1|成立,所以选A.6.解析: 由等差数列的性质,a 2+a 8=18-a 5, 即2a 5=18-a 5,∴a 5=6, 又∵S 9=a 1+a 9×92=9a 5=54.答案: 547.解析: ∵32=1+12,94=2+14,258=3+18,6516=4+116,…∴S n =32+94+258+6516+…+⎝ ⎛⎭⎪⎫n +12n=(1+2+3+…+n )+⎝ ⎛⎭⎪⎫12+122+123+ (12)=nn +12+12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=n n +12+1-12n .答案:n n +12+1-12n8.解析: 因为{a n }是等比数列,所以可设a n =a 1q n -1.因为a 2=2,a 5=14,所以⎩⎪⎨⎪⎧a 1q =2a 1q 4=14,解得⎩⎪⎨⎪⎧a 1=4q =12.所以S n =a 1+a 2+…+a n =4×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=8-8×⎝ ⎛⎭⎪⎫12n.因为0<⎝ ⎛⎭⎪⎫12n ≤12,所以4≤S n <8.答案: [4,8)9.解析: ∵a n +1-a n =2n,∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =2n -1+2n -2+…+22+2+2=2-2n1-2+2=2n -2+2=2n.∴S n =2-2n +11-2=2n +1-2.答案: 2n +1-210.解析: (1)由已知,当n ≥1时,a n +1=[(a n +1-a n )+(a n -a n -1)+…+(a 2-a 1)]+a 1=3(22n -1+22n -3+…+2)+2=22(n +1)-1.而a 1=2,符合上式,所以数列{a n }的通项公式为a n =22n -1.(2)由b n =na n =n ·22n -1知,S n =1·2+2·23+3·25+…+n ·22n -1,①从而22·S n =1·23+2·25+3·27+…+n ·22n +1,②①-②得,(1-22)S n =2+23+25+…+22n -1-n ·22n +1,=21-4n1-4-n ·22n +1=-13[(3n -1)22n +1+2],即S n =19[(3n -1)22n +1+2].11.解析: (1)由3(a n +1-2a n +a n -1)=2可得:a n +1-2a n +a n -1=23,即(a n +1-a n )-(a n -a n -1)=23,∴数列{a n +1-a n }是以a 2-a 1=43为首项,23为公差的等差数列.(2)由(1)知a n +1-a n =43+23(n -1)=23(n +1),于是累加求和得:a n =a 1+23(2+3+…+n )=13n (n +1),∴1a n =3⎝ ⎛⎭⎪⎫1n -1n +1, ∴1a 1+1a 2+1a 3+…+1a n =3-3n +1>52,∴n >5. ∴最小的正整数n 为6.B 级1.A 因cosn π2呈周期性出现,则观察此数列求和规律,列项如下:a 1=0,a 2=-2,a 3=0,a 4=4,此4项的和为2.a 5=0,a 6=-6,a 7=0,a 8=8,此4项的和为2.依次类推,得S 2 012=(a 1+a 2+a 3+a 4)+(a 5+a 6+a 7+a 8)+…+(a 2 009+a 2 010+a 2 011+a 2 012) =2 0124×2=1 006.故选A.2.解析: a n =n +1,b n =2n -1,∴ab 1+ab 2+…+ab 10=a 1+a 2+a 22+a 23+…+a 29 =1+1+2+1+22+1+23+1+…+29+1 =10+(1+2+22+…+29) =10+1-2101-2=10+210-1=1 033.答案: 1 0333.解析: (1)∵a 3a 5+2a 4a 6+a 3a 9=100, ∴a 24+2a 4a 6+a 26=100,∴(a 4+a 6)2=100, 又a n >0,∴a 4+a 6=10,∵4是a 4与a 6的等比中项,∴a 4a 6=16, 而q ∈(0,1),∴a 4>a 6,∴a 4=8,a 6=2, ∴q =12,a 1=64,∴a n =64·⎝ ⎛⎭⎪⎫12n -1=27-n.(2)b n =log 2a n =7-n ,则数列{b n }的前n 项和为T n =n 13-n2, ∴当1≤n ≤7时,b n ≥0,∴S n =n 13-n2.当n ≥8时,b n <0,∴S n =b 1+b 2+…+b 7-(b 8+b 9+…+b n ) =-(b 1+b 2+…+b n )+2(b 1+b 2+…+b 7), =-n 13-n2+2×7×62=n 2-13n +842,∴S n=⎩⎪⎨⎪⎧13n -n221≤n ≤7且n ∈N*,n 2-13n +842n ≥8且n ∈N *.。
课时作业(三十二) [第32讲 数列的综合应用](时间:45分钟 分值:100分)基础热身1.[教材改编试题] 已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列,则a 2等于( )A .-4B .-6C .-8D .-102.某放射性物质的质量每天衰减3%,若此物质衰减到其质量的一半以下,则至少需要的天数是(参考数据lg0.97=-0.013 2,lg0.5=-0.301 0)( )A .22B .23C .24D .253.在数列{a n }中,a 1=2,当n 为正奇数时,a n +1=a n +2,当n 为正偶数时,a n +1=2a n ,则a 6=( )A .11B .17C .22D .234.[2012·长春调研] 各项都是正数的等比数列{a n }中,3a 1,12a 3,2a 2成等差数列,则a 10+a 12a 8+a 10=( ) A .1 B .3 C .6 D .9能力提升5.已知数列{a n }中,a 1=-1,a n +1·a n =a n +1-a n ,则数列通项a n =( )A.1nB.2nC .-1nD .-2n6.[2012·红河州检测] 若一等差数列{a n }的首项a 1=-5,其前11项的平均值为5,又若从中抽取一项,余下的10项的平均值为4,则抽去的是( )A .a 8B .a 9C .a 10D .a 117.已知数列{a n }中,a 1=35,a n =1-1a n -1(n ≥2),则a 2 012=( ) A .-12 B .-23C.35D.528.[2012·开封模拟] 已知数列{a n }满足a 1=1,log 2a n +1=log 2a n +1(n ∈N *),它的前n 项和为S n ,则满足S n >1 025的最小n 值是( )A .9B .10C .11D .129.[2012·郑州检测] 已知函数f (x )=15x 5+x 3+4x (x ∈R ),数列{a n }是等差数列,a 3>0,则f (a 1)+f (a 3)+f (a 5)的值( )A .恒为正数B .恒为负数C .恒为0D .可正可负10.某厂在2011年底制订生产计划,要使2021年底的总产量在原有基础上翻两番,则年平均增长率为________.11.已知数列{a n }中,a 201=2,a n +a n +1=0(n ∈N +),则a 2 012=________.12.[2012·日照一中月考] 已知实数a ,b ,c ,d 成等比数列,对于函数y =ln x -x ,当x =b 时取到极大值c ,则ad 等于________.13.[2012·宁波荆州区适应性考试] 对于正项数列{a n },定义H n =n a 1+2a 2+3a 3+…+na n ,若H n =2n +2,则数列a n 的通项公式为________.14.(10分)[2012·湖州二模] 已知等比数列{a n }满足2a 1+a 3=3a 2,且a 3+2是a 2,a 4的等差中项.(1)求数列{a n }的通项公式;(2)若b n =a n +log 21a n,S n =b 1+b 2+…+b n ,求使S n -2n +1+47<0成立的n 的最小值.15.(13分)[2012·浙江五校联考] 设公比为正数的等比数列{a n }的前n 项和为S n ,已知a 3=8,S 2=48,数列{b n }满足b n =4log 2a n .(1)求数列{a n }和{b n }的通项公式;(2)求正整数m 的值,使得b m ·b m +1b m +2是数列{b n }中的项.难点突破16.(12分)[2012·江西八校联考] 已知等差数列{a n }的首项为正整数,公差为正偶数,且a 5≥10,S 15<255.(1)求通项a n ;(2)若数列a 1,a 3,ab 1,ab 2,ab 3,…,ab n ,…,成等比数列,试找出所有的n ∈N *,使c n =b n -14为正整数,说明你的理由.课时作业(三十二)【基础热身】1.B [解析] ∵a 1a 4=a 23,∴(a 2-2)(a 2+4)=(a 2+2)2.∴2a 2=-12.∴a 2=-6.2.B [解析] 依题意有(1-3%)n <0.5,所以n >lg0.5lg0.97≈22.8.故选B. 3.C [解析] 逐项计算得该数列的前6项依次为:2,4,8,10,20,22,故选C.4.D [解析] 由已知a 3=3a 1+2a 2,于是q 2=3+2q ,由数列各项都是正数,解得q =3,所以a 10+a 12a 8+a 10=q 2=9.故选D.【能力提升】5.C [解析] 已知变形为1a n +1-1a n=-1,设b n =1a n ,则{b n }是等差数列,b 1=-1,b n =-1+(n -1)×(-1)=-n ,所以a n =-1n.故选C.6.D [解析] S 11=11a 1+11×102d =11×5,可得d =2.由S 11-a n =40,得a n =15,即a n =a 1+(n -1)d =15.∴n =11.故选D.7.B [解析] 由递推公式得a 2=-23,a 3=52,a 4=35,a 5=-23,…,所以数列{a n }是周期数列,周期为3,于是a 2 012=a 2 010+2=a 2=-23.故选B. 8.C [解析] ∵log 2a n +1=log 2a n +1,∴log 2a n +1a n =1,∴a n +1a n=2,所以,数列{a n }是以1为首项,公比为2的等比数列,所以S n =1-2n1-2=2n -1>1 025,∴2n >1 026.又210<1 026<211,∴n >10,∴n min =11.故选C.9.A [解析] 因为函数f (x )=15x 5+x 3+4x 是奇函数且在(-∞,+∞)上是增函数,所以f (a 3)>f (0)=0,又数列{a n }是等差数列,所以a 1+a 5=2a 3>0,∴a 1>-a 5,所以f (a 1)>f (-a 5),即f (a 1)+f (a 5)>0,所以f (a 1)+f (a 3)+f (a 5)>0.故选A. 10.104-1 [解析] 令2011年底的产量为1,则2021年底的产量为4,则(1+x )10=4,所以x =104-1.11.-2 [解析] 由已知得a n +1=-a n ,所以a 202=-2,a 203=2,a 204=-2,…,可以看出,奇数项为2,偶数项为-2,所以a 2 012=-2.12.-1 [解析] 对函数求导得y ′=1x -1=1-x x(x ∈(0,+∞)),当0<x <1时,y ′>0,当x >1时,y ′<0,所以当x =1时,函数有极大值为y =ln1-1=-1,所以b =1,c =-1.因为实数a ,b ,c ,d 成等比数列,所以ad =bc =-1.13.a n =2n +12n [解析] 由题意得a 1+2a 2+3a 3+…+na n =n (n +2)2,则na n =n (n +2)2-(n -1)(n +1)2=2n +12,则a n =2n +12n. 14.解:(1)设等比数列{a n }的首项为a 1,公比为q ,依题意,有⎩⎪⎨⎪⎧2a 1+a 3=3a 2,a 2+a 4=2(a 3+2),即⎩⎪⎨⎪⎧a 1(2+q 2)=3a 1q , ①a 1(q +q 3)=2a 1q 2+4. ② 由①得q 2-3q +2=0,解得q =1或q =2.当q =1时,不合题意,舍;当q =2时,代入②得a 1=2,所以,a n =2·2n -1=2n .故所求数列{a n }的通项公式a n =2n .(2)b n =a n +log 21a n =2n +log 212n =2n -n . 所以S n =2-1+22-2+23-3+…+2n -n=(2+22+23+…+2n )-(1+2+3+…+n )=2(1-2n )1-2-n (1+n )2=2n +1-2-12n -12n 2. 因为S n -2n +1+47<0,所以2n +1-2-12n -12n 2-2n +1+47<0, 即n 2+n -90>0,解得n >9或n <-10.因为n ∈N *,故使S n -2n +1+47<0成立的正整数n 的最小值为10.15.解:(1)设{a n }的公比为q ,则有⎩⎪⎨⎪⎧a 1·q 2=8,a 1+a 1q =48⇒q =12或q =-13(舍). 则a 1=8q 2=32,a n =32·⎝⎛⎭⎫12n -1=26-n , b n =4log 2a n =4log 226-n =-4n +24.即数列{a n }的通项公式为a n =26-n ,{b n }的通项公式为b n =-4n +24.(2)∵b m ·b m +1b m +2=(24-4m )(20-4m )(16-4m )=4(6-m )(5-m )(4-m ),令t =4-m (t ≤3,t ∈Z ),所以b m ·b m +1b m +2=4(6-m )(5-m )(4-m )=4(2+t )(1+t )t =4⎝⎛⎭⎫t +3+2t , 如果b m ·b m +1b m +2是数列{b n }中的项,设为第m 0项,则有4⎝⎛⎭⎫t +3+2t =4(6-m 0),那么t +3+2t 为小于等于5的整数,所以t ∈{-2,-1,1,2}.当t =1或t =2时,t +3+2t=6,不合题意; 当t =-1或t =-2时,t +3+2t=0,符合题意. 所以,当t =-1或t =-2时,即m =5或m =6时,b m ·b m +1b m +2是数列{b n }中的项. 【难点突破】16.解:(1)因为S 15=15a 8,设{a n }的公差为d ,则有⎩⎪⎨⎪⎧a 1+4d ≥10,①a 1+7d <17,② 由①得-a 1-4d ≤-10,③②+③有3d <7⇔d <73,所以d =2. 将d =2代入①、②有a 1≥2且a 1<3,所以a 1=2.故a n =2+(n -1)×2,即a n =2n (n ∈N *).(2)由(1)可知a 1=2,a 3=6,∴公比q =a 3a 1=3, ab n =2·3(n +2)-1=2·3n +1.又ab n =a 1+(b n -1)×2=2b n ,∴2·3n +1=2b n ,即b n =3n +1,故c n =3n +1-14. 此时当n =1,3,5时符合要求;当n =2,4时不符合要求. 由此可猜想:当且仅当n =2k -1,k ∈N *时,c n 为正整数.证明如下:逆用等比数列的前n 项和公式有:c n =12×1-3n +11-3=12(1+3+32+…+3n ). 当n =2k ,k ∈N *时,上式括号内为奇数个奇数之和,为奇数,此时c n ∉N *; 当n =2k -1,k ∈N *时,上式括号内为偶数个奇数之和,为偶数,此时c n ∈N *. 故满足要求的所有n 为n =2k -1,k ∈N *.。
2014高考数学理“硬”手笔(真题篇)常考问题:数列求和及其综合应用[真题感悟]1.(2013·福建卷)已知等比数列{a n }的公比为q ,记b n =a m (n -1)+1+a m (n -1)+2+…+a m (n -1)+m ,c n =a m (n -1)+1·a m (n -1)+2·…·a m (n -1)+m (m ,n ∈N *),则以下结论一定正确的是( )A .数列{b n }为等差数列,公差为q mB .数列{b n }为等比数列,公比为q 2mC .数列{c n }为等比数列,公比为qm 2D .数列{c n }为等比数列,公比为qm n解析 b n =a m (n -1)(q +q 2+…+q m ),∴b n +1b n =q m (常数). 故数列{b n }为等比数列,公比为q m ,选项A ,B 均错误;c n =(a m (n -1))m q 1+2+…+m =(a m (n -1)q m +12)m ,c n +1c n =⎝ ⎛⎭⎪⎫a mn a m n -m =(q m )m =qm 2(常数),故数列{c n }为等比数列,公比为qm 2,D 错误,故选C.答案 C2.(2013·辽宁卷)已知等比数列{a n }是递增数列,S n 是{a n }的前n 项和.若a 1,a 3是方程x 2-5x +4=0的两个根,则S 6=________.解析 ∵a 1,a 3是方程x 2-5x +4=0的两根,且q >1,∴a 1=1,a 3=4,则公比q =2,因此S 6=-261-2=63.答案 633.(2013·江苏卷)在正项等比数列{a n }中,a 5=12,a 6+a 7=3.则满足a 1+a 2+…+a n >a 1a 2…a n 的最大正整数n 的值为________.解析 由已知条件得12q +12q 2=3,即q 2+q -6=0,解得q =2,或q =-3(舍去), a n =a 5q n -5=12×2n -5=2n -6,a 1+a 2+…+a n =132(2n -1),a 1a 2…a n =2-52-42-3…2n -6=2n 2-11n 2,由a 1+a 2+…+a n >a 1a 2…a n ,可知2n -5-2-5>2n n -2,由2n -5>2n n -2,可求得n 的最大值为12,而当n =13时,28-2-5<213,所以n 的最大值为12.答案 124.(2013·新课标全国Ⅱ卷)等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则nS n 的最小值为________.解析 由已知⎩⎪⎨⎪⎧ S10=10a 1+10×92d =0,S15=15a 1+15×142d =25,解得a 1=-3,d =23,那么nS n =n 2a 1+n 2n -2d =n 33-10n 23,由于函数f (x )=x 33-10x 23在x =203处取得极小值也是最小值,因而检验n =6时,6S 6=-48,而n =7时,7S 7=-49.答案 -49[考题分析]题型 选择题、填空题、解答题难度 中档 ①考查数列与函数、方程、不等式的综合问题;②考查数列的通项 以及前n 项和的求解.高档 考查数列与平面几何、解析几何、三角函数交汇问题.。
数列求和的七种根本方法甘志国局部容(已发表于 数理天地(高中),2014(11):14-15)数列求和是数列问题中的基此题型,但具有复杂多变、综合性强、解法灵活等特点,本文将通过例题(这些例题涵盖了2014年高考卷中的数列求和大题)简单介绍数列求和的七种根本方法.1 运用公式法很多数列的前n 项和n S 的求法,就是套等差、等比数列n S 的公式,因此以下常用公式应当熟记:还要记住一些正整数的幂和公式:例1 数列}{n a 的前n 项和232n n S n -=,求数列}{n a 的前n 项和n T . 解 由232n n S n -=,可得n a n 233-=,160≤⇔>n a n ,所以: (1)当16≤n 时,n T =232n n S n -=. (2)当17≥n 时,所以 2232(1,2,,16)32512(17,)n n nn T n n n n *⎧-=⎪=⎨-+≥∈⎪⎩N 且例2 求1)2(3)1(21⋅++-⋅+-⋅+⋅=n n n n S n .解 设2)1()1(k n k k n k a k -+=-+=,此题即求数列}{k a 的前n 项和.高考题1 (2014年高考卷文科第19题(局部))求数列{}21n -的前n 项和n S . 答案:2n S n =.高考题2 (2014年高考卷理科第19题(局部))求数列{}24n -的前n 项和n S . 答案:23n S n n =-.高考题3 (2014年高考卷文科第17题)在等比数列{}n a 中,253,81a a ==.(1)求n a ; (2)设3log nn b a =,求数列{}n b 的前n 项和n S .答案:(1)13n na -=;(2)22n n nS -=.高考题4 (2014年高考卷文科第16题){}n a 是首项为1,公差为2的等差数列,n S 表示{}n a 的前n 项和.(1)求n a 及n S ;(2)设{}n b 是首项为2的等比数列,公比q 满足244(1)0q a q S -++=,求{}n b 的通项公式及其前n 项和n T .答案:(1)221,n n a n S n =-=;(2)2122,(41)3n n n n b T -==-.2 倒序相加法事实上,等差数列的前n 项和n S 的公式推导方法就是倒序相加法. 例3 求正整数m 与()n m n <之间的分母为3的所有既约分数的和S . 解 显然,这些既约分数为:有 )31()32()34()34()32()31(-+-+-++++++=n n n m m m S 也有 )31()32()34()34()32()31(++++++-+-+-=m m m n n n S所以 2222),(2)(2)(2m n S m n m n n m S -=-=-⋅+=例4 设4()42xx f x =+,求和12320012002200220022002f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.解 可先证得()(1)1f x f x +-=,由此结论用倒序相加法可求得答案为20012. 3 裂项相消法例5 假设}{n a 是各项均不为的等差数列,求证:1113221111++=+++n n n a a n a a a a a a . 证明 设等差数列}{n a 的公差为d :假设0d =,要证结论显然成立;假设0≠d ,得例8 证明222211112(123n n*++++<∈N 且2)n ≥. 证明 22221312111n++++高考题5 (2014年高考全国大纲卷理科第18题)等差数列{}n a 的前n 项和为n S ,110a =,2a 为整数,且4n S S ≤.(1)求{}n a 的通项公式;(2)设11n n n b a a +=,求数列{}n b 的前n 项和n T . 答案:(1)133n a n =-;(2)10(103)n nS n =-.高考题6 (2014年高考卷文科第19题)设各项均为正数的数列{}n a 的前n 项和为n S ,且n S 满足()()*∈=+--+-N n n n S n n S n n ,033222.(1)求1a 的值;(2)求数列{}n a 的通项公式; (3)证明:对一切正整数n ,有31)1(1)1(1)1(12211<++++++n n a a a a a a .答案:(1)12a =;(2)2n a n =;(3)当1n =时,可得欲证成立.当2n ≥时,111111(1)2(21)(21)(21)22121n n a a n n n n n n ⎛⎫=<=- ⎪++-+-+⎝⎭,再用裂项相消法可得欲证.高考题7 (2014年高考卷理科第19题)等差数列}{n a 的公差为2,前n 项和为n S ,且1S ,2S ,4S 成等比数列.(1)求数列}{n a 的通项公式;(2)令n b =,4)1(11+--n n n a a n求数列}{n b 的前n 项和n T . 答案:(1)21n a n =-,2221221n n n n T n n n +⎧⎪⎪+=⎨⎪⎪+⎩为奇数为偶数.4 分组求和法例9 求11111111111224242n nS -⎛⎫⎛⎫⎛⎫=+++++++++++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 解 设11111242n n a -=++++,得1122n n a -=-.所以此题即求数列1122n -⎧⎫-⎨⎬⎩⎭的前n 项和: 例10 设数列}{n a 的前n 项和n S 满足221⎪⎭⎫⎝⎛+=n n a S ,又n n n S b )1(-=,求数列}{n b 的前n 项和n T .解 在221⎪⎭⎫⎝⎛+=n n a S 中,令1n =可求得11=a .还可得相减,得所以}{n a 是首项为1公差为2的等差数列,得所以 222)1(,21n b n a S n n n n ⋅-==⎪⎭⎫⎝⎛+=当n 为偶数时, 当n 为奇数时, 总之,2)1()1(+⋅-=n n T nn . 高考题8 (2014年高考卷文科第15题){}n a 是等差数列,满足13a =,412a =,数列{}n b 满足14b =,420b =,且{}n n b a -是等比数列. (1)求数列{}n a 和{}n b 的通项公式; (2)求数列{}n b 的前n 项和.答案:(1)1=3,=32n n n a n b n -+;(2)3(1)212n n n ++-. 高考题9 (2014年高考卷文科第19题)在等差数列{}n a 中,公差2d =,2a 是1a 与4a 的等比中项.(1)求数列{}n a 的通项公式;(2)设(1)2n n n b a +=,记1234(1)nn n T b b b b b =-+-+-+-…,求n T .答案:(1)2n a n =,2(1)2(1)2n n n T n n n ⎧+-⎪⎪=⎨+⎪⎪⎩为奇数为偶数.高考题10 (2014年高考卷理科第19题(局部))求数列12(1)n n n ⎧⎫-⎨⎬+⎩⎭的前n 项和n S .答案:1221n nn +--+. 5 错位相减法高考题11 (2014年高考卷理科第17题)首项都是1的两个数列{}{}∈≠n b b a n n n ,0(,N *)满足02111=+-+++n n n n n n b b b a b a .(1)令nnn b a c =,求数列{}n c 的通项公式; (2)假设13-=n n b ,求数列{}n a 的前n 项和n S .解 (1)12-=n c n .(2)得13)12(-⋅-==n n n n n c b a .先写出n S 的表达式:13213)12(37353311-⋅-++⋅+⋅+⋅+⋅=n n n S ①把此式两边都乘以公比3,得n n n n n S 3)12(3)32(35333131321⋅-+⋅-++⋅+⋅+⋅=- ②①-②,得n n n n S 3)12(32323232121321⋅--⋅++⋅+⋅+⋅+=-- ③13)12()3232323232(213210-⋅--⋅++⋅+⋅+⋅+⋅=--n n n n S ④由等比数列的前n 项和公式,得23)22(13)12(132+⋅-=+⋅-++-=n n n n n n S ⑤因为此解答确实步骤多,且有三步容易出错:(1)等式③右边前n 项的符号都是"+〞,但最后一项为哪一项"—〞;(2)当等式③右边的前n 项不组成等比数列时,须把第一项作微调,变成等比数列(即等式④),这增加了难度;(3)等式⑤中最后一步的变形(即合并)有难度.但这种方法(即错位相减法)又是根本方法且程序法,所以备受命题专家的青睐,在高考试卷中频频出现就缺乏为怪了.考生在复习备考中,应彻底弄清、完全掌握,争取拿到总分值.这里笔者再给出一个小技巧——检验:算得了n S 的表达式后,一定要抽出万忙的时间检验一下21,S S 是否正确,假设它们均正确,一般来说就可以确定算对了,否则就算错了,需要检查(重点是检查容易出错的三点)或重算.对于此题,已经算出了13)1(+⋅-=n n n S ,所以10,121==S S .而由通项公式可知1033,1111121=⋅+==⋅=S S S ,所以求出的答案正确.高考题12 (2014年高考课标全国卷I 文科第17题){}n a 是递增的等差数列,42,a a 是方程2560x x -+=的根.(1)求{}n a 的通项公式;(2)求数列2n n a ⎧⎫⎨⎬⎩⎭的前n 项和. 答案:(1)121+=n a n . (2)用错位相减法可求得答案为1242++-n n . 高考题13 (2014年高考卷文科第18题)数列{}n a 满足111,(1)(1),n n a na n a n n n +==+++∈N *.(1)证明:数列n a n ⎧⎫⎨⎬⎩⎭是等差数列;(2)设3nn b =,求数列{}n b 的前n 项和n S . 答案:(1)略.(2)由(1)可求得2n a n =,所以3n n b n =⋅,再用错位相减法可求得433)12(1+⋅-=+n n n S .高考题14 (2014年高考卷文科第19题)设等差数列{}n a 的公差为d ,点(,)n n a b 在函数()2xf x =的图象上(n ∈N *). (1)证明:数列{}n b 为等比数列;(2)假设11a =,函数()f x 的图象在点22(,)a b 处的切线在x 轴上的截距为12ln 2-,求数列2{}n n a b 的前n 项和n S .答案:(1)略.(2)可求得,2n n n a n b ==,所以24n n n a b n =⋅,再用错位相减法可求得944)13(1+⋅-=+n n n S .高考题15 (2014年高考卷理科第19题)设等差数列{}n a 的公差为d ,点(,)n n a b 在函数()2xf x =的图象上(n ∈N *).(1)假设12a =-,点87(,4)a b 在函数()f x 的图象上,求数列{}n a 的前n 项和n S ; (2)假设11a =,函数()f x 的图象在点22(,)a b 处的切线在x 轴上的截距为12ln 2-,求数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和n T . 答案:(1)2=3n S n n -.(2)可求得,2n n n a n b ==,所以2n n n a nb =,再用错位相减法可求得答案为nn n T 222+-=. 6 待定系数法例11 数列}3)12{(nn ⋅-的前n 项和=n S .解 设等差数列{}m a 的公差为d ,等比数列{}m b 的公比为(1)q q ≠,得 先用错位相减法求数列{}m m a b ⋅的前n 项和n S :所以有下面的结论成立:假设{},{}m m a b 分别是等差数列、等比数列(其公比1≠q ),且11,a b 均是与n 无关的常数,则数列{}m m a b ⋅的前n 项和b q b an S n n -+=)(,其中,a b 是与n 无关的常数.由此结论就可以用待定系数法快速求解此题: 可设()3n n S an b b =+⋅-(其中,a b 是常数).可得123,32730S S ==+=,所以3()39(2)30a b b a b b +-=⎧⎨+-=⎩,解得33a b =⎧⎨=-⎩,所以33)1(1+⋅-=+n n n S .例12 求和12212+22+32++(1)2+2n n n n S n n --=⋅⋅⋅-⋅⋅.解 得012111111+2+3++22222n n n S n -⎛⎫⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.用待定系数法可求出该等式的右边为1242n n -+-,所以2224n n S n +=--. 七、求导法、积分法例13 (1)求证:)1(111132≠--=++++++x x x x x x x n n; (2)求证:)1()1(1]1)1[(321212≠-+--=++++-x x x n x nx x x n n ;(3)求数列{}(21)3nn -⋅的前n 项和n S(此即例6).解 (1)当0=x 时,显然成立.当0≠x 时,由等比数列的前n 项和公式知,欲证结论也成立.(2)视(1)的结论为两个函数相等,两边求导后即得欲证成立.(3)1(21)3=6(3)3nn n n n --⋅⋅-.由(2)的结论中令3=x ,得数列{}13n n -⋅的前n 项和为413)12(+⋅-n n ;又数列{}3n的前n 项和为2331-+n .所以数列{}(21)3nn -⋅的前n 项和为高考题16 (2008年高考卷第23题)请先阅读:在等式∈-=x x x (1cos 22cos 2R )的两边对*求导,得)1cos 2()2(cos 2'-='x x .由求导法则,得)sin (cos 42)2sin (x x x -⋅=⋅-,化简后得等式x x x cos sin 22sin =.(1)利用上题的想法(或其他方法),试由等式∈++++=+x x C x C x C C x nn n n n n n ()1(2210 R ,整数)2≥n 证明:∑=--=-+nk k k n n x kC x n 211]1)1[(.(2)对于整数3≥n ,求证: (i))1(1=-∑=nk knkkC ; (ii))1(12=-∑=nk k n kC k ;(iii)1121110+-=++=∑n C kn nk kn .答案:(1)在等式两边对x 求导后移项可得欲证. (2) (i)在结论(1)中令1-=x 可证.(ii)由等式两边对x 求导后再求导,又令1-=x ,得0)1()1(22=--∑=-nk k k nCk k ,即0)()1(12=--∑=nk kn kC k k ,再由结论(i)得结论(ii)成立.(iii)在等式两边在[0,1]上对x 积分后可得欲证.。
辽宁省沈阳市第二十一中学13—14学年下学期高三数学课时作业32:数列求和与数列的综合应用时间:45分钟 分值:100分一、选择题(每小题5分,共30分)1.设数列{(-1)n }的前n 项和为S n ,则对任意正整数n ,S n =( ) A.n -n-1]2B.-n -1+12C.-n +12D.-n-12解析:∵数列{(-1)n }是首项与公比均为-1的等比数列, ∴S n =---n-1--=-n-12.答案:D2.数列{a n }的通项公式为a n =1n +1+n,已知它的前n 项和S n =6,则项数n 等于( )A .6B .7C .48D .49解析:将通项公式变形得: a n =1n +1+n=n +1-nn +1+nn +1-n=n +1-n ,则S n =(2-1)+(3-2)+(4-3)+…+(n +1-n )=n +1-1,由S n =6,则有n +1-1=6,∴n =48. 答案:C3.已知数列{a n }中,a 1=1,a 2=2+3,a 3=4+5+6,a 4=7+8+9+10,…,则a 10的值为( ) A .750 B .610 C .510D .505解析:因为前9项共有1+2+3+…+9=45个数,所以a 10=46+47+…+55=505. 答案:D4.若数列{a n }的通项为a n =4n -1,b n =a 1+a 2+…+a nn ,n ∈N *,则数列{b n }的前n 项和是( )A .n 2B .n (n +1)C .n (n +2)D .n (2n +1)解析:a 1+a 2+…+a n=(4×1-1)+(4×2-1)+…+(4n -1) =4(1+2+…+n )-n =2n (n +1)-n =2n 2+n ,∴b n =2n +1,b 1+b 2+…+b n =(2×1+1)+(2×2+1)+…+(2n +1) =n 2+2n =n (n +2). 答案:C5.(2013·威海模拟)数列{a n }满足a 1=32,a n +1=a 2n -a n +1(n ∈N +),则m =1a 1+1a 2+1a 3+…+1a 2 009的整数部分是( )A .3B .2C .1D .0解析:依题意,得a 1=32,a 2=74,a 3=3716>2,a n +1-a n =(a n -1)2>0,数列{a n }是递增数列,∴a 2 010>a 3>2,∴a 2 010-1>1, ∴1<2-1a 2 010-1<2.由a n +1=a 2n -a n+1,得1a n =1a n -1-1a n +1-1, 故1a 1+1a 2+…+1a 2 009 =(1a 1-1-1a 2-1)+(1a 2-1-1a 3-1)+…+(1a 2 009-1-1a 2 010-1) =1a 1-1-1a 2 010-1=2-1a 2 010-1∈(1,2),因此选C. 答案:C6.(2012·上海)设a n =1n sin n π25,S n =a 1+a 2+…+a n .在S 1,S 2,…,S 100中,正数的个数是( )A .25B .50C .75D .100解析:∵a n =1n sin n25π,∴当n ≤24时,a n 均大于0,a 25=0,∴可知S 1,S 2,…,S 25均大于0. 又a 26=126sin 2625π=-126sin π25=-126a 1,∴S 26=2526a 1+a 2+…+a 25>0,而a 27=127sin 2725π=-127sin 225π=-227a 2,∴a 27+a 2>0.同理可得a 28+a 3>0,…,a 49+a 24>0,而a 51到a 74均为正项,a 75=0,a 76到a 99均为负项,且|a 76|<a 51,|a 77|<a 52,…,|a 99|<a 74,a 100=0,故{S n }中前100项均为正数. 答案:D二、填空题(每小题5分,共15分) 7.设S n =12+16+112+…+1nn +,若S n ·S n +1=34,则n 的值为__________.解析:S n =1-12+12-13+13-14+…+1n -1n +1=1-1n +1=nn +1,∴S n ·S n +1=n n +1·n +1n +2=n n +2=34,解得n =6. 答案:68.已知f (x )=4x 4x +2,求f ⎝⎛⎭⎫111+f ⎝⎛⎭⎫211+…+f ⎝⎛⎭⎫1011=__________. 解析:因为f (x )+f (1-x )=4x 4x +2+41-x41x +2=4x 4x +2+44+2·4x =4x 4x+2+22+4x=1. 所以f ⎝⎛⎭⎫111+f ⎝⎛⎭⎫1011=f ⎝⎛⎭⎫211+f ⎝⎛⎭⎫911=…=f ⎝⎛⎭⎫511+f ⎝⎛⎭⎫611=1.∴f ⎝⎛⎭⎫111+f ⎝⎛⎭⎫211+…+f ⎝⎛⎭⎫1011=5. 答案:59.(2012·福建)数列{a n }的通项公式a n =n cos n π2+1,前n 项和为S n ,则S 2 012=__________.解析:∵函数y =cos n π2的周期T =2ππ2=4,∴可用分组求和法:a 1+a 5+…+a 2 009==503;a 2+a 6+…+a 2 010=(-2+1)+(-6+1)+…+(-2 010+1) =-1-5-…-2 009 =-1-2=-503×1 005;a 3+a 7+…+a 2 011==503;a 4+a 8+…+a 2 012=(4+1)+(8+1)+…+(2 012+1)=+2=503×1 009;故S 2 012=503-503×1 005+503+503×1 009 =503×(1-1 005+1+1 009)=3 018. 答案:3 018 三、解答题(共55分)10.(15分)设数列{a n }的前n 项和为S n ,a 1=1,S n =na n -2n (n -1). (1)求数列{a n }的通项公式a n ;(2)设数列⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项和为T n ,求证:15≤T n <14.解:(1)由S n =na n -2n (n -1)得 a n +1=S n +1-S n =(n +1)a n +1-na n -4n , 即a n +1-a n =4.∴数列{a n }是以1为首项,4为公差的等差数列, ∴a n =4n -3.(2)证明:T n =1a 1a 2+1a 2a 3+…+1a n a n +1=11×5+15×9+19×13+…+1n -n +=14⎝⎛⎭⎫1-15+15-19+19-113+…+14n -3-14n +1 =14⎝⎛⎭⎫1-14n +1<14. 又易知T n 单调递增,故T n ≥T 1=15,得15≤T n <14.11.(20分)已知各项均为正数的数列{a n }的前n 项和为S n ,且S n ,a n,1成等差数列. (1)求数列{a n }的通项公式; (2)若a 2n =2-bn ,设C n =b na n,求数列{C n }的前n 项和T n .解:(1)由题意知2a n =S n +1, a n >0, 当n =1时,2a 1=a 1+1,∴a 1=1,当n ≥2时,S n =2a n -1,S n -1=2a n -1-1, 两式相减得a n =2a n -2a n -1(n ≥2), 整理得:a na n -1=2(n ≥2),∴数列{a n }是以1为首项,2为公比的等比数列. a n =a 1·2n -1=1×2n -1=2n -1.(2)a 2n =2-bn =22n -2,∴b n =2-2n ,C n =b n a n =2-2n 2n -1=4-4n 2n ,T n =02+-422+-823+…+8-4n 2n -1+4-4n 2n ①12T n =022+-423+…+8-4n 2n +4-4n 2n +1② ①-②得12T n =-4(122+123+…+12n )-4-4n 2n +1=-4·122-12n -11-12-4-4n2n +1 =-2(1-12n -1)-4-4n 2n +1=n +12n -1-2,∴T n =n +12n -2-4. 12.(20分)已知数列{a n },{b n },其中a 1=12,数列{a n }的前n 项和S n =n 2a n (n ≥1),数列{b n }满足b 1=2,b n +1=2b n .(1)求数列{a n },{b n }的通项公式;(2)是否存在自然数,使得对于任意n ∈N *,n ≥2,有1+1b 1+1b 2+…+1b n -1<m -84恒成立?若存在,求出m 的最小值. 解:(1)因为S n =n 2a n (n ≥1), 当n ≥2时,S n -1=(n -1)2a n -1. 所以a n =S n -S n -1=n 2a n -(n -1)2a n -1. 所以(n +1)a n =(n -1)a n -1, 即a n a n -1=n -1n +1.又a 1=12,所以a n =a n a n -1·a n -1a n -2·a n -2a n -3…a 3a 2·a 2a 1·a 1=n -1n +1·n -2n ·n -3n -1…24·13·12 =1nn +1. 当n =1时,上式成立. 因为b 1=2,b n +1=2b n ,所以{b n }是首项为2,公比为2的等比数列,故b n =2n . (2)由(1)知,b n =2n .则1+1b 1+1b 2+…+1b n -1=1+12+122+…+12n -1=2-12n -1.假设存在自然数,使得对于任意n ∈N *,n ≥2,有1+1b 1+1b 2+…+1b n -1<m -84恒成立,即2-12n -1<m -84恒成立. 由m -84≥2,解得m ≥16.所以存在自然数,使得对于任意n ∈N *,n ≥2,有1+1b 1+1b 2+…+1b n -1<m -84恒成立,此时m 最小值为16.。
第四节 数列求和[备考方向要明了][归纳·知识整合]数列求和的常用方法 1.公式法直接利用等差数列、等比数列的前n 项和公式求和 (1)等差数列的前n 项和公式:S n =n a 1+a n 2=na 1+n n -12d ;(2)等比数列的前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q=a 11-q n 1-q ,q ≠1.2.倒序相加法如果一个数列{a n }的前n 项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法,如等差数列的前n 项和即是用此法推导的.3.错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和就是用此法推导的.4.裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.[探究] 1.应用裂项相消法求和的前提条件是什么?提示:应用裂项相消法求和的前提条件是数列中的每一项均可分裂成一正一负两项,且在求和过程中能够前后抵消.2.利用裂项相消法求和时应注意哪些问题?提示:(1)在把通项裂开后,是否恰好等于相应的两项之差;(2)在正负项抵消后,是否只剩下了第一项和最后一项,或前面剩下两项,后面也剩下两项.5.分组求和法一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后再相加减.6.并项求和法一个数列的前n 项和,可两两结合求解,则称之为并项求和.形如a n =(-1)nf (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050.[自测·牛刀小试]1.11×4+14×7+17×10+…+13n -23n +1等于( ) A.n3n +1B.3n3n +1C .1-1n +1D .3-13n +1解析:选A ∵13n -23n +1=13⎝ ⎛⎭⎪⎫13n -2-13n +1,∴11×4+14×7+17×10+…+13n -23n +1 =13⎣⎢⎡⎝⎛⎭⎪⎫1-14+⎝ ⎛⎭⎪⎫14-17+⎝ ⎛⎭⎪⎫17-110+…+⎦⎥⎤⎝ ⎛⎭⎪⎫13n -2-13n +1=13⎝ ⎛⎭⎪⎫1-13n +1=n 3n +1. 2.已知数列{a n }的通项公式是a n =2n-12n ,其前n 项和S n =32164,则项数n 等于( )A .13B .10C .9D .6解析:选D ∵a n =2n-12n =1-12n ,∴S n =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫1-122+…+⎝ ⎛⎭⎪⎫1-12n =n -⎝ ⎛⎭⎪⎫12+122+ (12)=n -12⎝ ⎛⎭⎪⎫1-12n 1-12=n -⎝ ⎛⎭⎪⎫1-12n =n -1+12. ∴n -1+12n =32164=5164,解得n =6.3.(教材习题改编)(2-3×5-1)+(4-3×5-2)+…+(2n -3×5-n)=________. 解析:(2-3×5-1)+(4-3×5-2)+…+(2n -3×5-n) =(2+4+…+2n )-3(5-1+5-2+…+5-n)=n 2+2n 2-3×5-1⎝ ⎛⎭⎪⎫1-15n 1-15=n (n +1)-34⎝ ⎛⎭⎪⎫1-15n =n 2+n +34·5-n -34.答案:n 2+n +34·5-n -344.若S n =1-2+3-4+…+(-1)n -1·n ,则S 100=________.解析:S 100=1-2+3-4+5-6+…+99-100 =(1-2)+(3-4)+(5-6)+…+(99-100)=-50. 答案:-505.已知数列{a n }的前n 项和为S n 且a n =n ·2n,则S n =________. 解析:∵a n =n ·2n,∴S n =1·21+2·22+3·23+…+n ·2n.① ∴2S n =1·22+2·23+…+(n -1)·2n +n ·2n +1.②①-②得-S n =2+22+23+…+2n -n ·2n +1=21-2n1-2-n ·2n +1=2n +1-2-n ·2n +1=(1-n )2n +1-2.∴S n =2n +1(n -1)+2.答案:(n -1)·2n +1+2[例1] (2012·山东高考)在等差数列{a n }中,a 3+a 4+a 5=84,a 9=73. (1)求数列{a n }的通项公式;(2)对任意m ∈N *,将数列{a n }中落入区间(9m,92m)内的项的个数记为b m ,求数列{b m }的前m 项和S m .[自主解答] (1)因为{a n }是一个等差数列, 所以a 3+a 4+a 5=3a 4=84,a 4=28. 设数列{a n }的公差为d , 则5d =a 9-a 4=73-28=45, 故d =9.由a 4=a 1+3d ,得28=a 1+3×9,即a 1=1.所以a n =a 1+(n -1)d =1+9(n -1)=9n -8(n ∈N *). (2)对m ∈N *,若9m <a n <92m, 则9m+8<9n <92m +8. 因此9m -1+1≤n ≤92m -1.故得b m =92m -1-9m -1.于是S m =b 1+b 2+b 3+…+b m =(9+93+…+92m -1)-(1+9+…+9m -1)=9×1-81m1-81-1-9m1-9=92m +1-10×9m+180.———————————————————分组转化求和的通法数列求和应从通项入手,若无通项,则先求通项,然后通过对通项变形,转化为等差数列或等比数列或可求数列的前n 项和的数列求和.1.已知{a n }是各项均为正数的等比数列,且a 1+a 2=2⎝ ⎛⎭⎪⎫1a 1+1a 2,a 3+a 4+a 5=64⎝ ⎛⎭⎪⎫1a 3+1a 4+1a 5. (1)求{a n }的通项公式;(2)设b n =⎝ ⎛⎭⎪⎫a n +1a n 2,求数列{b n }的前n 项和T n .解:(1)设公比为q ,则a n =a 1qn -1,且q >0,a 1>0.由已知有⎩⎪⎨⎪⎧a 1+a 1q =2⎝ ⎛⎭⎪⎫1a 1+1a 1q ,a 1q 2+a 1q 3+a 1q 4=64⎝ ⎛⎭⎪⎫1a 1q 2+1a 1q 3+1a 1q 4,化简得⎩⎪⎨⎪⎧a 21q =2,a 21q 6=64.又a 1>0,故q =2,a 1=1.所以a n =2n -1.(2)由(1)知,b n =⎝ ⎛⎭⎪⎫a n +1a n 2=a 2n +1a 2n +2=4n -1+14n -1+2.因此T n =(1+4+…+4n -1)+⎝ ⎛⎭⎪⎫1+14+…+14n -1+2n=4n-14-1+1-14n1-14+2n =13(4n -41-n)+2n +1.[例2] 设数列{a n }的前n 项和为S n ,已知a 1=1,S n =na n -n (n -1)(n =1,2,3,…). (1)求证:数列{a n }为等差数列,并写出a n 关于n 的表达式; (2)若数列⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项和为T n ,问满足T n >100209的最小正整数n 是多少?[自主解答] (1)当n ≥2时,a n =S n -S n -1=na n -(n -1)a n -1-2(n -1),得a n -a n -1=2(n =2,3,4,…).所以数列{a n }是以1为首项,2为公差的等差数列. 所以a n =2n -1. (2)T n =1a 1a 2+1a 2a 3+…+1a n -1a n +1a n a n +1=11×3+13×5+…+12n -12n +1=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫11-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1 =12⎝⎛⎭⎪⎫1-12n +1=n 2n +1,由T n =n 2n +1>100209,得n >1009,所以满足T n >100209的最小正整数n 为12. ——————————————————— 用裂项相消法求和应注意的问题利用裂项相消法求和时,应注意抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项,再就是将通项公式裂项后,有时候需要调整前面的系数,使裂开的两项之差与系数相乘后与原项相等.2.等比数列{a n }的各项均为正数,且2a 1+3a 2=1,a 23=9a 2a 6. (1)求数列{a n }的通项公式;(2)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列⎩⎨⎧⎭⎬⎫1b n 的前n 项和.解:(1)设数列{a n }的公比为q . 由a 23=9a 2a 6得a 23=9a 24,所以q 2=19.由条件可知q >0,故q =13.由2a 1+3a 2=1得2a 1+3a 1q =1,所以a 1=13.故数列{a n }的通项公式为a n =13n .(2)b n =log 3a 1+log 3a 2+…+log 3a n =-(1+2+…+n )=-n n +12.故1b n =-2n n +1=-2⎝ ⎛⎭⎪⎫1n -1n +1. 1b 1+1b 2+…+1b n=-2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=-2n n +1. 所以数列⎩⎨⎧⎭⎬⎫1b n 的前n 项和为-2nn +1.[例3] (2012·天津高考)已知{a n }是等差数列,其前n 项和为S n ,{b n }是等比数列,且a 1=b 1=2,a 4+b 4=27,S 4-b 4=10.(1)求数列{a n }与{b n }的通项公式;(2)记T n =a 1b 1+a 2b 2+…+a n b n ,n ∈N *,证明T n -8=a n -1b n +1(n ∈N *,n ≥2). [自主解答] (1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q .由a 1=b 1=2,得a 4=2+3d ,b 4=2q 3,S 4=8+6d .由条件,得方程组⎩⎪⎨⎪⎧2+3d +2q 3=27,8+6d -2q 3=10,解得⎩⎪⎨⎪⎧d =3,q =2.所以a n =3n -1,b n =2n ,n ∈N *. (2)证明:由(1)得T n =2×2+5×22+8×23+…+(3n -1)×2n ,①2T n =2×22+5×23+…+(3n -4)×2n +(3n -1)×2n +1.②由①-②,得-T n =2×2+3×22+3×23+…+3×2n -(3n -1)×2n +1=6×1-2n1-2-(3n -1)×2n +1-2=-(3n -4)×2n +1-8,即T n -8=(3n -4)×2n +1.而当n ≥2时,a n -1b n +1=(3n -4)×2n +1,所以T n -8=a n -1b n +1,n ∈N *,n ≥2.若本例(2)中T n =a n b 1+a n -1b 2+…+a 1b n ,n ∈N *,求证:T n +12=-2a n +10b n (n ∈N *). 证明:由(1)得T n =2a n +22a n -1+23a n -2+…+2n a 1,①2T n =22a n +23a n -1+…+2n a 2+2n +1a 1.②②-①,得T n =-2(3n -1)+3×22+3×23+…+3×2n +2n +2=121-2n -11-2+2n +2-6n +2=10×2n-6n -10.而-2a n +10b n -12=-2(3n -1)+10×2n -12=10×2n-6n -10,故T n +12=-2a n +10b n ,n ∈N *.——————————————————— 用错位相减法求和应注意的问题(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n -qS n ”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.3.已知等差数列{a n }的前3项和为6,前8项和为-4. (1)求数列{a n }的通项公式; (2)设b n =(4-a n )qn -1(q ≠0,n ∈N *),求数列{b n }的前n 项和S n .解:(1)设{a n }的公差为d .由已知得⎩⎪⎨⎪⎧3a 1+3d =6,8a 1+28d =-4,解得a 1=3,d =-1.故a n =3+(n -1)·(-1)=4-n . (2)由(1)得,b n =n ·qn -1,于是S n =1·q 0+2·q 1+3·q 2+…+n ·q n -1.若q ≠1,将上式两边同乘以q 有qS n =1·q 1+2·q 2+…+(n -1)·q n -1+n ·q n.两式相减得到(q -1)S n =nq n-1-q 1-q 2-…-qn -1=nq n-q n -1q -1=nq n +1-n +1q n +1q -1.于是,S n =nq n +1-n +1q n +1q -12. 若q =1,则S n =1+2+3+…+n =n n +12.所以S n=⎩⎪⎨⎪⎧n n +12q =1,nq n +1-n +1q n +1q -12q ≠1.1种思想——转化与化归思想数列求和把数列通过分组、变换通项、变换次序、乘以常数等方法,把数列的求和转化为能使用公式求解或者能通过基本运算求解的形式,达到求和的目的.2个注意——“裂项相消法求和”与“错位相减法求和”应注意的问题(1)使用裂项相消法求和时,要注意正负项相消时,消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点.(2)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.4个公式——常见的拆项公式 (1)1n n +k =1k ⎝ ⎛⎭⎪⎫1n -1n +k ;(2)12n -12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1;(3)1n n +1n +2=12⎣⎢⎡⎦⎥⎤1n n +1-1n +1n +2;(4)1n +n +k =1k(n +k -n ).答题模板——利用错位相减法解决数列求和[典例] (2012·江西高考)(本小题满分12分)已知数列{a n }的前n 项和S n =-12n 2+kn (其中k ∈N +),且S n 的最大值为8.(1)确定常数k ,求a n ;(2)求数列⎩⎨⎧⎭⎬⎫9-2a n 2n的前n 项和T n .[快速规范审题]第(1)问1.审条件,挖解题信息观察条件:S n =-12n 2+kn 及S n 的最大值为8――――――――――――→S n 是关于n 的二次函数当n =k 时,S n 取得最大值.2.审结论,明确解题方向观察所求结论:求k 的值及a n ――――――――――――→应建立关于k 的方程S n 的最大值为8,即S k =8,k =4. ――――――――――――→可求S n 的表达式 S n =-12n 2+4n .3.建联系,找解题突破口根据已知条件,可利用a n 与S n 的关系求通项公式:求通项公式――――――――――――→注意公式的使用条件a n =S n -S n -1=92-n (n ≥2),a 1=S 1=72――――――――――――→验证n =1时,a n 是否成立a n =92-n .第(2)问1.审条件,挖解题信息观察条件:a n =92-n 及数列⎩⎨⎧⎭⎬⎫9-2a n 2n 922n n a -⎧⎫⎨⎬⎩⎭−−−−−−→可化简数列9-2a n 2n=n 2n -1. 2.审结论,明确解题方向观察所求结论:求数列⎩⎨⎧⎭⎬⎫9-2a n 2n 的前n 项和T n 2n−−−−−−→分析通项的特点可利用错位相减法求和.3.建联系,找解题突破口条件具备,代入求和:T n =1+22+322+…+n -12n -2+n 2n -1①――――――――→等式两边同乘以2 2T n =2+2+32+…+n -12n -3+n 2n -2②――――――→错位相减②-①:2T n -T n =2+1+12+…+12n -2-n 2n -1=4-12n -2-n 2n -1=4-n +22n -1.[准确规范答题](1)当n =k ∈N +时,S n =-12n 2+kn 取得最大值,即8=S k =-12k 2+k 2=12k 2,⇨(2分)故k 2=16,因此k =4,⇨(3分)从而a n =S n -S n -1=92-n (n ≥2).⇨(4分)又a 1=S 1=72,⇨(5分)所以a n =92-n .⇨(6分)(2)因为9-2a n 2n =n2n -1,所以T n =1+22+322+…+n -12n -2+n2n -1,①⇨(7分)所以2T n =2+2+32+…+n -12n -3+n2n -2,②⇨(8分)②-①:2T n -T n =2+1+12+…+12n -2-n 2n -1=4-12n -2-n 2n -1=4-n +22n -1.⇨(11分)所以T n =4-n +22n -1.⇨(12分)[答题模板速成]用错位相减法解决数列求和的步骤:⇒⇒⇒的,则可用此法求一、选择题(本大题共6小题,每小题5分,共30分)1.已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列⎩⎨⎧⎭⎬⎫1a n 的前5项和为( )A.158或5 B.3116或5C.3116D.158解析:选C 设数列{a n }的公比为q .由题意可知q ≠1,且91-q 31-q =1-q61-q,解得q =2,所以数列⎩⎨⎧⎭⎬⎫1a n 是以1为首项,12为公比的等比数列,由求和公式可得S 5=3116.2.数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n 的值等于( )A .n 2+1-12nB .2n 2-n +1-12nC .n 2+1-12n -1D .n 2-n +1-12n解析:选A 该数列的通项公式为a n =(2n -1)+12n ,则S n =[1+3+5+…+(2n -1)]+⎝ ⎛⎭⎪⎫12+122+…+12n =n 2+1-12n .3.设S n 为等差数列{a n }的前n 项和,若S 8=30,S 4=7,则a 4的值等于( ) A.14 B.94 C.134D.174解析:选C 由题意可得⎩⎪⎨⎪⎧8a 1+8×8-1d2=30,4a 1+4×4-1d2=7,解得⎩⎪⎨⎪⎧a 1=14,d =1.故a 4=a 1+3=134.4.12+12+38+…+n2n 等于( ) A.2n-n -12nB.2n +1-n -22nC.2n -n +12nD.2n +1-n +22n解析:选B 令S n =12+222+323+…+n2n ,①则12 S n =122+223+…+n -12n +n2n +1,② ①-②得:12S n =12+122+123+…+12n -n 2n +1 =12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12-n 2n +1,故S n =2n +1-n -22n. 5.已知数列{a n }的通项公式为a n =n 2cos n π(n ∈N *),S n 为它的前n 项和,则S 2 0122 013等于( )A .1 005B .1 006C .2 011D .2 012解析:选B 注意到cos n π=(-1)n(n ∈N *), 故a n =(-1)n n 2.因此有S 2 012=(-12+22)+(-32+42)+…+(-20112+20122)=1+2+3+…+2 011+2 012=2 012×1+2 0122=1 006×2 013,所以S 2 0122 013=1 006.6.(2013·锦州模拟)设函数f (x )=x m+ax 的导函数f ′(x )=2x +1,则数列⎩⎨⎧⎭⎬⎫1f n (n ∈N *)的前n 项和是( )A.nn +1B.n +2n +1 C.nn -1D.n +1n解析:选A ∵f ′(x )=mxm -1+a ,∴m =2,a =1.∴f (x )=x 2+x ,f (n )=n 2+n . ∴1f n =1n 2+n =1n n +1=1n -1n +1, 令S n =1f 1+1f 2+1f 3+…+1f n -1+1f n =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1-1n +⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=n n +1.二、填空题(本大题共3小题,每小题5分,共15分)7.(2012·江西高考)等比数列{a n }的前n 项和为S n ,公比不为1.若a 1=1,且对任意的n ∈N *都有a n +2+a n +1-2a n =0,则S 5=________.解析:由a n +2+a n +1-2a n =0,得a n q 2+a n q -2a n =0,显然a n ≠0,所以q 2+q -2=0.又q ≠1,解得q =-2.又a 1=1,所以S 5=1×[1--25]1--2=11.答案:118.对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=2,{a n }的“差数列”的通项公式为2n,则数列{a n }的前n 项和S n =________.解析:∵a n +1-a n =2n ,∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =2n -1+2n -2+…+22+2+2=2-2n1-2+2=2n -2+2=2n.∴S n =2-2n +11-2=2n +1-2.答案:2n +1-2.9.数列{a n }的通项a n =n ⎝⎛⎭⎪⎫cos 2n π2-sin2n π2(n ∈N *),其前n 项和为S n ,则S 2 013=________.解析:∵a n =n ⎝⎛⎭⎪⎫cos2n π2-sin2n π2=n cos n π, ∴a 1=-1,a 2=2,a 3=-3,a 4=4,…,∴S 2 013=(-1)+2+(-3)+4+(-5)+6+…+(-2 009)+2 010+(-2 011)+2 012+(-2 013)=[(-1)+2]+[(-3)+4]+[(-5)+6]+…+[(-2 009)+2 010]+[(-2 011)+2 012]+(-2013)=1+1+…+1+1-2 013=1 006-2 013=-1 007. 答案:-1 007三、解答题(本大题共3小题,每小题12分,共36分)10.(2012·湖北高考)已知等差数列{a n }前三项的和为-3,前三项的积为8. (1)求等差数列{a n }的通项公式;(2)若a 2,a 3,a 1成等比数列,求数列{|a n |}的前n 项和. 解:(1)设等差数列{a n }的公差为d ,则a 2=a 1+d ,a 3=a 1+2d ,由题意得⎩⎪⎨⎪⎧3a 1+3d =-3,a 1a 1+d a 1+2d =8.解得⎩⎪⎨⎪⎧a 1=2,d =-3,或⎩⎪⎨⎪⎧a 1=-4,d =3.所以由等差数列通项公式可得a n =2-3(n -1)=-3n +5或a n =-4+3(n -1)=3n -7.故a n =-3n +5或a n =3n -7.(2)当a n =-3n +5时,a 2,a 3,a 1分别为-1,-4,2,不成等比数列; 当a n =3n -7时,a 2,a 3,a 1分别为-1,2,-4,成等比数列,满足条件.故|a n |=|3n -7|=⎩⎪⎨⎪⎧-3n +7,n =1,2,3n -7,n ≥3.记数列{|a n |}的前n 项和为S n . 当n =1时,S 1=|a 1|=4; 当n =2时,S 2=|a 1|+|a 2|=5;当n ≥3时,S n =S 2+|a 3|+|a 4|+…+|a n |=5+(3×3-7)+(3×4-7)+…+(3n -7)=5+n -2[2+3n -7]2=32n 2-112n +10.当n =2时,满足此式.综上可知,S n =⎩⎪⎨⎪⎧4,n =1,32n 2-112n +10,n >1.11.(2013·合肥模拟)数列{a n }的前n 项和记为S n ,a 1=t ,点(S n ,a n +1)在直线y =3x +1上,n ∈N *.(1)当实数t 为何值时,数列{a n }是等比数列.(2)在(1)的结论下,设b n =log 4a n +1,c n =a n +b n ,T n 是数列{c n }的前n 项和,求T n . 解:(1)∵点(S n ,a n +1)在直线y =3x +1上, ∴a n +1=3S n +1,a n =3S n -1+1(n >1,且n ∈N *). ∴a n +1-a n =3(S n -S n -1)=3a n , 即a n +1=4a n ,n >1.又a 2=3S 1+1=3a 1+1=3t +1,∴当t =1时,a 2=4a 1,数列{a n }是等比数列. (2)在(1)的结论下,a n +1=4a n ,a n +1=4n,b n =log 4a n +1=n .c n =a n +b n =4n -1+n ,T n =c 1+c 2+…+c n =(40+1)+(41+2)+…+(4n -1+n )=(1+4+42+…+4n -1)+(1+2+3+…+n )=4n-13+1+n n2.12.已知数列{a n }的前n 项和为S n ,且满足S n +n =2a n (n ∈N *). (1)证明:数列{a n +1}为等比数列,并求数列{a n }的通项公式;(2)若b n =(2n +1)a n +2n +1,数列{b n }的前n 项和为T n .求满足不等式T n -22n -1>2 013的n的最小值.解:(1)证明:因为S n +n =2a n ,即S n =2a n -n , 所以S n -1=2a n -1-(n -1)(n ≥2,n ∈N *). 两式相减化简,得a n =2a n -1+1. 所以a n +1=2(a n -1+1)(n ≥2,n ∈N *). 所以数列{a n +1}为等比数列. 因为S n +n =2a n ,令n =1,得a 1=1.a 1+1=2,所以a n +1=2n ,即a n =2n -1.(2)因为b n =(2n +1)a n +2n +1, 所以b n =(2n +1)·2n.所以T n =3×2+5×22+7×23+…+(2n -1)·2n -1+(2n +1)·2n,①2T n =3×22+5×23+…+(2n -1)·2n+(2n +1)·2n +1,②①-②,得-T n =3×2+2(22+23+ (2))-(2n +1)·2n +1=6+2×22-2n +11-2-(2n +1)·2n +1=-2+2n +2-(2n +1)·2n +1=-2-(2n -1)·2n +1.所以T n =2+(2n -1)·2n +1.若T n -22n -1>2 013,则2+2n -1·2n +1-22n -1>2 013, 即2n +1>2 013.由于210=1 024,211=2 048,所以n +1≥11,即n ≥10. 所以满足不等式T n -22n -1>2 013的n 的最小值是10.1.设f (x )=4x 4x +2,若S =f ⎝ ⎛⎭⎪⎫12 013+f ⎝ ⎛⎭⎪⎫22 013+…+f ⎝ ⎛⎭⎪⎫2 0122 013,则S =________.解析:∵f (x )=4x 4x +2,∴f (1-x )=41-x41-x +2=22+4x ,∴f (x )+f (1-x )=4x4x +2+22+4x =1.S =f ⎝ ⎛⎭⎪⎫12 013+f ⎝ ⎛⎭⎪⎫22 013+…+f ⎝ ⎛⎭⎪⎫2 0122 013,①S =f ⎝⎛⎭⎪⎫2 0122 013+f ⎝ ⎛⎭⎪⎫2 0112 013+…+f ⎝ ⎛⎭⎪⎫12 013,②①+②得2S =⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫12 013+f ⎝ ⎛⎭⎪⎫2 0122 013+⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫22 013+f ⎝ ⎛⎭⎪⎫2 0112 013+…+⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫2 0122 013+f ⎝ ⎛⎭⎪⎫12 013=2 012, ∴S =2 0122=1 006.答案:1 0062.求和S n =32+94+258+6516+…+n ·2n+12n. 解:S n =32+94+258+8516+…+n ·2n+12n=⎝ ⎛⎭⎪⎫1+12+⎝ ⎛⎭⎪⎫2+14+⎝ ⎛⎭⎪⎫3+18+⎝ ⎛⎭⎪⎫4+116+…+⎝ ⎛⎭⎪⎫n +12n =(1+2+3+…+n )+⎝ ⎛⎭⎪⎫12+14+18+116+ (12)=n n +12+12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12 =n n +12-⎝ ⎛⎭⎪⎫12n+1. 3.在数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足S 2n =a n ⎝ ⎛⎭⎪⎫S n -12.(1)求S n 的表达式;(2)设b n =S n2n +1,求{b n }的前n 项和T n .解:(1)∵S 2n =a n ⎝ ⎛⎭⎪⎫S n -12,a n =S n -S n -1(n ≥2),∴S 2n =(S n -S n -1)⎝ ⎛⎭⎪⎫S n -12,即2S n -1S n =S n -1-S n ,① 由题意S n -1·S n ≠0,①式两边同除以S n -1·S n ,得1S n -1S n -1=2,∴数列⎩⎨⎧⎭⎬⎫1S n 是首项为1,公差为2的等差数列.∴1S n =1+2(n -1)=2n -1.∴S n =12n -1. (2)又b n =S n 2n +1=12n -12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1,故T n =b 1+b 2+…+b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1 =12⎝⎛⎭⎪⎫1-12n +1=n 2n +1. 4.设数列{a n }满足a 1+3a 2+32a 3+…+3n -1a n =n3,n ∈N *.(1)求数列{a n }的通项;(2)设b n =n a n,求数列{b n }的前n 项和S n . 解:(1)∵a 1+3a 2+32a 3+…+3n -1a n =n3,①∴当n ≥2时,a 1+3a 2+32a 3+…+3n -2a n -1=n -13,②①-②得3n -1a n =13,∴a n =13n .在①中,令n =1,得a 1=13,适合a n =13n ,∴a n =13n .(2)∵b n =na n,∴b n =n ·3n.∴S n =3+2×32+3×33+…+n ·3n,③ ∴3S n =32+2×33+3×34+…+n ·3n +1.④④-③得2S n =n ·3n +1-(3+32+33+ (3)),即2S n =n ·3n +1-31-3n1-3,∴S n =2n -13n +14+34.。
课时规范练31 数列求和基础巩固组1.(2019广东广州调研)数列112,314,518,7116,…,(2n-1)+12n ,…的前n 项和S n 的值等于( )A.n 2+1-12nB.2n 2-n+1-12nC.n 2+1-12n -1D.n 2-n+1-12n2.(2019广东深圳调研)已知函数f (n )={n 2,n 为奇数,-n 2,n 为偶数,且a n =f (n )+f (n+1),则a 1+a 2+a 3+…+a 100等于( )A.0B.100C.-100D.10 2003.(2019河南开封调研)已知数列{a n }满足a 1=1,a n+1·a n =2n (n ∈N *),则S 2 018等于( )A.22 018-1 B.3×21 009-3C.3×21 009-1 D.3×21 008-24.(2017全国2,理15)等差数列{a n }的前n 项和为S n ,a 3=3,S 4=10,则∑n =1n1S k= .5.已知数列{a n }的前n 项和为S n ,且满足S n =2a n -4(n ∈N *),则a n = ;数列{log 2a n }的前n 项和为 .6.(2019山东淄博一模,17)已知在等比数列{a n }中,a 1=2,且a 1,a 2,a 3-2成等差数列.(1)求数列{a n }的通项公式;(2)若数列{b n }满足:b n =1n n+2log 2a n -1,求数列{b n }的前n 项和S n .7.(2019山东实验等四校联考,17)已知数列{a n}的前n项和S n满足√n n=√n n-1+1(n≥2,n∈N),且a1=1.(1)求数列{a n}的通项公式;(2)记b n=1n n·n n+1,T n为数列{b n}的前n项和,求使T n≥2n成立的n的最小值.综合提升组8.(2019广东珠海一中等六校联考)已知数列{a n}满足a1=1,且对于任意的n∈N*都有a n+1=a n+a1+n,则1 n1+1n2+…+1n2017等于()A.20162017B.40322017C.20172018D.403420189.(多选)已知函数f(x)=12(x2+a)的图象在点P n(n,f(n))(n∈N*)处的切线l n的斜率为k n,直线l n交x 轴,y轴分别于点A n(x n,0),B n(0,y n),且y1=-1.以下结论中,正确的结论有()A.a=-1B.记函数g(n)=x n(n∈N*),则函数g(n)的单调性是先减后增,且最小值为1C.当n∈N*时,y n+k n+12<ln(1+k n)D.当n∈N*时,记数列{√|n n n }的前n项和为S n,则S n<√2(2n-1)n10.(2019衡水联考)已知数列{a n}与{b n}的前n项和分别为S n,T n,且a n>0,6S n=n n2+3a n,n∈N*,b n=2n n(2n n-1)(2n n+1-1),若∀n∈N*,k>T n恒成立,则k的最小值是.11.(2019山东淄博实验中学期末,17)已知等差数列{a n}的公差d>0,其前n项和为S n,且S5=20,a3,a5,a8成等比数列.(1)求数列{a n}的通项公式;(2)令b n=1n n·n n+1+n,求数列{b n}的前n项和T n.12.(2019贵州贵阳一模)已知数列{a n}的前n项和是S n,且S n+12a n=1(n∈N*).(1)求数列{a n}的通项公式;(2)设b n =lo g 13(1-S n+1)(n ∈N *),令T n =1n 1n 2+1n 2n3+…+1n n n n +1,求T n .创新应用组13.(2019河南重点学校月考)已知数列{a n }中,a 1=1,a n-1-a n =2a n a n-1(n ≥2).(1)求数列{a n }的通项公式;(2)设b n =nn 2n +1,数列{b n }的前n 项和为S n ,证明:对任意的n ∈N *,都有13≤S n <12.14.(2019河南郑州二模,17)已知数列{a n}中,a1=1,a n>0,前n项和为S n,若a n=√n n+√n n-1(n∈N*,且n≥2).(1)求数列{a n}的通项公式;(2)记c n=a n·2n n,求数列{c n}的前n项和T n.15.(2019四川百校模拟冲刺改编)定义在[0,+∞)上的函数f(x)满足:当0≤x<2时,f(x)=2x-x2;当x≥2时,f(x)=3f(x-2).记函数f(x)的极大值点从小到大依次记为a1,a2,…,a n,…,并记相应的极大值为b1,b2,…,b n,….(1)求数列{a n},{b n}的通项公式;(2)设S=a1b1+a2b2+…+a20b20,求S的值(不必求出具体的数值).参考答案课时规范练31数列求和1.A该数列的通项公式为a n=(2n-1)+12n ,则S n=[1+3+5+…+(2n-1)]+12+122+…+12n=n2+1-12n.2.B由题意,得a1+a2+a3+…+a100=12-22-22+32+32-42-42+52+…+992-1002-1002+1012=-(1+2)+(3+2)-(4+3)+…-(99+100)+(101+100)=-(1+2+…+99+100)+(2+3+…+100+101)=-50×101+50×103=100.故选B.3.B a1=1,a2=2n1=2,又n n +2·n n +1n n +1·n n=2n +12n=2,∴n n +2n n=2. ∴a 1,a 3,a 5,…成等比数列;a 2,a 4,a 6,…成等比数列,∴S 2018=a 1+a 2+a 3+a 4+a 5+a 6+…+a 2017+a 2018=(a 1+a 3+a 5+…+a 2017)+(a 2+a 4+a 6+…+a 2018)=1-210091-2+2(1-21009)1-2=3·21009-3.故选B .4.2nn +1设等差数列的首项为a 1,公差为d ,由题意可知{n 1+2n =3,4n 1+4×32n =10,解得{n 1=1,n =1.所以S n =na 1+n (n -1)2d=n (1+n )2.所以1n n=2n (n +1)=2(1n -1n +1).所以∑n =1n1Sk=2(1-12)+(12-13)+…+(1n -1n +1)=2(1-1n +1)=2nn +1.5.2n+1n (n +3)2∵S n =2a n -4(n ∈N *),∴n=1时,a 1=S 1=2a 1-4,解得a 1=4,n ≥2时,a n =S n -S n-1=2a n -2a n-1,整理,得a n =2a n-1,∴{a n }是首项为4,公比为2的等比数列,∴a n =4×2n-1=2n+1,log 2a n =n+1,∴数列{log 2a n }的前n 项和为2+3+4+5+…+(n+1)=n (n +3)2.6.解(1)设等比数列{a n }的公比为q ,∵a 1,a 2,a 3-2成等差数列,∴2a 2=a 1+(a 3-2)=2+(a 3-2)=a 3, ∴q=n3n 2=2,∴a n =a 1q n-1=2n (n ∈N *).(2)由(1)及b n =1n n+2log 2a n -1,可知(12)n +2log 22n -1=(12)n+2n-1,∴S n =(12+1)+(12)2+3+[(12)3+5]+…+(12)n+(2n-1)=12+(12)2+(12)3+…+(12)n+[1+3+5+…+(2n-1)]=12[1-(12)n ]1-12+n ·[1+(2n -1)]2=n 2-(12)n+1(n ∈N *).7.解(1)由已知√n n =√n n -1+1,得√n n −√n n -1=1,所以数列{√n n }为等差数列,且√n 1=1.∴√n n =n ,即S n =n 2,当n ≥2时,a n =S n -S n-1=n 2-(n-1)2=2n-1,又a 1=1也满足上式,∴a n =2n-1.(2)由(1)知,b n =1(2n -1)(2n +1)=1212n -1−12n +1, ∴T n =121-13+13−15+…+12n -1−12n +1=121-12n +1=n2n +1,由T n ≥2n 有n 2≥4n+2,有(n-2)2≥6,所以n ≥5,∴n 的最小值为5.8.D 由题意可得a n+1-a n =n+1,则a 1=1,a 2-a 1=2,a 3-a 2=3,…,a n -a n-1=n ,以上各式相加可得a n =n (n +1)2,则1n n=2(1n -1n +1),1n 1+1n 2+…+1n2017=2×(1-12)+(12-13)+…+12017−12018=40342018.9.ACD 由f (x )=12(x 2+a ),得f'(x )=x ,则f'(n )=n ,即k n =n ,∴曲线在点P n (n ,f (n ))处的切线l n 的切线方程为y-12(n 2+a )=n (x-n ),直线l n 与y 轴交于点B n (0,y n ),则y n =12(n 2+a )-n 2且y 1=-1,解得a=-1,故A 正确;直线l n 与x 轴交于A n (x n ,0),∴0-12(n 2+a )=n (x n -n ).整理得g (n )=x n =n 2+12n,则x'n =12−12n2,令x'n =12−12n 2=0,解得n=1(负值舍去).当n>1时,x'n >0,∴函数g (n )为增函数,当n=1时,函数取最小值,且最小值为1.∴函数g (n )的单调性是增函数,且最小值为1,故B 不正确;在l n 中,令x=0,得y n =-n 2+12(n 2-1)=-12(n 2+1),∴y n +k n +12=-12n 2+n ,当n=1时,y 1+k 1+12=12=ln √e <ln2=ln(1+1)=ln(1+k 1),当n ≥2时,y n +k n +12=-12n 2+n ≤0,而ln(1+k n )=ln(1+n )>ln1=0,故C 正确;∵√|n n n=√2√<√2n 2,∴S n <√2112+122+132+…+1n 2.当n>1时,1n 2<1n (n -1)=1n -1−1n ,∴S n <√21+(1-12)+12−13+…+(1n -1-1n )=√22-1n =√2(2n -1)n,故D 正确.故选ACD .10.149当n=1时,6a 1=n 12+3a 1,解得a 1=3或a 1=0.由a n >0,得a 1=3.由6S n =n n 2+3a n ,得6S n+1=n n +12+3a n+1.两式相减得6a n+1=n n +12−n n 2+3a n+1-3a n .所以(a n+1+a n )(a n+1-a n -3)=0.因为a n >0,所以a n+1+a n >0,a n+1-a n =3.即数列{a n }是以3为首项,3为公差的等差数列,所以a n =3+3(n-1)=3n.所以b n =2n n(2n n-1)(2n n +1-1)=8n(8n-1)(8n +1-1)=1718n-1−18n +1-1.所以T n =1718-1−182-1+182-1−183-1+…+18n -1−18n +1-1=1717−18n +1-1<149.要使∀n ∈N *,k>T n 恒成立,只需k ≥149.11.解(1)因为S 5=5(n 1+n 5)2=20,即a 1+a 5=8,a 3=4,即a 1+2d=4. ①因为a 3,a 5,a 8为等比数列,即n 52=a 3a 8.所以(a 1+4d )2=(a 1+2d )(a 1+7d ),化简得a 1=2d.②联立①和②得a 1=2,d=1,所以a n =n+1.(2)由(1)及b n =1n n ·n n +1+n ,可知b n =1nn ·n n +1+n=1(n +1)(n +2)+n=(1n +1-1n +2)+n ,所以T n =[(12-13)+1]+13−14+2+14−15+3+…+1n +1−1n +2+n =(12-13)+(13-14)+(14-15)+…+1n +1−1n +2+(1+2+3+…+n )=(12-1n +2)+n (n +1)2=n 2(n +2)+n (n +1)2.12.解(1)当n=1时,a 1=S 1,由S 1+12a 1=1,得a 1=23.当n ≥2时,S n =1-12a n ,S n-1=1-12a n-1,则S n -S n-1=12(a n-1-a n ),即a n =12(a n-1-a n ),所以a n =13a n-1(n ≥2).故数列{a n }是以23为首项,13为公比的等比数列.故a n =23·(13)n -1=2·(13)n(n ∈N *).(2)因为1-S n =12a n =(13)n.所以b n =lo g 13(1-S n+1)=lo g 13(13)n +1=n+1.因为1nn n n +1=1(n +1)(n +2)=1n +1−1n +2,所以T n =1n1n 2+1n2n3+…+1n n n n +1=12−13+13−14+…+1n +1−1n +2=12−1n +2=n2(n +2). 13.(1)解由a n-1-a n =2a n a n-1,得nn -1-n nn nnn -1=2,即1n n−1nn -1=2.又1n 1=1,所以数列{1n n }是以1为首项,2为公差的等差数列.所以1n n=1+2(n-1)=2n-1,所以a n =12n -1.(2)证明因为b n =n n 2n +1,所以b n =1(2n -1)(2n +1)=1212n -1−12n +1. 所以S n =12(1-13)+13−15+15−17+…+12n -1−12n +1=12(1-12n +1)=n2n +1.令f (x )=n2n +1=12+1n(x ≥1),易证f (x )单调递增,所以f (x )≥f (1)=13.又f (x )=n 2n +1=12+1n(x ≥1),由1n>0,2+1n>2,所以f (x )=n 2n +1=12+1n<12.所以13≤f (x )<12.即对任意的n ∈N *,都有13≤S n <12.14.解(1)在数列{a n }中,a n =S n -S n-1,又有a n =√n n +√n n -1(n ∈N *,且n ≥2),所以a n =S n -S n-1=(√n n +√n n -1)(√n n −√n n -1)=a n (√n n −√n n -1),所以√n n −√n n -1=1,所以数列{√n n }是以√n 1=√n 1=1为首项,公差为1的等差数列,所以√n n =1+(n-1)=n ,即S n =n 2.当n=1时,a 1=S 1=1,当n ≥2时,a n =S n -S n-1=n 2-(n-1)2=2n-1,a 1=2×1-1=1也满足上式,所以{a n }的通项公式为a n =2n-1.(2)由(1)知c n =a n ·2n n =(2n-1)·22n-1,∴T n =21+3×23+5×25+…+(2n-3)·22n-3+(2n-1)22n-1,①∴4T n =23+3×25+5×27+…+(2n-3)·22n-1+(2n-1)22n+1. ②①-②得-3T n =21+2×23+2×25+2×27+…+2×22n-1-(2n-1)22n+1=5-6n 3×22n+1-103,即T n =6n -59×22n+1+109.15.解(1)由题意当0≤x<2时,f (x )=2x-x 2=-(x-1)2+1,极大值点为1,极大值为1,当x ≥2时,f (x )=3f (x-2).则极大值点形成首项为1公差为2的等差数列,极大值形成首项为1公比为3的等比数列,故a n =2n-1,b n =3n-1,故a n b n =(2n-1)3n-1.(2)由S=a 1b 1+a 2b 2+…+a 20b 20=1×1+3×31+5×32+…+39×319,则3S=1×31+3×32+…+39×320,两式相减得-2S=1+2(31+32+…+319)-320=1+2×3(1-319)1-3-39×320=-2-38×320,∴S=19×320+1.。
课时作业(三十一) 数列求和A 级1.设{a n }是公比为q 的等比数列,S n 是其前n 项和,若{S n }是等差数列,则q 为( ) A .-1 B .1 C .±1D .02.已知数列{a n }:12,13+23,14+24+34,…,110+210+310+…+910,…,若b n =1a n a n +1,那么数列{b n }的前n 项和S n 为( )A.nn +1 B .4n n +1 C .3n n +1D .5n n +13.数列a 1+2,…,a k +2k ,…,a 10+20共有十项,且其和为240,则a 1+…+a k +…+a 10的值为( )A .31B .120C .130D .1854.已知函数f (n )=⎩⎪⎨⎪⎧n 2(当n 为奇数时),-n 2(当n 为偶数时),且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100等于( )A .0B .100C .-100D . 10 2005.等差数列{a n }的首项为a 1,公差为d ,前n 项和S n .则“d >|a 1|”是“S n 的最小值为S 1,且S n 无最大值”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不是充分条件也不是必要条件6.在等差数列{a n }中,S n 表示前n 项和,a 2+a 8=18-a 5,则S 9=________. 7.数列32,94,258,6516,…的前n 项和S n 为________.8.已知{a n }是等比数列,a 2=2,a 5=14,则S n =a 1+a 2+…+a n 的取值范围是________.9.对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=2,{a n }的“差数列”的通项为2n ,则数列{a n }的前n 项和S n =________.10.设数列{a n }满足a 1=2,a n +1-a n =3·22n -1.(1)求数列{a n }的通项公式;(2)令b n =na n ,求数列{b n }的前n 项和S n .11.若数列{a n }满足:a 1=23,a 2=2,3(a n +1-2a n +a n -1)=2.(1)证明数列{a n +1-a n }是等差数列;(2)求使1a 1+1a 2+1a 3+…+1a n >52成立的最小的正整数n .B 级1.(2012·福建卷)数列{a n }的通项公式a n =n cos n π2,其前n 项和为S n ,则S 2 012等于( ) A .1 006 B .2 012 C .503D .02.设数列{a n }是以2为首项,1为公差的等差数列,{b n }是以1为首项,2为公比的等比数列,则ab 1+ab 2+…+ab 10=________.3.在等比数列{a n }中,a n >0(n ∈N *),公比q ∈(0,1),且a 3a 5+2a 4a 6+a 3a 9=100,又4是a 4与a 6的等比中项.(1)求数列{a n }的通项公式;(2)设b n =log 2a n ,求数列{|b n |}的前n 项和S n .详解答案课时作业(三十一)A 级1.B 据题意可知,2S 2=S 1+S 3,故2(a 1+a 1q )=a 1+(a 1+a 1q +a 1q 2),即a 1q =a 1q 2,∵a 1≠0,q ≠0,∴q =1.故选B.2.B a n =1+2+3+…+n n +1=n2,∴b n =1a n a n +1=4n (n +1)=4⎝⎛⎭⎫1n -1n +1,∴S n =4⎣⎡⎦⎤⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1n +1 =4⎝⎛⎭⎫1-1n +1=4nn +1.3.C a 1+…+a k +…+a 10=240-(2+…+2k +…+20) =240-(2+20)×102=240-110=130.4.B 由题意,a 1+a 2+a 3+…+a 100=12-22-22+32+32-42-42+52+…+992-1002-1002+1012=-(1+2)+(3+2)+…-(99+100)+(101+100)=-(1+2+…+99+100)+(2+3+…+100+101)=-1+101=100.故选B.5.A 因为等差数列{a n }中,S n =na 1+n 2(n -1)d =d2n 2+⎝⎛⎭⎫a 1-d 2n ,若S n 的最小值为S 1,且S n 无最大值时,必满足d >0且-a 1-d22×d 2≤1,即d ≥-2a 1,且d >0,故d >|a 1|可推导条件成立,而条件成立不能推出d >|a 1|成立,所以选A.6.解析: 由等差数列的性质,a 2+a 8=18-a 5, 即2a 5=18-a 5,∴a 5=6, 又∵S 9=(a 1+a 9)×92=9a 5=54.答案: 547.解析: ∵32=1+12,94=2+14,258=3+18,6516=4+116,…∴S n =32+94+258+6516+…+⎝⎛⎭⎫n +12n =(1+2+3+…+n )+⎝⎛⎭⎫12+122+123+ (12)=n (n +1)2+12⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12=n (n +1)2+1-12n .答案:n (n +1)2+1-12n 8.解析: 因为{a n }是等比数列,所以可设a n =a 1q n -1. 因为a 2=2,a 5=14,所以⎩⎪⎨⎪⎧ a 1q =2a 1q 4=14,解得⎩⎪⎨⎪⎧a 1=4q =12.所以S n =a 1+a 2+…+a n =4×⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12=8-8×⎝⎛⎭⎫12n. 因为0<⎝⎛⎭⎫12n ≤12,所以4≤S n <8. 答案: [4,8)9.解析: ∵a n +1-a n =2n ,∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =2n -1+2n -2+…+22+2+2=2-2n1-2+2=2n -2+2=2n .∴S n =2-2n +11-2=2n +1-2.答案: 2n +1-210.解析: (1)由已知,当n ≥1时, a n +1=[(a n +1-a n )+(a n -a n -1)+…+(a 2-a 1)]+a 1=3(22n -1+22n -3+…+2)+2=22(n+1)-1.而a 1=2,符合上式,所以数列{a n }的通项公式为a n =22n -1. (2)由b n =na n =n ·22n-1知,S n =1·2+2·23+3·25+…+n ·22n -1,① 从而22·S n =1·23+2·25+3·27+…+n ·22n +1,②①-②得,(1-22)S n =2+23+25+…+22n -1-n ·22n +1,=2(1-4n )1-4-n ·22n +1=-13[(3n -1)22n +1+2],即S n =19[(3n -1)22n +1+2].11.解析: (1)由3(a n +1-2a n +a n -1)=2可得: a n +1-2a n +a n -1=23,即(a n +1-a n )-(a n -a n -1)=23,∴数列{a n +1-a n }是以a 2-a 1=43为首项,23为公差的等差数列.(2)由(1)知a n +1-a n =43+23(n -1)=23(n +1),于是累加求和得:a n =a 1+23(2+3+…+n )=13n (n +1),∴1a n =3⎝⎛⎭⎫1n -1n +1, ∴1a 1+1a 2+1a 3+…+1a n =3-3n +1>52,∴n >5. ∴最小的正整数n 为6.B 级1.A 因cosn π2呈周期性出现,则观察此数列求和规律,列项如下: a 1=0,a 2=-2,a 3=0,a 4=4, 此4项的和为2.a 5=0,a 6=-6,a 7=0,a 8=8, 此4项的和为2.依次类推,得S 2 012=(a 1+a 2+a 3+a 4)+(a 5+a 6+a 7+a 8)+…+(a 2 009+a 2 010+a 2 011+a 2 012) =2 0124×2=1 006.故选A. 2.解析: a n =n +1,b n =2n -1,∴ab 1+ab 2+…+ab 10=a 1+a 2+a 22+a 23+…+a 29 =1+1+2+1+22+1+23+1+…+29+1 =10+(1+2+22+…+29) =10+1-2101-2=10+210-1=1 033.答案: 1 0333.解析: (1)∵a 3a 5+2a 4a 6+a 3a 9=100,∴a 24+2a 4a 6+a 26=100,∴(a 4+a 6)2=100,又a n >0,∴a 4+a 6=10,∵4是a 4与a 6的等比中项,∴a 4a 6=16, 而q ∈(0,1),∴a 4>a 6,∴a 4=8,a 6=2, ∴q =12,a 1=64,∴a n =64·⎝⎛⎭⎫12n -1=27-n . (2)b n =log 2a n =7-n , 则数列{b n }的前n 项和为T n =n (13-n )2,∴当1≤n ≤7时,b n ≥0,∴S n =n (13-n )2.当n ≥8时,b n <0,∴S n =b 1+b 2+…+b 7-(b 8+b 9+…+b n ) =-(b 1+b 2+…+b n )+2(b 1+b 2+…+b 7), =-n (13-n )2+2×7×62=n 2-13n +842,∴S n=⎩⎨⎧13n -n 22(1≤n ≤7且n ∈N *),n 2-13n +842 (n ≥8且n ∈N *).。